Course Notes: Deep Learning for Visual Computing

Peter Wonka

August 30, 2021

Contents

1	Styl	eTransf	er	5
	1.1	Overvi	ew	6
	1.2	lterativ	ve Approaches	8
	1.3	Feed F	orward Neural Networks	9
	1.4	Style T	ransfer by Gatys et al.	10
		1.4.1	Notation and Definitions	11
		1.4.2	VGG as Feature Extractor	13
		1.4.3	Content Loss	14
		1.4.4	How to Reconstruct Images based on Activation Tensors?	15
		1.4.5	Content Loss Details	17
		1.4.6	Style Loss	19
		1.4.7	Style Loss Details	22
		1.4.8	Total Loss	24
		1.4.9	Optimization	25
		1.4.10	Pipeline of the approach by Gatys et al. (CVPR 2016) $\ldots \ldots \ldots 2$	27

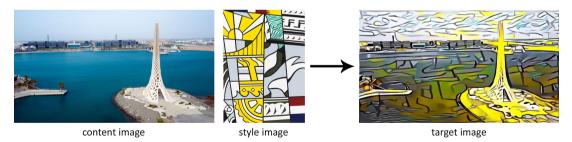
	1.4.11	Results of the approach by Gatys et al. (CVPR 2016)	28		
1.5	Texture	e Networks	31		
	1.5.1	Overview	32		
	1.5.2	Notation and Definitions	33		
	1.5.3	Texture and Content Loss Functions	34		
	1.5.4	Generator Network for Texture Synthesis	36		
	1.5.5	Learning Algorithm for Texture Synthesis	37		
	1.5.6	Generator Network for Style Transfer	38		
	1.5.7	Overview of the proposed architecture	39		
	1.5.8	Generator Network in Detail	40		
	1.5.9	Technical Details	41		
	1.5.10	Results of Ulyanov et al., ICML 2016	43		
	1.5.11	Comparison of Ulyanov et al. to Gatys et al	44		
1.6	Perceptual Losses for Real-Time Style Transfer and Super-Resolution				
	1.6.1	Overview	47		
	1.6.2	Pipeline	48		

	1.6.3	Results	0
1.7	A Lear	ned Representation For Artistic Style	1
	1.7.1	Overview	2
	1.7.2	Notation and Definitions	4
	1.7.3	Loss Function	5
	1.7.4	Conditional Instance Normalization	7
	1.7.5	Style Transfer Network Hyperparameters	0
	1.7.6	Results	1

1 StyleTransfer

1.1 Overview

- Goal: transfer the style of a $\ensuremath{\text{style}}$ image a to a $\ensuremath{\text{content}}$ image p
 - result is a target (output) image x
- x should show the content of p (e.g. KAUST) in the style (colors, brush strokes, etc.) of a
- Example:



• Discussion: difficult to define the problem exactly

1.2 Iterative Approaches

- General idea:
 - Initialize \boldsymbol{x} with white noise or the content image to improve convergence time
 - Iteratively apply small changes to target image \boldsymbol{x} using optimization
- Advantage
 - No training of a neural network necessary
 - A pre-trained network (e.g. VGG19) is used for feature extraction
- Disadvantage
 - Computationally expensive (each style transfer can take minutes)

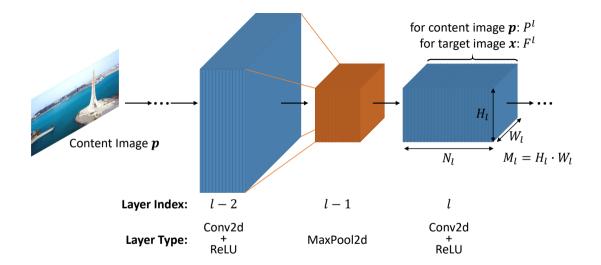
1.3 Feed Forward Neural Networks

- General idea: Move the computational burden to a learning stage
 - Train a neural network perform style transfer via a single feed forward pass
 - Input is only the content image, output is the stylized image
 - Style images are used during network training
- Advantage
 - Fast: Learning has to be done only once.
 - Style transfer can then be done within milliseconds
- Disadvantage
 - The neural network is trained for only one or a limited number of styles
 - Results are usually not as good as with an iterative approach

- 1.4 Style Transfer by Gatys et al.
 - Literature: Image Style Transfer Using Convolutional Neural Networks (Gatys et al., CVPR 2016)
 - Iterative approach.

1.4.1 Notation and Definitions

- N_l : the number of feature maps at layer l
- M_l : the number of scalars in each feature map (channel) at layer l (number of pixels)
- P^l : the feature representations of the content image ${f p}$ in layer l
- F^l : the feature representations of the target image \mathbf{x} in layer l
 - \rightarrow M_l = height times width of each feature map at layer l
- Notation assumes that each 2d feature map (channel) is reshaped into a vector:
 - Rank-3 tensor of layer l is reshaped into matrix $F^l \in \mathbb{R}^{N_l \times M_l}$
 - $\rightarrow F_{ij}^l$: activation value of channel *i* at pixel position *j* in layer *l*



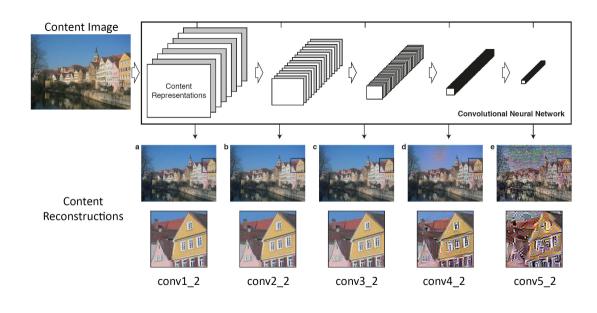
1.4.2 VGG as Feature Extractor

- Authors propose to normalize the VGG network by scaling the weights
 - Mean output of each conv filter over images and positions should be 1
 - Possible for VGG network without changing its output
 - Only ReLU activation functions
 - No normalization or pooling over feature maps
- Authors propose to replace max pooling by average pooling
 - slightly more appealing results?

1.4.3 Content Loss

- We want to keep the content of \boldsymbol{p} in our target image \boldsymbol{x}
 - minimize the squared difference between their corresponding activations P^l and F^l .
- How to choose a set of layers l_i for feature (tensor) extraction?
 - Perform tests to identify the amount of content information in a layer
 - Input to the pre-trained VGG19 network is the content image
 - At a chosen layer l of the network extract the activation tensor P^{l}
 - Try to reconstruct input image based on the activation tensor P^l

- 1.4.4 How to Reconstruct Images based on Activation Tensors?
 - Initialize using white noise
 - Optimize the image (e.g. gradient descent)
 - Loss minimized difference in activation tensor from reference tensor
 - Requires one feed-forward pass through pre-trained network per iteration
 - Reconstruction examples:



1.4.5 Content Loss Details

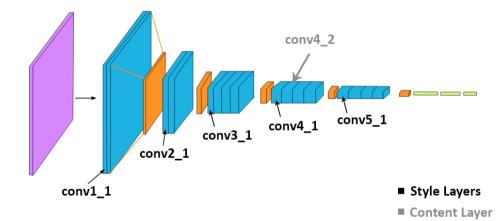
- The higher layers of a neural network do not specify detail information
 - Structure (content) is still determined to some degree
 - Details can be specified by style image
 - \rightarrow choose a higher layer number for content preservation
- For example, choose conv4_2 in VGG19 to define the content loss $\mathcal{L}_{content}$:

$$\mathcal{L}_{\text{content}}\left(\mathbf{p}, \mathbf{x}, l\right) = \frac{1}{N_l M_l} \sum_{i,j} \left(F_{ij}^l - P_{ij}^l\right)^2 = \text{mean}\left(\left(F^l - P^l\right) \odot \left(F^l - P^l\right)\right) \quad (1.1)$$

- where \odot is the Hadamard product (elementwise) product of two matrices
- Gradient of the content loss w.r.t. the activations in layer *l*:

$$\frac{\partial \mathcal{L}_{\text{content}}}{\partial F_{ij}^l} = \begin{cases} \frac{2}{N_l M_l} \left(F^l - P^l\right)_{ij} & \text{if } F_{ij}^l > 0\\ 0 & \text{if } F_{ij}^l \le 0 \end{cases}$$
17

• VGG-19 with highlighted layers used for content and style features:



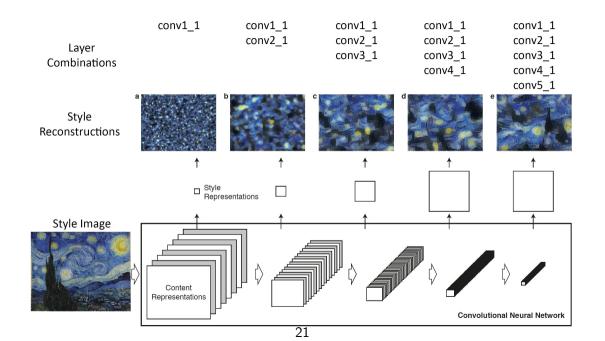
1.4.6 Style Loss

- The goal is to preserve the style of ${f a}$
 - we cannot directly compare the feature maps of ${\boldsymbol{a}}$ and ${\boldsymbol{x}}$ for this purpose
 - we can compare feature correlations which are given by the Gram matrix $G^l \in \mathbb{R}^{N_l \times N_l}$:

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$

- where G_{ij}^l is the inner product between the vectorised feature maps i and j in layer l
 - vectorisation of the $h \times w$ feature maps in PyTorch by tensor.view(d, h * w)
- Again, we can identify the amount of style information that is encoded in each layer of the used neural network (VGG19 in our case)
 - Input to the pre-trained VGG19 network is the style image.

- At each layer of the network, we store the responses (activation maps).
- For each layer, we try to reconstruct based on the Gram matrix of the stored response.
- Reconstructions (depending on the chosen combination of layers) look like this:



1.4.7 Style Loss Details

- the lower layers encode small-scale style features
- the higher layers encode large-scale style features
- → by including the feature correlations of **multiple layers**, we obtain a stationary, **multi-scale representation** of the input image, which captures its texture information but not the global arrangement.
- the contribution of layer l to the style loss can then be defined as

$$E_{l} = \frac{1}{N_{l}^{2}M_{l}^{2}}\sum_{i,j} \left(G_{ij}^{l} - A_{ij}^{l}\right)^{2} = \frac{1}{M_{l}^{2}} \operatorname{mean}\left(\left(G^{l} - A^{l}\right) \odot \left(G^{l} - A^{l}\right)\right)$$

- with A^l and G^l being the style representations (given by the corresponding Gram matrix) of the style image a and the target image x respectively
- By choosing a suitable weight w_l for each layer l we obtain the style loss $\mathcal{L}_{ ext{style}}$ as

$$\mathcal{L}_{\text{style}}\left(\mathbf{a},\mathbf{x}\right) = \sum_{l=0}^{L} w_{l} E_{l}$$

• Gradient of E_l w.r.t. the activations in the layer l can be easily derived by

$$\frac{\partial E_{l}}{\partial F_{ij}^{l}} = \begin{cases} \frac{2}{N_{l}^{2}M_{l}^{2}} \left(\left(F^{l}\right)^{T} \left(G^{l} - A^{l}\right) \right)_{ji} & \text{if } F_{ij}^{l} > 0\\ 0 & \text{if } F_{ij}^{l} \le 0 \end{cases}$$

1.4.8 Total Loss

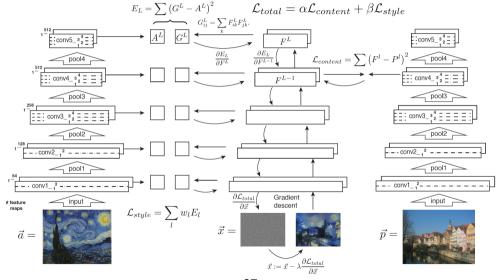
• The total loss is simply a weighted sum of the content loss and the style loss:

$$\mathcal{L}_{\text{total}}\left(\mathbf{p}, \mathbf{a}, \mathbf{x}\right) = \alpha \mathcal{L}_{\text{content}}\left(\mathbf{p}, \mathbf{x}\right) + \beta \mathcal{L}_{\text{style}}\left(\mathbf{a}, \mathbf{x}\right)$$

1.4.9 Optimization

- Target image can be initialized with white noise or (to reduce convergence time) the content image.
- Authors suggest:
 - L-BFGS for image optimization
 - a ratio $\frac{\alpha}{\beta}$ of about 1.0e-3 causing emphasis on the style
 - layer conv4_2 for content features
 - layers conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1 for style features
 - a style layer weighting of $w_l = 1/5$

1.4.10 Pipeline of the approach by Gatys et al. (CVPR 2016)



1.4.11 Results of the approach by Gatys et al. (CVPR 2016)

1.5 Texture Networks

1.5.1 Overview

- Literature: Texture Networks: Feed-forward Synthesis of Textures and Stylized Images (Ulyanov et al., ICML 2016)
- Train a Feed Forward Neural Network that performs the style transfer
 - \rightarrow this network is referred to as the generator network
- A loss is derived from another pre-trained and fixed network
 - \rightarrow this network is referred to as the descriptor network (e.g. VGG-19)
- · For each texture or style, a separate generator network must be trained
 - after training, it can synthesize an arbitrary number of images of arbitrary size

1.5.2 Notation and Definitions

- g: generator network (function)
- using g for texture synthesis
 - input: noise sample \boldsymbol{z}
 - output: texture $g(\mathbf{z})$
- using g for style transfer
 - input: noise sample ${\boldsymbol{z}}$ and content image ${\boldsymbol{y}}$
 - output: image $g\left(\mathbf{y},\mathbf{z}
 ight)$ where the learned style has been applied to \mathbf{y}
- **x**₀: prototype texture (style image)
- **x** is the output image
- $F_i^l(x)$ is the *i*-th map (feature channel) computed by the *l*-th convolutional layer of the descriptor CNN (e.g. VGG-19) applied to image x

1.5.3 Texture and Content Loss Functions

- Loss function is derived from the method by Gatys et al.
- A combination of Gram matrices G^l is used as texture descriptor with $l \in L_T$
 - L_T contains selected indices of convolutional layers

$$G_{ij}^{l}(x) = \langle F_{i}^{l}(x), F_{j}^{l}(x) \rangle$$
(1.2)

• The texture loss (= style loss) between images x and x₀ is defined as

$$\mathcal{L}_{T}(\boldsymbol{x};\boldsymbol{x}_{0}) = \sum_{l \in \mathcal{L}_{T}} \|\boldsymbol{G}^{l}(\boldsymbol{x}) - \boldsymbol{G}^{l}(\boldsymbol{x}_{0})\|_{F}^{2}$$
(1.3)

• The content loss is defined as

$$\mathcal{L}_{C}(x; y) = \sum_{\substack{l \in \mathcal{L}_{C} \\ \mathbf{34}}} \sum_{i=1}^{N_{l}} \| \mathbf{F}_{i}^{l}(x) - \mathbf{F}_{i}^{l}(y) \|_{F}^{2}$$
(1.4)

- where N_l is the number of maps (feature channels) in layer l of the descriptor CNN

- 1.5.4 Generator Network for Texture Synthesis
 - Train generator network g for texture synthesis
 - Find optimal parameters θ for g given a prototype texture x_0 :

$$\theta_{x_0} = \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{z \sim \mathcal{Z}} \left[\mathcal{L}_T \left(g \left(z; \theta \right), x_0 \right) \right]$$
(1.5)

• Input: set of K random tensors z_i of different size:

$$z_i \in \mathbb{R}^{\frac{M}{2^i} \times \frac{M}{2^i}}, i = 0, 1, \dots, K-1$$
 (1.6)

- Authors use M = 256 and K = 5
- → multi-scale architecture
- Loss: only texture loss, no content loss, no content image

1.5.5 Learning Algorithm for Texture Synthesis

- optimize the objective (1.5) using stochastic gradient descent (SGD).
- At each iteration SGD:
 - Draw a mini-batch of noise vectors \mathbf{z}_k ; k = 1, ..., B
 - Forward evaluation of generator network g to obtain images $\mathbf{x_k} = g(\mathbf{z_k}; \theta)$
 - Forward evaluation of descriptor network to obtain Gram matrices $G^{l}(\mathbf{x_{k}}), l \in L_{T}$
 - Computation of the loss (1.5).
 - gradient computation using backpropagation
 - $\circ~$ of the texture loss w.r.t. the generator network parameters θ
 - update the parameters using the gradient

1.5.6 Generator Network for Style Transfer

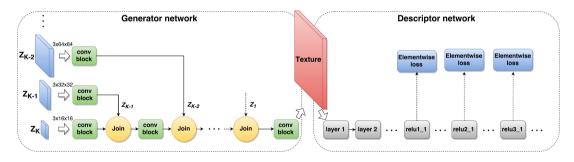
- Similar to texture synthesis with some modifications:
 - Input: noise tensors z_i concatenated with downsampled versions of the content image y
 - Number of random input tensors K is increased to 6
- Learning process
 - sample noise vectors $z_i \sim \mathcal{Z}$
 - sample natural images $y_i \sim \mathcal{Y}$
 - compute loss:

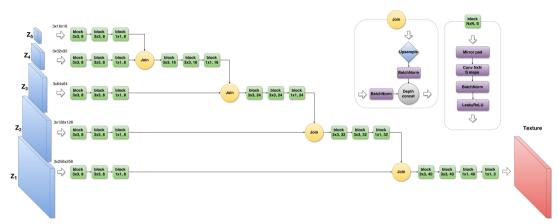
$$\theta_{x_{0}} = \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{z \sim \mathcal{Z}; y \sim \mathcal{Y}} \left[\mathcal{L}_{T} \left(g \left(y, z; \theta \right), x_{0} \right) + \alpha \mathcal{L}_{C} \left(g \left(y, z; \theta \right), y \right) \right]$$
(1.7)

• update network parameters θ of the generator $g(y_i; z_i; \theta)$ using backpropagation:

1.5.7 Overview of the proposed architecture

- generator network g is fully convolutional
 - \rightarrow independent to input resolution during test time
- for the descriptor network, a pre-trained network (e.g VGG-19) is used





1.5.8 Generator Network in Detail

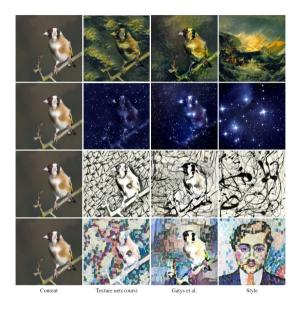
1.5.9 Technical Details

- Network weights are initialized using Xavier's method
- Training is done using the Adam optimizer for 2000 iterations
- initial learning rate of 0.1 that is reduced by a factor 0.7 at iteration 1000 and then again every 200 iterations
- batch size = 16
- choice of layers from VGG-19 for content and style loss similar to Gatys et al.
- Training of the network takes two hours on an NVidia Tesla K40

1.5.10 Results of Ulyanov et al., ICML 2016

1.5.11 Comparison of Ulyanov et al. to Gatys et al.

• While orders of magnitudes faster, the perceptible quality is inferior to output of Gatys et al.



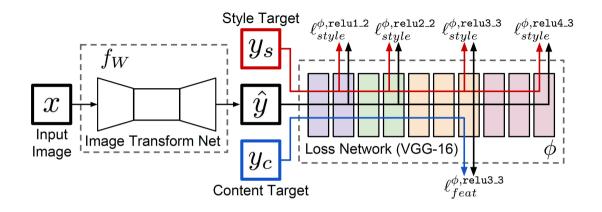
1.6 Perceptual Losses for Real-Time Style Transfer and Super-Resolution Johnson et al., Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV 2016)

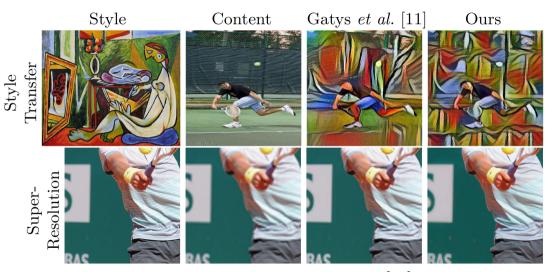
1.6.1 Overview

- Very similar to **Texture Networks** of Ulyanov et al.
- Feed-forward network trained either for style transfer or super-resolution
- Main difference: network architecture
 - network body comprises five residual blocks
 - all non-residual convolutional layers are followed by batch normalization and ReLU nonlinearities
 - output layer uses a scaled tanh to ensure valid pixel range
 - first and last layers use 9×9 kernels
 - all other convolutional layers use 3×3 kernels

1.6.2 Pipeline

- For style transfer
 - the input image x equals the content target y_c
 - the output image \hat{y} should combine the content of $x = y_c$ with the style of y_s
 - one network is trained per style target
- For super-resolution
 - the input x is a low-resolution input
 - the content target y_c is the ground-truth high-resolution image
 - the style reconstruction loss is not used
 - one network is trained per super-resolution factor
- the image transform net f_W is the network to be trained
- the loss network a pre-trained network (e.g. VGG-16)





Ground Truth

1.6.3

Results

Bicubic

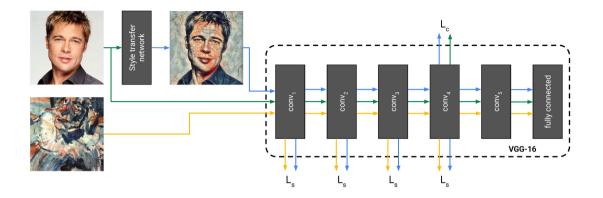
c SRCNN [13] Perceptual loss 50

1.7 A Learned Representation For Artistic Style

• Literature: Dumoulin et al., A Learned Representation For Artistic Style

1.7.1 Overview

- also trains a feed-forward neural network for style transfer
- a single network is trained for up to 32 styles
- key contribution is the introduction of conditional instance normalization
- · model reduces each style image into a point in an embedding space
- training procedure very similar to Johnson et al. and Ulyanov et al.
 - VGG-16 is used for feature extraction
 - content loss \mathcal{L}_c is computed using response values
 - style loss \mathcal{L}_s is computed using a set of Gram matrices
- very similar network architecture to Johnson et al.



1.7.2 Notation and Definitions

- the goal is to find a pastiche image p
 - pastiche: an artistic work in a style that imitates that of another work, artist, or period
- the content is given as a content image *c*
- the style is given as a style image s
- the style transfer network to be trained is referred to as T

- 1.7.3 Loss Function
 - Style loss:

$$\mathcal{L}_{s}(p) = \sum_{i \in S} \frac{1}{U_{i}} \|G(\phi_{i}(p)) - G(\phi_{i}(s))\|_{F}^{2}$$
(1.8)

• Content loss:

$$\mathcal{L}_{c}(p) = \sum_{i \in \mathcal{S}} \frac{1}{U_{j}} \|G(\phi_{j}(p)) - G(\phi_{j}(c))\|_{2}^{2}$$
(1.9)

• Total loss using the content image c as input to the transfer network T:

$$\mathcal{L}(s,c) = \lambda_s \mathcal{L}_s(T(c)) + \lambda_c \mathcal{L}_c(T(c))$$
(1.10)

55

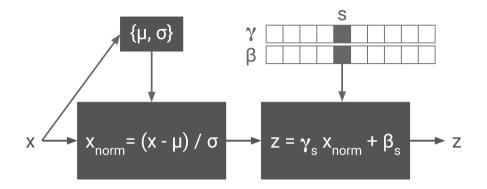
- $\phi_l(x)$ are the classifier activations at layer l
- U_l is the total number of units at layer l
- $G(\phi_l(x))$ is the Gram matrix associated with the layer l activations

1.7.4 Conditional Instance Normalization

- Intuition behind the proposed method:
 - Many styles probably share some degree of computation
 - Wasteful to treat a set of N impressionist paintings as completely separate styles
- Goal: transform a layer's activation tensor x into a normalized activation z specific to painting style s
- conditioning on a style *s* is achieved as follows:

$$z = \gamma_s \frac{x - \mu}{\sigma} + \beta_s$$

- where μ and σ are x's mean and standard deviation taken across spatial axes
- γ_s and β_s are obtained by selecting the row corresponding to s in the γ and β matrices:



- for N styles γ and β are $N \times C$ matrices where
 - *N* is the number of styles being modeled
 - C is the number of output feature maps (channels)
- the input activation x is normalized across both spatial dimensions and subsequently scaled and shifted using style-dependent parameter vectors γ_s , β_s where s indexes

the style label.

- Benefit of this approach
 - one can stylize a single image into N painting styles with a single feed forward pass of the network with a batch size of N
 - a single-style network requires N feed forward passes to perform N style transfers
- conditional instance normalization presents the advantage that integrating an N+1th style to the network is cheap because of the very small number of parameters to train (~ 3K for a typical network setup)

1.7.5 Style Transfer Network Hyperparameters

Operation	Kernel size	Stride	Feature maps	Padding	Nonlinearity
Network – $256 \times 256 \times 3$ input					
Convolution	9	1	32	SAME	ReLU
Convolution	3	2	64	SAME	ReLU
Convolution	3	2	128	SAME	ReLU
Residual block			128		
Residual block			128		
Residual block			128		
Residual block			128		
Residual block			128		
Upsampling			64		
Upsampling			32		
Convolution	9	1	3	SAME	Sigmoid
Residual block – C feature maps					
Convolution	3	1	C	SAME	ReLU
Convolution	3	1	C	SAME	Linear
	Add the input and the output				
Upsampling – C feature maps					
	Nearest-neighbor interpolation, factor 2				
Convolution	3	1	C	SAME	ReLU
Padding mode	REFLECT				
Normalization	Conditional instance normalization after every convolution				
Optimizer	Adam (Kingma & Ba, 2014) ($\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999$)				
Parameter updates					
Batch size	16				
Weight initialization	Isotropic gaussian ($\mu = 0, \sigma = 0.01$)				

1.7.6 Results

- N-styles network can arbitrarily combine artistic styles.
- In the example below four styles are combined, shown in the corners.
- Each pastiche corresponds to a different convex combination of the four styles' γ and β values.

