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1 StyleTransfer
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1.1 Overview

• Goal: transfer the style of a style image a to a content image p

• result is a target (output) image x

• x should show the content of p (e.g. KAUST) in the style (colors, brush strokes,
etc.) of a

• Example:
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• Discussion: difficult to define the problem exactly
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1.2 Iterative Approaches

• General idea:

• Initialize x with white noise or the content image to improve convergence time

• Iteratively apply small changes to target image x using optimization

• Advantage

• No training of a neural network necessary

• A pre-trained network (e.g. VGG19) is used for feature extraction

• Disadvantage

• Computationally expensive (each style transfer can take minutes)

8



1.3 Feed Forward Neural Networks

• General idea: Move the computational burden to a learning stage

• Train a neural network perform style transfer via a single feed forward pass

• Input is only the content image, output is the stylized image

• Style images are used during network training

• Advantage

• Fast: Learning has to be done only once.

• Style transfer can then be done within milliseconds

• Disadvantage

• The neural network is trained for only one or a limited number of styles

• Results are usually not as good as with an iterative approach
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1.4 Style Transfer by Gatys et al.

• Literature: Image Style Transfer Using Convolutional Neural Networks (Gatys et al.,
CVPR 2016)

• Iterative approach.
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1.4.1 Notation and Definitions

• Nl : the number of feature maps at layer l

• Ml : the number of scalars in each feature map (channel) at layer l (number of pixels)

• P l : the feature representations of the content image p in layer l

• F l : the feature representations of the target image x in layer l

• → Ml = height times width of each feature map at layer l

• Notation assumes that each 2d feature map (channel) is reshaped into a vector:

• Rank-3 tensor of layer l is reshaped into matrix F l ∈RNl×Ml

• → F l
i j : activation value of channel i at pixel position j in layer l
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Content Image 𝒑

...

Conv2d
+

ReLU
MaxPool2dLayer Type:

Layer Index: 𝑙 − 2 𝑙 − 1 𝑙

...
𝐻𝑙

𝑁𝑙

for content image 𝒑: 𝑃𝑙

for target image 𝒙: 𝐹𝑙

𝑊𝑙

𝑀𝑙 = 𝐻𝑙 ∙ 𝑊𝑙

Conv2d
+

ReLU
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1.4.2 VGG as Feature Extractor

• Authors propose to normalize the VGG network by scaling the weights

• Mean output of each conv filter over images and positions should be 1

• Possible for VGG network without changing its output

• Only ReLU activation functions

• No normalization or pooling over feature maps

• Authors propose to replace max pooling by average pooling

• slightly more appealing results?
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1.4.3 Content Loss

• We want to keep the content of p in our target image x

• minimize the squared difference between their corresponding activations P l and
F l .

• How to choose a set of layers li for feature (tensor) extraction?

• Perform tests to identify the amount of content information in a layer

• Input to the pre-trained VGG19 network is the content image

• At a chosen layer l of the network extract the activation tensor P l

• Try to reconstruct input image based on the activation tensor P l
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1.4.4 How to Reconstruct Images based on Activation Tensors?

• Initialize using white noise

• Optimize the image (e.g. gradient descent)

• Loss minimized difference in activation tensor from reference tensor

• Requires one feed-forward pass through pre-trained network per iteration

• Reconstruction examples:
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1.4.5 Content Loss Details

• The higher layers of a neural network do not specify detail information

• Structure (content) is still determined to some degree

• Details can be specified by style image

• → choose a higher layer number for content preservation

• For example, choose conv4_2 in VGG19 to define the content loss Lcontent:

Lcontent
(
p,x, l

)= 1

Nl Ml

∑
i , j

(
F l

i j −P l
i j

)2 = mean
((

F l −P l
)
¯

(
F l −P l

))
(1.1)

• where ¯ is the Hadamard product (elementwise) product of two matrices

• Gradient of the content loss w.r.t. the activations in layer l :

∂Lcontent

∂F l
i j

=
{

2
Nl Ml

(
F l −P l

)
i j if F l

i j > 0

0 if F l
i j ≤ 0
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• VGG-19 with highlighted layers used for content and style features:
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1.4.6 Style Loss

• The goal is to preserve the style of a

• we cannot directly compare the feature maps of a and x for this purpose

• we can compare feature correlations which are given by the Gram matrix G l ∈
RNl×Nl :

G l
i j =

∑
k

F l
i k F l

j k

• where G l
i j is the inner product between the vectorised feature maps i and j in layer

l

• vectorisation of the h×w feature maps in PyTorch by tensor.view(d, h * w)

• Again, we can identify the amount of style information that is encoded in each layer
of the used neural network (VGG19 in our case)

• Input to the pre-trained VGG19 network is the style image.
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• At each layer of the network, we store the responses (activation maps).

• For each layer, we try to reconstruct based on the Gram matrix of the stored
response.

• Reconstructions (depending on the chosen combination of layers) look like this:
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1.4.7 Style Loss Details

• the lower layers encode small-scale style features

• the higher layers encode large-scale style features

• → by including the feature correlations of multiple layers, we obtain a stationary,
multi-scale representation of the input image, which captures its texture informa-
tion but not the global arrangement.

• the contribution of layer l to the style loss can then be defined as

El =
1

N 2
l M 2

l

∑
i , j

(
G l

i j − Al
i j

)2 = 1

M 2
l

mean
((

G l − Al
)
¯

(
G l − Al

))
• with Al and G l being the style representations (given by the corresponding Gram

matrix) of the style image a and the target image x respectively

• By choosing a suitable weight wl for each layer l we obtain the style loss Lstyle as
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Lstyle (a,x) =
L∑

l=0
wl El

• Gradient of El w.r.t. the activations in the layer l can be easily derived by

∂El

∂F l
i j

=


2
N 2

l M 2
l

((
F l

)T (
G l − Al

))
j i

if F l
i j > 0

0 if F l
i j ≤ 0
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1.4.8 Total Loss

• The total loss is simply a weighted sum of the content loss and the style loss:

Ltotal
(
p,a,x

)=αLcontent
(
p,x

)+βLstyle (a,x)
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1.4.9 Optimization

• Target image can be initialized with white noise or (to reduce convergence time) the
content image.

• Authors suggest:

• L-BFGS for image optimization

• a ratio α
β of about 1.0e −3 causing emphasis on the style

• layer conv4_2 for content features

• layers conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1 for style features

• a style layer weighting of wl = 1/5
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1.4.10 Pipeline of the approach by Gatys et al. (CVPR 2016)
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1.4.11 Results of the approach by Gatys et al. (CVPR 2016)
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1.5 Texture Networks
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1.5.1 Overview

• Literature: Texture Networks: Feed-forward Synthesis of Textures and Stylized Im-
ages (Ulyanov et al., ICML 2016)

• Train a Feed Forward Neural Network that performs the style transfer

• → this network is referred to as the generator network

• A loss is derived from another pre-trained and fixed network

• → this network is referred to as the descriptor network (e.g. VGG-19)

• For each texture or style, a separate generator network must be trained

• after training, it can synthesize an arbitrary number of images of arbitrary size
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1.5.2 Notation and Definitions

• g : generator network (function)

• using g for texture synthesis

• input: noise sample z

• output: texture g (z)

• using g for style transfer

• input: noise sample z and content image y

• output: image g
(
y,z

)
where the learned style has been applied to y

• x0: prototype texture (style image)

• x is the output image

• F l
i (x) is the i -th map (feature channel) computed by the l -th convolutional layer of

the descriptor CNN (e.g. VGG-19) applied to image x
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1.5.3 Texture and Content Loss Functions

• Loss function is derived from the method by Gatys et al.

• A combination of Gram matrices G l is used as texture descriptor with l ∈ LT

• LT contains selected indices of convolutional layers

G l
i j (x) = 〈F l

i (x) ,F l
j (x)〉 (1.2)

• The texture loss (= style loss) between images x and x0 is defined as

LT (x; x0) =
∑

l∈LT

‖Gl (x)−Gl (x)‖2
F (1.3)

• The content loss is defined as

LC
(
x; y

)= ∑
l∈LC

Nl∑
i=1

‖F l
i (x)−F l

i (y)‖2
F (1.4)
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• where Nl is the number of maps (feature channels) in layer l of the descriptor
CNN
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1.5.4 Generator Network for Texture Synthesis

• Train generator network g for texture synthesis

• Find optimal parameters θ for g given a prototype texture x0:

θx0 = argmin
θ

Ez∼Z
[
LT

(
g (z;θ) , x0

)]
(1.5)

• Input: set of K random tensors zi of different size:

zi ∈R
M
2i × M

2i , i = 0,1, . . . ,K −1 (1.6)

• Authors use M = 256 and K = 5

• → multi-scale architecture

• Loss: only texture loss, no content loss, no content image
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1.5.5 Learning Algorithm for Texture Synthesis

• optimize the objective (1.5) using stochastic gradient descent (SGD).

• At each iteration SGD:

• Draw a mini-batch of noise vectors zk ; k = 1, . . . ,B

• Forward evaluation of generator network g to obtain images xk = g (zk;θ)

• Forward evaluation of descriptor network to obtain Gram matrices G l (xk), l ∈ LT

• Computation of the loss (1.5).

• gradient computation using backpropagation

◦ of the texture loss w.r.t. the generator network parameters θ

• update the parameters using the gradient
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1.5.6 Generator Network for Style Transfer

• Similar to texture synthesis with some modifications:

• Input: noise tensors zi concatenated with downsampled versions of the content
image y

• Number of random input tensors K is increased to 6

• Learning process

• sample noise vectors zi ∼Z
• sample natural images yi ∼Y
• compute loss:

θx0 = argmin
θ

Ez∼Z ;y∼Y
[
LT

(
g

(
y, z;θ

)
, x0

)+αLC
(
g

(
y, z;θ

)
, y

)]
(1.7)

• update network parameters θ of the generator g (yi ; zi ;θ) using backpropagation:
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1.5.7 Overview of the proposed architecture

• generator network g is fully convolutional

• → independent to input resolution during test time

• for the descriptor network, a pre-trained network (e.g VGG-19) is used
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1.5.8 Generator Network in Detail
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1.5.9 Technical Details

• Network weights are initialized using Xavier’s method

• Training is done using the Adam optimizer for 2000 iterations

• initial learning rate of 0.1 that is reduced by a factor 0.7 at iteration 1000 and then
again every 200 iterations

• batch size = 16

• choice of layers from VGG-19 for content and style loss similar to Gatys et al.

• Training of the network takes two hours on an NVidia Tesla K40
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1.5.10 Results of Ulyanov et al., ICML 2016
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1.5.11 Comparison of Ulyanov et al. to Gatys et al.

• While orders of magnitudes faster, the perceptible quality is inferior to output of
Gatys et al.
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1.6 Perceptual Losses for Real-Time Style Transfer and Super-Resolution

Johnson et al., Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV
2016)
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1.6.1 Overview

• Very similar to Texture Networks of Ulyanov et al.

• Feed-forward network trained either for style transfer or super-resolution

• Main difference: network architecture

• network body comprises five residual blocks

• all non-residual convolutional layers are followed by batch normalization and ReLU
nonlinearities

• output layer uses a scaled tanh to ensure valid pixel range

• first and last layers use 9×9 kernels

• all other convolutional layers use 3×3 kernels
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1.6.2 Pipeline

• For style transfer

• the input image x equals the content target yc

• the output image ŷ should combine the content of x = yc with the style of ys

• one network is trained per style target

• For super-resolution

• the input x is a low-resolution input

• the content target yc is the ground-truth high-resolution image

• the style reconstruction loss is not used

• one network is trained per super-resolution factor

• the image transform net fW is the network to be trained

• the loss network a pre-trained network (e.g. VGG-16)
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1.6.3 Results
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1.7 A Learned Representation For Artistic Style

• Literature: Dumoulin et al., A Learned Representation For Artistic Style
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1.7.1 Overview

• also trains a feed-forward neural network for style transfer

• a single network is trained for up to 32 styles

• key contribution is the introduction of conditional instance normalization

• model reduces each style image into a point in an embedding space

• training procedure very similar to Johnson et al. and Ulyanov et al.

• VGG-16 is used for feature extraction

• content loss Lc is computed using response values

• style loss Ls is computed using a set of Gram matrices

• very similar network architecture to Johnson et al.
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1.7.2 Notation and Definitions

• the goal is to find a pastiche image p

• pastiche: an artistic work in a style that imitates that of another work, artist, or
period

• the content is given as a content image c

• the style is given as a style image s

• the style transfer network to be trained is referred to as T
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1.7.3 Loss Function

• Style loss:

Ls(p) = ∑
i∈S

1

Ui
‖G(φi (p))−G(φi (s))‖2

F (1.8)

• Content loss:

Lc (p) = ∑
i∈S

1

U j
‖G(φ j (p))−G(φ j (c))‖2

2 (1.9)

• Total loss using the content image c as input to the transfer network T :

L(s,c) =λsLs(T (c))+λcLc (T (c)) (1.10)
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• φl (x) are the classifier activations at layer l

• Ul is the total number of units at layer l

• G(φl (x)) is the Gram matrix associated with the layer l activations
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1.7.4 Conditional Instance Normalization

• Intuition behind the proposed method:

• Many styles probably share some degree of computation

• Wasteful to treat a set of N impressionist paintings as completely separate styles

• Goal: transform a layer’s activation tensor x into a normalized activation z specific
to painting style s

• conditioning on a style s is achieved as follows:

z = γs
x −µ
σ

+βs

• where µ and σ are x’s mean and standard deviation taken across spatial axes

• γs and βs are obtained by selecting the row corresponding to s in the γ and β

matrices:
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• for N styles γ and β are N ×C matrices where

• N is the number of styles being modeled

• C is the number of output feature maps (channels)

• the input activation x is normalized across both spatial dimensions and subsequently
scaled and shifted using style-dependent parameter vectors γs , βs where s indexes
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the style label.

• Benefit of this approach

• one can stylize a single image into N painting styles with a single feed forward
pass of the network with a batch size of N

• a single-style network requires N feed forward passes to perform N style transfers

• conditional instance normalization presents the advantage that integrating an N+1th

style to the network is cheap because of the very small number of parameters to train
(∼ 3K for a typical network setup)
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1.7.5 Style Transfer Network Hyperparameters
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1.7.6 Results

• N -styles network can arbitrarily combine artistic styles.

• In the example below four styles are combined, shown in the corners.

• Each pastiche corresponds to a different convex combination of the four styles’ γ and
β values.
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