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1 Network Analysis
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1.1 What is the representational power of a neural network?

• A fully-connected network defines a family of functions parametrized by the weights

• What is the representational power of this family of functions?

• Are there functions that cannot be modeled with a neural network?
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1.1.1 Representational Power of a Linear Network

• Assume a network consisting of only linear layers:

• x2 =W1xin

• x3 =W2x2

• ...

• xout =WLxL

• xout =WL ...W2W1xin

• Combination of many linear layers is a single linear layer
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1.1.2 Representational Power

• Networks with at least one hidden layer are universal function approximators

• as always certain restrictions and conditions apply

• Graduate school version:

• Literature: Cybenko, Approximation by superpositions of a sigmoidal func-
tion, Mathematics of Control, Signals and Systems 1989

• “We show that arbitrary decision regions can be arbitrarily well approximated by
continuous feedforward neural networks with only a single internal, hidden layer
and any continuous sigmoidal nonlinearity.”

• Literature: Hornik et al., Multilayer feedforward networks are universal ap-
proximators, 1989

• High school version

• Michael Nielsen: youtube 6 min
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• Michael Nielsen: online book with interactive graphs

• Given any continuous function f (x) and some ε > 0, there exists a Neural Net-
work g (x;θ) with one hidden layer with a reasonable choice of non-linearity (e.g.
sigmoid) such that ∀x, | f (x)− g (x)| < ε
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1.1.3 Representational Power Continued

• proof does not create reasonable networks in practice

• The derivatives of the feedforward network can also approximate the derivatives of
the function arbitrarily well

• Literature: Hornik et al., Universal approximation of an unknown mapping and its
derivatives using multilayer feedforward networks, 1990

• Original proofs were for a class of activation functions like sigmoid

• Extension to other functions, e.g. ReLU

• Literature: Leshno et al., Multilayer feedforwardnetworks with a nonpolynomial
activation function can approximate any function, 1993

• How big does the single layer need to be?

• Unfortunately, in the worst case, an exponential number of hidden units (one hid-
den unit corresponding to each input configuration that needs to be distinguished)
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may be required
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1.1.4 Deeper Networks Help

• Literature: Montufar et al., On the number of linear regions of deep neural networks,
NIPS 2014

• Piecewise linear networks are obtained, e.g., from rectifier non-linearities or maxout
units

• Piecewise linear networks can represent functions with a number of regions that is
exponential in the depth of the network

• The number of linear regions carved out by a deep rectifier network is

• d inputs

• depth / layers l

• n units per hidden layer

O

((
n
d

)d(l−1)

nd

)
(1.1)
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1.1.5 Further Reading

• Deep Learning book, Bengio, Goodfellow, Courville, Chapter 6.4.
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1.2 Importance of Transfer Learning
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1.2.1 Setup

Input L1 L2 . . . Lol d
n Out put

Input L1 L2 . . . Lnew
n Out put

• Literature: Kornblith et al., Do Better ImageNet Models Transfer Better?, arXiv
2018, CVPR 2019

• Compare the performance of 16 classification networks on 12 image classification
datasets

• Compare different versions:

• Logistic Regression:
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◦ Initialize with pre-trained ImageNet weights

◦ Cut off the last classification layer

◦ Add new classification layer with random weights

◦ Train last layer weights / keep all earlier weights fixed

• Fine Tuned:

◦ Initialize with pre-trained ImageNet weights

◦ Cut off the last classification layer

◦ Add new classification layer with random weights

◦ Train all layers (no weights fixed)

• Random Init (no transfer)

◦ Cut off the last classification layer

◦ Add new classification layer

◦ Initialize all weights randomly
15



◦ Train all layers
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1.2.2 Pretraining is Important
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• Classification performance:

• Generally: Fine Tuning > Random Init > Logistic Regression

• Time:

• Logistic Regression << Fine Tuning < Random Init

• Different view of the results
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1.2.3 Regularization can be beneficial or harmful
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• Comparing fine-tuning for pretrained networks with and without regularization tech-
niques
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1.2.4 Conclusions

• ImageNet accuracy predicts performance of logistic regression on fixed features, but
regularization settings matter

• ImageNet accuracy predicts fine-tuning performance

• ImageNet accuracy predicts performance of networks trained from random
initialization

• ImageNet pretraining does not necessarily improve accuracy on fine-grained tasks

• ImageNet pretraining accelerates convergence

• Accuracy benefits of ImageNet pretraining fade quickly with dataset size
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1.3 Rethinking ImageNet Pretraining

• Literature: He et al., Rethinking ImageNet Pre-training, arXiv 2018, ICCV 2019

• ImageNet pretraining might only provide accelerated training, no accuracy improve-
ment for object detection
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• The jumps in the figure are learning rate decreases
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• Training converges to better results without pre-training
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1.4 How big to make the network?

• Choromanska et al., The Loss Surfaces of Multilayer Networks, arXiv 2014, JMLR
2015
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1.5 Deep Networks can Learn Random Labels

• Literature: Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol
Vinyals, Understanding deep learning requires rethinking generalization, ICLR
2017 (Best paper award)

• Experiment:

• assign random class labels to images

• can the network learn random class labels?

• what is the generalization error of random class labels?
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1.6 Teacher Student Training

• Literature: Xie et al., Self-training with Noisy Student improves ImageNet classifica-
tion, arXiv November 2019

• Improved Training with EfficientNet
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• Term: pseudo label is a label assigned by a trained network

• Hard vs. Soft Labels

• Hard labels are 1 for the correct class and 0 for other classes

• Soft labels are softmax probabilities (work better)

• Main Ideas:

• self-training (a method in semi-supervised learning)

• add many sources of variation (noise) to the student

• no noise in the teacher when generating pseudo labels

• Sources of noise:

• dropout

• stochastic depth

• data augmentation

• Data balancing for pseudo labels
33



• duplicate images in classes with not enough images

• take highest confidence images for classes with too many images
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Algorithm 1: Noisy Student method
Require: Labeled images {(x1, y1), (x2, y2), ..., (xn , yn)} and unlabeled images {x̃1, x̃2, ..., x̃m}.
1: Learn teacher model θ∗ which minimizes the cross entropy loss on labeled images

1

n

n∑
i=1

`(yi , f noi sed (xi ,θ))

2: Use an unnoised teacher model to generate soft or hard pseudo labels for unlabeled images

ỹi = f (x̃i ,θ∗),∀i = 1, · · · ,m

3: Learn student model θ′∗ which minimizes the cross entropy loss on labeled images and
unlabeled images with noise added to the student model

1

n

n∑
i=1

`(yi , f noi sed (xi ,θ′))+ 1

m

m∑
i=1

`(ỹi , f noi sed (x̃i ,θ′))

4: Iterative training: Use the student as a teacher and go back to step 2.
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1.7 Do ImageNet Classifiers Generalize to ImageNet?

• Literature: Recht et al., Do ImageNet Classifiers Generalize to ImageNet?

• Are more recent networks better or do they just overfit the training data?

• What is the effect of using the same test data over and over again?
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1.7.1 Test Setup

• Create a new test set for CIFAR-10 and ImageNet

• Follow the original protocol for dataset creation

• Evaluate networks trained on CIFAR-10 and ImageNet on the new test sets
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1.7.2 Main Result
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• Model accuracy on the original test sets vs. new test sets

• Each data point corresponds to one model (shown with 95% Clopper-Pearson confi-
dence intervals)

• Two main conclusions:

• Significant drop in accuracy from the original test sets to the new test sets

• Model accuracies closely follow a linear function with slope greater than 1 (1.7
for CIFAR-10 and 1.1 for ImageNet)

◦ Every percentage point of progress on the original test set translates into more
than one percentage point on the new test set.
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1.7.3 Analysis

• Possible causes for the difference in performance:

• Generalization Gap: new data has harder samples due to random sampling

◦ Difference in performance is too large

• Distribution Gap: new data has harder samples due to systematic differences

◦ e.g. cameras change over time, data generation protocol slightly different, ...

◦ authors conjecture this is the main reason

• Adaptivity Gap: networks are adapted to the test set

◦ e.g. by directly training on the test set, tuning hyperparameters on the test
set, architecture choices because of test set, ...

◦ not likely because of the second conclusion above
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