Course Notes: Deep Learning for Visual Computing

Peter Wonka

August 30, 2021

Contents

1		-linear Activation Functions	5
	1.1	General Comments	6
	1.2	Sigmoid	7
	1.3	Properties of Activation Functions	9
	1.4	Tanh	12
	1.5	ReLU	14
	1.6	Leaky ReLU	17
	1.7	Maxout	19
		PReLU	
	1.9	ReLU6	24
	1.10	ELU	27
		RRelu	
		SELU	
	1.13	CELU	34
	1 14	Hardshrink	36

1.15	Hardtanh	38
1.16	LogSigmoid	40
1.17	Softplus	41
1.18	Softshrink	43
1.19	Softsign	45
1.20	Tanhshrink	46
1.21	Treshold	47
1.22	Softmin	48
1.23	Softmax	49
1.24	LogSoftmax	50
1.25	GELU	51
1.26	Swish	53
1.27	Mish	55
	Problem of Non-differentiable Functions	
1.29	Subgradient Review	58
1.30	Recommendation on what to use	59

1.31	Comparing Activation Functions	60
1.32	Comparing Activation Functions	61
1.33	What are Adversarial Examples?	62
1.34	What is Adversarial Training?	63

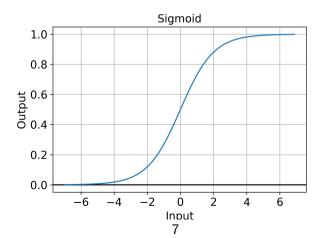
1 Non-linear Activation Functions

1.1 General Comments

- Typically activation functions have one input and one output
 - True for Sigmoid, Tanh, ReLU, LeakyReLU, ...
 - Exception: Maxout
- Typically activation functions do not have a learnable parameter that the network can train on
 - True for Sigmoid, Tanh, ReLU, LeakyReLU, ...
 - Exception: PReLU
 - It is important to distinguish between a hardcoded constant and a trainable parameter in the following
- Activation functions operate component wise on tensors

1.2 Sigmoid

$$Sigmoid(x) = \frac{1}{1 + \exp(-x)}$$
 (1.1)



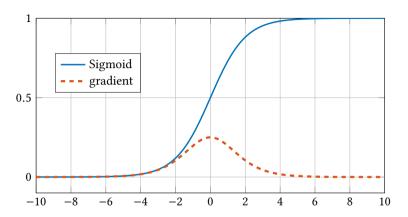
- No parameter to learn for the network
- Output is in the interval [0,1]
 - Small negative numbers $\rightarrow 0$, large positive numbers $\rightarrow 1$
- Historical importance, semantic interpretation as the firing rate of a neuron:
 - from not firing at all (0) to fully-saturated firing at an assumed maximum frequency (1)
- Interpretation as probability

1.3 Properties of Activation Functions

- How large is the derivative (gradient) of the function?
 - Sigmoid can saturate and kill the gradients. Gradient is very small far from 0, e.g. at +10 and -10 it is almost 0
 - If the gradient is very small, no signal will flow through the neuron during backpropagation
 - If initializing the network weights leads to values in the saturated region, it can take a long time to change.
- Is the output zero-centered?
 - Sigmoid outputs are not zero-centered
 - Linear layers compute a sum of the form $\sum x_i w_i + b$, w_i are network parameters and x_i are the inputs to the layer
 - If all x_i are positive the partial derivatives with respect to the w_i s will have the

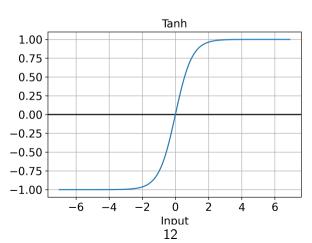
same sign

- Less problematic for mini-batches where gradients are averaged
- Is the function smooth?
 - Sigmoid is smooth
- How expensive is the function to compute?
 - exponential function in Sigmoid is expensive
 - Bigger concern on mobile devices and CPUs than GPUs
- Is the function monotone?
- Is the derivative monotone?
- Does the function approximate the identity near 0?



1.4 Tanh

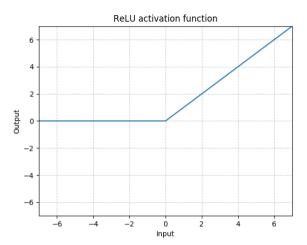
$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \tag{1.2}$$



- Output is in the interval [-1,1]
- Saturates like the sigmoid function
- Output is zero centered
- Tanh is simply a scaled and shifted sigmoid function:
 - Tanh(x) = 2Sigmoid(2x) 1

1.5 ReLU

$$ReLU(x) = max(0, x)$$



- Output is in the interval $[0, +\infty]$
- $\bullet \quad \hbox{Empirically much better convergence than tanh / sigmoid} \\ 15$

- e.g. a factor of 6 in Krizhevsky et al.
- Very simple to implement
- ReLU units can die (i.e. never activate again).
 - If the ReLU unit does not activate for any input, gradient is always 0
 - Happens more often with large learning rates?

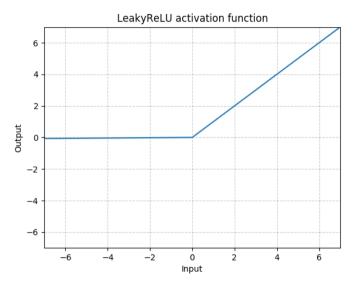
1.6 Leaky ReLU

LeakyRELU(x) =
$$\begin{cases} x, & \text{if } x \ge 0 \\ \text{negative_slope} \times x, & \text{otherwise} \end{cases}$$

Alternative formulation:

LeakyReLU(
$$x$$
) = max(0, x) + negative_slope * min(0, x) (1.4)

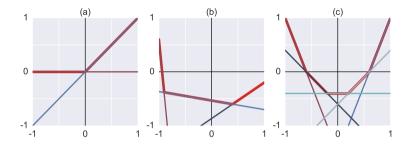
- Output is in the interval $[-\infty, +\infty]$
- negative_slope is a hardcoded parameter, not learnable
 - default parameter in PyTorch is 0.01
- Idea: LeakyReLU cannot die, because there is a gradient for positive and negative inputs
 - While the idea is very intuitive, a clear benefit has not been established experimentally



1.7 Maxout

$$\mathsf{Maxout}(x_1, \dots, x_k) = \max(x_1, \dots, x_k) \tag{1.5}$$

- Literature: Goodfellow et al., Maxout Networks
- The idea of maxout is to compute multiple possible outputs for a neuron and then choose the maximum value.
- Requires k-times the number of weights, because instead of one value per neuron we
 have to compute k values.
- Comparison
 - MaxPooling computes the maximum among neighboring pixels in the same channel
 - Maxout combines k candidate values for the same pixel. Basically you compute k channels instead of one and combine them with max.

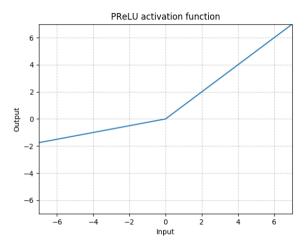


Maxout can build piecewise linear convex functions (if applied to linear input functions)

1.8 PReLU

$$\mathsf{PReLU}(x) = \max(0, x) + a * \min(0, x)$$

(1.6)

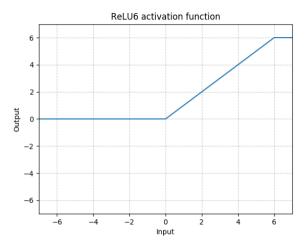


- Name: Parametric ReLU
- Extends the LeakyReLU further by making a a learnable parameter

- ullet PyTorch recommends not to use weight decay on the parameter a
- Initial value in PyTorch: a = 0.25
- Literature: He et al., Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

1.9 ReLU6

$$ReLU6(x) = min(max(0, x), 6)$$
(1.7)

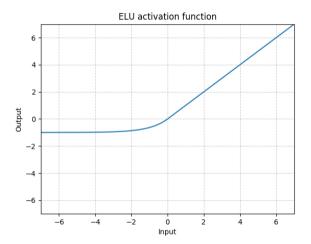


- ReLU, but large values are clamped to 6
- Why is there such a wierd activation function in PyTorch?
 25

- A: Krizhevsky, Convolutional Deep Belief Networks on CIFAR-10
- useful for mobile computing and fixed point arithmetic?

1.10 ELU

$$\mathsf{ELU}(x) = \max(0, x) + \min(0, \alpha * (\exp(x) - 1))$$



• Name: Exponential Linear Unit

• Default in PyTorch: $\alpha = 1$

• α is not learnable

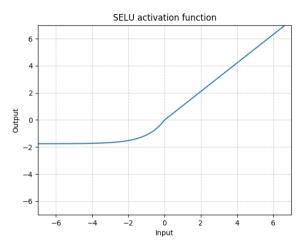
1.11 RRelu

$$RReLU(x) = \max(0, x) + a * \min(0, x)$$
(1.9)

- α is randomly sampled in an interval [lower, upper]
 - α , lower, upper are hardcoded parameters and not learnable
- Literature: Xu et al., Empirical Evaluation of Rectified Activations in Convolutional Network
 - The authors claim some success with RReLU
 - Unclear if it's really a good idea

1.12 **SELU**

$$SELU(x) = scale * (max(0, x) + min(0, \alpha * (exp(x) - 1)))$$
 (1.10)

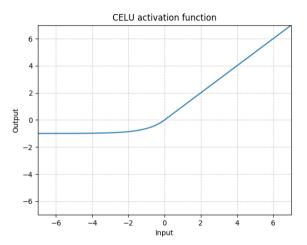


- Proposed Idea: build a self-normalizing network to avoid batch-normalization
- $\alpha = 1.6732632423543772848170429916717$

- scale = 1.0507009873554804934193349852946
- Literature: Klambauer et al., Self-Normalizing Neural Networks

1.13 CELU

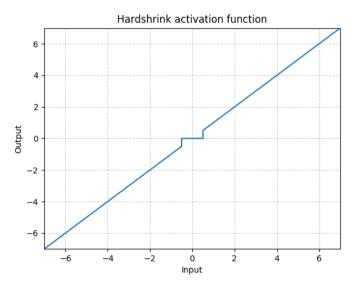
$$\mathsf{CELU}(x) = \max(0, x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) \tag{1.11}$$



- Parameter: α , default $\alpha = 1$, not learnable
- Literature: Barron, Continuously Differentiable Exponential Linear Units 35

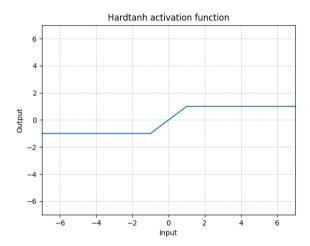
1.14 Hardshrink

$$\mathsf{HardShrink}(x) = \begin{cases} x, & \text{if } x > \lambda \\ x, & \text{if } x < -\lambda \\ 0, & \text{otherwise} \end{cases}$$



1.15 Hardtanh

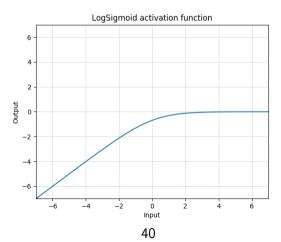
$$\mathsf{HardTanh}(x) = \begin{cases} 1 & \text{if } x > 1 \\ -1 & \text{if } x < -1 \\ x & \text{otherwise} \end{cases}$$



minimum and maximum value can be given as parameter

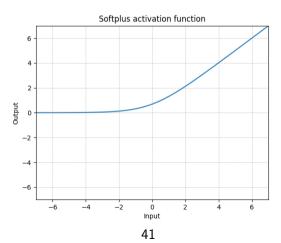
1.16 LogSigmoid

$$LogSigmoid(x) = log\left(\frac{1}{1 + exp(-x)}\right)$$
 (1.12)



1.17 Softplus

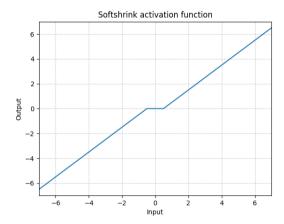
Softplus(x) =
$$\frac{1}{\beta} * \log(1 + \exp(\beta * x))$$
 (1.13)



- smooth approximation of the ReLU
- parameters:
 - β , default $\beta = 1$
 - treshold, for inputs above the treshold the function reverts to a linear function for numerical stability
- Output is always positive

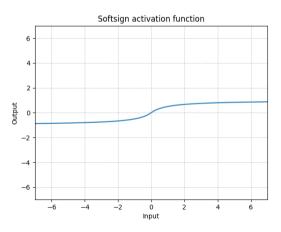
1.18 Softshrink

$$\mathsf{SoftShrinkage}(x) = \begin{cases} x - \lambda, & \text{if } x > \lambda \\ x + \lambda, & \text{if } x < -\lambda \\ 0, & \text{otherwise} \end{cases}$$



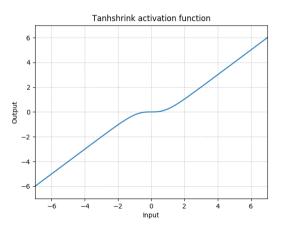
1.19 Softsign

$$\mathsf{SoftSign}(x) = \frac{x}{1 + |x|} \tag{1.14}$$



1.20 Tanhshrink

$$Tanhshrink(x) = x - Tanh(x)$$
 (1.15)



1.21 Treshold

 $\begin{cases} x, & \text{if } x > \text{threshold} \\ \text{value,} & \text{otherwise} \end{cases}$

1.22 Softmin

$$\mathsf{Softmin}(x_i) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}$$

1.23 Softmax

$$Softmax(x_i) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$

- Output values will be in the range [0,1]
- There is also a 2D version Softmax2d (softmax per pixel)

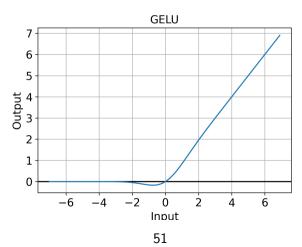
1.24 LogSoftmax

$$LogSoftmax(x_i) = log\left(\frac{exp(x_i)}{\sum_{j} exp(x_j)}\right)$$

- Often the output of softmax is further processed by a log function
- Computing log and softmax together has a more efficient and more stable implementation

1.25 **GELU**

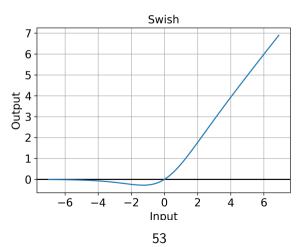
$$\mathsf{GELU}(x) = x * \Phi(x) \tag{1.16}$$



• $\Phi(x)$ is the Cumulative Distribution Function for the Gaussian Distribution

1.26 Swish

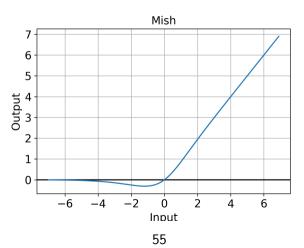
$$swish(x) = xsigmoid(x)$$
 (1.17)



- Literature: Swish: a Self-Gated Activation Function
- Non-monotonic function
- Authors claim this property is desirable and brings an advantage
- Smooth
- Self-gating

1.27 Mish

$$Mish(x) = x \tanh(softplus(x)) = x \tanh(ln(1 + e^{x}))$$
(1.18)



- Literature: Mish: A Self Regularized Non-Monotonic Neural Activation Function
- Endorsed by FastAI: blogpost

1.28 Problem of Non-differentiable Functions

- · Not all activation functions are differentiable at all points
- Solution:
 - Use concepts such as subgradient
 - Use left or right derivative
- For example, ReLU does not have a defined gradient at 0
 - Left derivative = 0
 - Right derivative = 1
 - Return one of those values in a software implementation

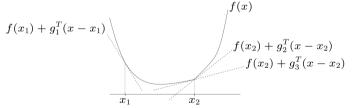
1.29 Subgradient Review

Subgradient of a function

g is a **subgradient** of f (not necessarily convex) at x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

 $(\iff (g,-1) \text{ supports } \mathbf{epi} f \text{ at } (x,f(x)))$



 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

1.30 Recommendation on what to use

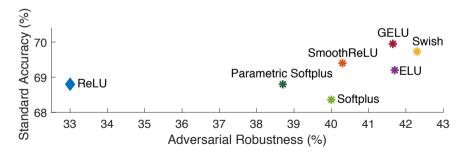
- Try ReLU first
- Use whatever the best other networks in your field are doing
- It is rare to mix different types of activation functions in a network

1.31 Comparing Activation Functions

- Many comparisons, no clear winner overall
- Activation function interacts with all other network components: optimizer, learning rate, network depth, type of network, data, initialization, ...

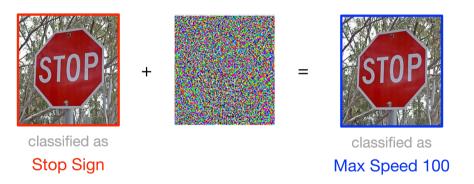
1.32 Comparing Activation Functions

- Literature: Xie et al, Smooth Adversarial Training
- Authors claim: smooth activation functions improve adversarial training. Compared to ReLU, all smooth activation functions significantly boost robustness, while keeping accuracy almost the same.



1.33 What are Adversarial Examples?

 Adversarial Examples: Samples that an attacker has designed to cause the neural network to make a mistake. E.g. add designed noise.



1.34 What is Adversarial Training?

Adversarial training trains networks with adversarial examples on-the-fly to optimize the following framework:

$$\underset{\theta}{\operatorname{arg\,min}} \mathbb{E}_{(x,y) \sim \mathbb{D}} \Big[\underset{\epsilon \in \mathbb{S}}{\operatorname{max}} L(\theta, x + \epsilon, y) \Big], \tag{1.19}$$

where $\mathbb D$ is the underlying data distribution, $L(\cdot,\cdot,\cdot)$ is the loss function, θ is the network parameter, x is a training sample with the ground-truth label y, ϵ is the added adversarial perturbation, and $\mathbb S$ is the allowed perturbation range. As shown in Equation (1.19), adversarial training consists of two computation steps: an **inner maximization step**, which computes adversarial examples, and an **outer minimization step**, which computes parameter updates.