Course Notes: Deep Learning for Visual Computing

Peter Wonka

August 30, 2021

Contents

1 Non-linear Activation Functions 5
1.1 General Comments 6
1.2 Sigmoid 7
1.3 Properties of Activation Functions 9
1.4 Tanh . . ., 12
1.5 ReLU 14
1.6 Leaky ReLU 17
1.7 Maxout 19
1.8 PReLU 21
1.9 ReLU6 24
1.10 ELU . . . 27
1.11 RRelu 30
1.12 SELU . . . 31
1.13 CELU . . . 34
1.14 Hardshrink 36

1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30

Hardtanh 38
LogSigmoid 40
Softplus 41
Softshrink 43
Softsign 45
Tanhshrink 46
Treshold 47
Softmin 48
Softmax 49
LogSoftmax 50
GELU . . 51
Swish . . . 53
Mish . . 55
Problem of Non-differentiable Functions 57
Subgradient Review 58
Recommendation on whattouse 59

1.31 Comparing Activation Functions 60

1.32 Comparing Activation Functions 61
1.33 What are Adversarial Examples? 62
1.34 What is Adversarial Training? 63

1 Non-linear Activation Functions

1.1

General Comments

Typically activation functions have one input and one output
e True for Sigmoid, Tanh, ReLU, LeakyRel U, ...
o Exception: Maxout

Typically activation functions do not have a learnable parameter that the network
can train on

e True for Sigmoid, Tanh, ReLU, LeakyRel U, ...
o Exception: PRelLU

e It is important to distinguish between a hardcoded constant and a trainable pa-
rameter in the following

Activation functions operate component wise on tensors

1.2 Sigmoid

. . 1
Slgm0|d(X) = m (11)

Sigmoid

No parameter to learn for the network

Output is in the interval [0,1]

e Small negative numbers — 0, large positive numbers — 1

Historical importance, semantic interpretation as the firing rate of a neuron:

o from not firing at all (0) to fully-saturated firing at an assumed maximum fre-
quency (1)
Interpretation as probability

1.3 Properties of Activation Functions

e How large is the derivative (gradient) of the function?

Sigmoid can saturate and kill the gradients. Gradient is very small far from 0, e.g.
at +10 and —10 it is almost 0

If the gradient is very small, no signal will flow through the neuron during back-
propagation

If initializing the network weights leads to values in the saturated region, it can
take a long time to change.

e s the output zero-centered?

Sigmoid outputs are not zero-centered

Linear layers compute a sum of the form Y x;w; + b, w; are network parameters
and x; are the inputs to the layer

If all x; are positive the partial derivatives with respect to the w;s will have the

9

same sign
e Less problematic for mini-batches where gradients are averaged
Is the function smooth?
e Sigmoid is smooth
How expensive is the function to compute?
e exponential function in Sigmoid is expensive
o Bigger concern on mobile devices and CPUs than GPUs
Is the function monotone?
Is the derivative monotone?

Does the function approximate the identity near 07

10

—— Sigmoid
= = = gradient

0.5 |-

-10 -8 -6 -4 -2

11

1.4 Tanh

X

—-X

tanh(x)=l
eX+e*
Tanh
1.001
0.751
0.50 1
0.25 1
0.00
—0.25 1
—0.50
—0.751
—1.00
s 4 2 o0 2 a4 6
Inout

12

Output is in the interval [-1,1]

Saturates like the sigmoid function

Output is zero centered

Tanh is simply a scaled and shifted sigmoid function:
e Tanh(x) =2Sigmoid(2x) — 1

13

1.5 RelLU

ReLU(x) = max(0, x)

14

(1.3)

RelLU activation function

output
o

Input

Output is in the interval [0, +o0]

Empirically much better convergence than tanh / sigmoid
15

e e.g. a factor of 6 in Krizhevsky et al.
e Very simple to implement
e ReLU units can die (i.e. never activate again).
e If the ReLU unit does not activate for any input, gradient is always 0

» Happens more often with large learning rates?

16

1.6 Leaky RelLU

X, if x=0
LeakyRELU(x) =

negative slopex x, otherwise

o Alternative formulation:
LeakyReLU(x) = max(0, x) + negative _slope * min(0, x) (1.4)

e Output is in the interval [—oo, +00]
e negative slope is a hardcoded parameter, not learnable
e default parameter in PyTorch is 0.01

o lIdea: LeakyReLU cannot die, because there is a gradient for positive and negative
inputs

o While the idea is very intuitive, a clear benefit has not been established experi-
mentally

17

LeakyReLU activation function

Input

18

1.7

Maxout

Maxout(xy, ..., Xx) = max(xi,..., Xg) (1.5)

Literature: Goodfellow et al., Maxout Networks

The idea of maxout is to compute multiple possible outputs for a neuron and then
choose the maximum value.

Requires k-times the number of weights, because instead of one value per neuron we
have to compute k values.

Comparison

e MaxPooling computes the maximum among neighboring pixels in the same chan-
nel

e Maxout combines k candidate values for the same pixel. Basically you compute
k channels instead of one and combine them with max.

19

https://arxiv.org/pdf/1302.4389.pdf

: @ ; ®) ; ©

e Maxout can build piecewise linear convex functions (if applied to linear input func-
tions)

20

1.8 PRelLU

PRelLU(x) = max(0, x) + a * min(0, x)

21

(1.6)

PRelU activation function

output
o
;

Input

Name: Parametric ReLU

Extends the LeakyRelLU further by making a a learnable parameter
22

e PyTorch recommends not to use weight decay on the parameter a
o Initial value in PyTorch: a=0.25

o Literature: He et al., Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification

23

https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852

1.9 RelLU®6

ReLU6(x) = min(max(0, x), 6)

24

(1.7)

RelLU®6 activation function

output
o

Input

ReLU, but large values are clamped to 6

Why is there such a wierd activation function in PyTorch?
25

o A: Krizhevsky, Convolutional Deep Belief Networks on CIFAR-10

o useful for mobile computing and fixed point arithmetic?

26

http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf

1.10 ELU

ELU(x) = max(0, x) + min(0, a * (exp(x) — 1))

27

(1.8)

ELU activation function

output
o
;

Name: Exponential Linear Unit

Default in PyTorch: a=1
28

a is not learnable

29

1.11

RRelu

RReLU(x) = max(0, x) + a * min(0, x) (1.9)

a is randomly sampled in an interval [lower,upper]
e a, lower, upper are hardcoded parameters and not learnable

Literature: Xu et al., Empirical Evaluation of Rectified Activations in Convolutional
Network

o The authors claim some success with RReLU

e Unclear if it's really a good idea

30

https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1505.00853

1.12 SELU

SELU(x) = scale * (max(0, x) + min(0, a * (exp(x) — 1))) (1.10)

31

SELU activation function

output
o

Input

e Proposed Idea: build a self-normalizing network to avoid batch-normalization

e a=1.6732632423543772848170429916717
32

e scale =1.0507009873554804934193349852946

o Literature: Klambauer et al., Self-Normalizing Neural Networks

33

https://arxiv.org/abs/1706.02515

1.13 CELU

CELU(x) = max(0, x) + min(0, a * (exp(x/a) — 1)) (1.11)

34

CELU activation function

output
o
;

Input

e Parameter: a, default a =1, not learnable

o Literature: Barron, Continuously Differentiable Exponential Linear Units
35

https://arxiv.org/abs/1704.07483

1.14 Hardshrink

x, ifx>2
HardShrink(x) =< x, ifx<-A

0, otherwise

36

Hardshrink activation function

Input

37

1.15 Hardtanh

1 if x>1
HardTanh(x)=< -1 if x<-1

X otherwise

38

Hardtanh activation function

output
o
;

Input

minimum and maximum value can be given as parameter

39

1.16 LogSigmoid

LogSigmoid(x) = log((1.12)

1 +exp(—x))

LogSigmoid activation function

output
[=]

Input

40

1.17 Softplus
Softplus(x) = % xlog(1 + exp(p * x)) (1.13)

Softplus activation function

output
[=]

Input

41

e smooth approximation of the RelLU

o parameters:
e B, default f=1

e treshold, for inputs above the treshold the function reverts to a linear function for
numerical stability

e OQutput is always positive

42

1.18 Softshrink

x—-A, ifx>A
SoftShrinkage(x) =< x+ 1, ifx<-A1
0, otherwise

43

Softshrink activation function

-4 4

44

1.19 Softsign

output

. X
SOftSlgn(X) = T|x|

Softsign activation function

Input

45

(1.14)

1.20 Tanhshrink
Tanhshrink(x) = x — Tanh(x) (1.15)

Tanhshrink activation function

output
[=]

Input

46

1.21 Treshold

value, otherwise

{x, if x> threshold

47

1.22 Softmin
exp(—x;)

Softmln(xi) = m

48

1.23 Softmax
exp(x;)

Softmax(x,-) = m

o Output values will be in the range [0,1]

e There is also a 2D version Softmax2d (softmax per pixel)

49

1.24 LogSoftmax

LogSoftmax(x;) = 10g(L(xi))

2 jexp(x;)

o Often the output of softmax is further processed by a log function

e Computing log and softmax together has a more efficient and more stable implemen-
tation

50

1.25 GELU

GELU(x) = x * ®(x) (1.16)

GELU

Output

o P N W b U O N
L L L L i L L

Inout

51

o ®(x)istheCumulativeDistributionFunctionfortheGaussianDistribution

52

1.26 Swish

swish(x) = xsigmoid(x) (1.17)

Swish

Output

O P N W M U O

Inout

53

Literature: Swish: a Self-Gated Activation Function
Non-monotonic function

Authors claim this property is desirable and brings an advantage
Smooth

Self-gating

54

https://arxiv.org/pdf/1710.05941v1.pdf

1.27 Mish

Mish(x) = xtanh(softplus(x)) = xtanh(In(1 + %))

Mish

Output

o B N W M U1 O N
L L f L L L L

Inout

55

(1.18)

o Literature: Mish: A Self Regularized Non-Monotonic Neural Activation Function

e Endorsed by FastAl: blogpost

56

https://arxiv.org/abs/1908.08681v1
https://medium.com/@lessw/meet-mish-new-state-of-the-art-ai-activation-function-the-successor-to-relu-846a6d93471f

1.28 Problem of Non-differentiable Functions

o Not all activation functions are differentiable at all points
e Solution:
e Use concepts such as subgradient
o Use left or right derivative
e For example, ReLU does not have a defined gradient at 0
o Left derivative =0
e Right derivative =1

e Return one of those values in a software implementation

57

1.29 Subgradient Review

Subgradient of a function

g is a subgradient of f (not necessarily convex) at z if
fy) = f@)+ g (y—=) forally

(< (g,—1) supports epi f at (z, f(z)))

J@
f@) + gl (@—a0) |
\\\ /"//_,f(fﬂz) + g5 (z — x2)
\ 7 f(@) + gl — o)
X — D)

go, g3 are subgradients at xs; g1 is a subgradient at x;

58

1.30 Recommendation on what to use

e Try RelLU first
o Use whatever the best other networks in your field are doing

e It is rare to mix different types of activation functions in a network

59

1.31 Comparing Activation Functions

e Many comparisons, no clear winner overall

e Activation function interacts with all other network components: optimizer, learning
rate, network depth, type of network, data, initialization, ...

60

1.32 Comparing Activation Functions

o Literature: Xie et al, Smooth Adversarial Training

e Authors claim: smooth activation functions improve adversarial training. Compared
to ReLU, all smooth activation functions significantly boost robustness, while keeping
accuracy almost the same.

X
EL

§ 70 G * v Swish
5 SmooQReLU
[$)
Q Parametric Softplus *ELU
< 69" ¢ReLU * 0
g % Softplus

68 1 1 1 1
§ 33 34 35 36 37 38 39 40 41 42 43
2 Adversarial Robustness (%)

61

https://arxiv.org/abs/2006.14536

1.33 What are Adversarial Examples?

e Adversarial Examples: Samples that an attacker has designed to cause the neural
network to make a mistake. E.g. add designed noise.

classified as classified as

Stop Sign Max Speed 100

62

1.34 What is Adversarial Training?

Adversarial training trains networks with adversarial examples on-the-fly to optimize the
following framework:

argmink y, y)-p |maxL(@,x+¢€,y)|, (1.19)
0 €€S

where D is the underlying data distribution, L(:,-,-) is the loss function, 0 is the network
parameter, x is a training sample with the ground-truth label y, € is the added adversarial
perturbation, and S is the allowed perturbation range. As shown in Equation (1.19), ad-
versarial training consists of two computation steps: an inner maximization step, which
computes adversarial examples, and an outer minimization step, which computes param-
eter updates.

63

	Non-linear Activation Functions
	General Comments
	Sigmoid
	Properties of Activation Functions
	Tanh
	ReLU
	Leaky ReLU
	Maxout
	PReLU
	ReLU6
	ELU
	RRelu
	SELU
	CELU
	Hardshrink
	Hardtanh
	LogSigmoid
	Softplus
	Softshrink
	Softsign
	Tanhshrink
	Treshold
	Softmin
	Softmax
	LogSoftmax
	GELU
	Swish
	Mish
	Problem of Non-differentiable Functions
	Subgradient Review
	Recommendation on what to use
	Comparing Activation Functions
	Comparing Activation Functions
	What are Adversarial Examples?
	What is Adversarial Training?

