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1 Non-linear Activation Functions



1.1

General Comments

Typically activation functions have one input and one output
e True for Sigmoid, Tanh, ReLU, LeakyRel U, ...
o Exception: Maxout

Typically activation functions do not have a learnable parameter that the network
can train on

e True for Sigmoid, Tanh, ReLU, LeakyRel U, ...
o Exception: PRelLU

e It is important to distinguish between a hardcoded constant and a trainable pa-
rameter in the following

Activation functions operate component wise on tensors



1.2 Sigmoid

. . 1
Slgm0|d(X) = m (11)

Sigmoid




No parameter to learn for the network

Output is in the interval [0,1]

e Small negative numbers — 0, large positive numbers — 1

Historical importance, semantic interpretation as the firing rate of a neuron:

o from not firing at all (0) to fully-saturated firing at an assumed maximum fre-
quency (1)
Interpretation as probability



1.3 Properties of Activation Functions

e How large is the derivative (gradient) of the function?

Sigmoid can saturate and kill the gradients. Gradient is very small far from 0, e.g.
at +10 and —10 it is almost 0

If the gradient is very small, no signal will flow through the neuron during back-
propagation

If initializing the network weights leads to values in the saturated region, it can
take a long time to change.

e s the output zero-centered?

Sigmoid outputs are not zero-centered

Linear layers compute a sum of the form Y x;w; + b, w; are network parameters
and x; are the inputs to the layer

If all x; are positive the partial derivatives with respect to the w;s will have the
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same sign
e Less problematic for mini-batches where gradients are averaged
Is the function smooth?
e Sigmoid is smooth
How expensive is the function to compute?
e exponential function in Sigmoid is expensive
o Bigger concern on mobile devices and CPUs than GPUs
Is the function monotone?
Is the derivative monotone?

Does the function approximate the identity near 07
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1.4 Tanh

X

—-X

tanh(x)=l
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Inout
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Output is in the interval [-1,1]

Saturates like the sigmoid function

Output is zero centered

Tanh is simply a scaled and shifted sigmoid function:
e Tanh(x) =2Sigmoid(2x) — 1
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1.5 RelLU

ReLU(x) = max(0, x)

14

(1.3)



RelLU activation function

output
o

Input

Output is in the interval [0, +o0]

Empirically much better convergence than tanh / sigmoid
15



e e.g. a factor of 6 in Krizhevsky et al.
e Very simple to implement
e ReLU units can die (i.e. never activate again).
e If the ReLU unit does not activate for any input, gradient is always 0

» Happens more often with large learning rates?

16



1.6 Leaky RelLU

X, if x=0
LeakyRELU(x) =

negative slopex x, otherwise

o Alternative formulation:
LeakyReLU(x) = max(0, x) + negative _slope * min(0, x) (1.4)

e Output is in the interval [—oo, +00]
e negative slope is a hardcoded parameter, not learnable
e default parameter in PyTorch is 0.01

o lIdea: LeakyReLU cannot die, because there is a gradient for positive and negative
inputs

o While the idea is very intuitive, a clear benefit has not been established experi-
mentally

17



LeakyReLU activation function

Input
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1.7

Maxout

Maxout(xy, ..., Xx) = max(xi,..., Xg) (1.5)

Literature: Goodfellow et al., Maxout Networks

The idea of maxout is to compute multiple possible outputs for a neuron and then
choose the maximum value.

Requires k-times the number of weights, because instead of one value per neuron we
have to compute k values.

Comparison

e MaxPooling computes the maximum among neighboring pixels in the same chan-
nel

e Maxout combines k candidate values for the same pixel. Basically you compute
k channels instead of one and combine them with max.
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https://arxiv.org/pdf/1302.4389.pdf
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e Maxout can build piecewise linear convex functions (if applied to linear input func-
tions)
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1.8 PRelLU

PRelLU(x) = max(0, x) + a * min(0, x)

21

(1.6)



PRelU activation function

output
o
;

Input

Name: Parametric ReLU

Extends the LeakyRelLU further by making a a learnable parameter
22



e PyTorch recommends not to use weight decay on the parameter a
o Initial value in PyTorch: a=0.25

o Literature: He et al., Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification
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https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852

1.9 RelLU®6

ReLU6(x) = min(max(0, x), 6)

24

(1.7)



RelLU®6 activation function

output
o

Input

ReLU, but large values are clamped to 6

Why is there such a wierd activation function in PyTorch?
25



o A: Krizhevsky, Convolutional Deep Belief Networks on CIFAR-10

o useful for mobile computing and fixed point arithmetic?
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http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf

1.10 ELU

ELU(x) = max(0, x) + min(0, a * (exp(x) — 1))

27

(1.8)



ELU activation function

output
o
;

Name: Exponential Linear Unit

Default in PyTorch: a=1
28



a is not learnable
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1.11

RRelu

RReLU(x) = max(0, x) + a * min(0, x) (1.9)

a is randomly sampled in an interval [lower,upper]
e a, lower, upper are hardcoded parameters and not learnable

Literature: Xu et al., Empirical Evaluation of Rectified Activations in Convolutional
Network

o The authors claim some success with RReLU

e Unclear if it's really a good idea
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https://arxiv.org/abs/1505.00853
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1.12 SELU

SELU(x) = scale * (max(0, x) + min(0, a * (exp(x) — 1))) (1.10)

31



SELU activation function

output
o

Input

e Proposed Idea: build a self-normalizing network to avoid batch-normalization

e a=1.6732632423543772848170429916717
32



e scale =1.0507009873554804934193349852946

o Literature: Klambauer et al., Self-Normalizing Neural Networks
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https://arxiv.org/abs/1706.02515

1.13 CELU

CELU(x) = max(0, x) + min(0, a * (exp(x/a) — 1)) (1.11)
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CELU activation function

output
o
;

Input

e Parameter: a, default a =1, not learnable

o Literature: Barron, Continuously Differentiable Exponential Linear Units
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https://arxiv.org/abs/1704.07483

1.14 Hardshrink

x, ifx>2
HardShrink(x) =< x, ifx<-A

0, otherwise
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Hardshrink activation function

Input
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1.15 Hardtanh

1 if x>1
HardTanh(x)=< -1 if x<-1

X otherwise
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Hardtanh activation function

output
o
;

Input

minimum and maximum value can be given as parameter

39



1.16 LogSigmoid

LogSigmoid(x) = log( (1.12)

1 +exp(—x))

LogSigmoid activation function

output
[=]

Input
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1.17 Softplus
Softplus(x) = % xlog(1 + exp(p * x)) (1.13)

Softplus activation function

output
[=]

Input
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e smooth approximation of the RelLU

o parameters:
e B, default f=1

e treshold, for inputs above the treshold the function reverts to a linear function for
numerical stability

e OQutput is always positive

42



1.18 Softshrink

x—-A, ifx>A
SoftShrinkage(x) =< x+ 1, ifx<-A1
0, otherwise
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Softshrink activation function

-4 4
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1.19 Softsign

output

. X
SOftSlgn(X) = T|x|

Softsign activation function

Input
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1.20 Tanhshrink
Tanhshrink(x) = x — Tanh(x) (1.15)

Tanhshrink activation function

output
[=]

Input
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1.21 Treshold

value, otherwise

{x, if x> threshold
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1.22 Softmin
exp(—x;)

Softmln(xi) = m

48



1.23 Softmax
exp(x;)

Softmax(x,-) = m

o Output values will be in the range [0,1]

e There is also a 2D version Softmax2d (softmax per pixel)
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1.24 LogSoftmax

LogSoftmax(x;) = 10g(L(xi))

2 jexp(x;)

o Often the output of softmax is further processed by a log function

e Computing log and softmax together has a more efficient and more stable implemen-
tation

50



1.25 GELU

GELU(x) = x * ®(x) (1.16)

GELU

Output

o P N W b U O N
L L L L i L L

Inout
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o ®(x)istheCumulativeDistributionFunctionfortheGaussianDistribution

52



1.26 Swish

swish(x) = xsigmoid(x) (1.17)

Swish

Output

O P N W M U O

Inout
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Literature: Swish: a Self-Gated Activation Function
Non-monotonic function

Authors claim this property is desirable and brings an advantage
Smooth

Self-gating
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https://arxiv.org/pdf/1710.05941v1.pdf

1.27 Mish

Mish(x) = xtanh(softplus(x)) = xtanh(In(1 + %))

Mish

Output

o B N W M U1 O N
L L f L L L L

Inout
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(1.18)



o Literature: Mish: A Self Regularized Non-Monotonic Neural Activation Function

e Endorsed by FastAl: blogpost
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https://arxiv.org/abs/1908.08681v1
https://medium.com/@lessw/meet-mish-new-state-of-the-art-ai-activation-function-the-successor-to-relu-846a6d93471f

1.28 Problem of Non-differentiable Functions

o Not all activation functions are differentiable at all points
e Solution:
e Use concepts such as subgradient
o Use left or right derivative
e For example, ReLU does not have a defined gradient at 0
o Left derivative =0
e Right derivative =1

e Return one of those values in a software implementation
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1.29 Subgradient Review

Subgradient of a function

g is a subgradient of f (not necessarily convex) at z if
fy) = f@)+ g (y—=) forally

(< (g,—1) supports epi f at (z, f(z)))

J@
f@) + gl (@—a0) |
\\\ /"//_,f(fﬂz) + g5 (z — x2)
\ 7 f(@) + gl — o)
X — D)

go, g3 are subgradients at xs; g1 is a subgradient at x;
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1.30 Recommendation on what to use

e Try RelLU first
o Use whatever the best other networks in your field are doing

e It is rare to mix different types of activation functions in a network
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1.31 Comparing Activation Functions

e Many comparisons, no clear winner overall

e Activation function interacts with all other network components: optimizer, learning
rate, network depth, type of network, data, initialization, ...
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1.32 Comparing Activation Functions

o Literature: Xie et al, Smooth Adversarial Training

e Authors claim: smooth activation functions improve adversarial training. Compared
to ReLU, all smooth activation functions significantly boost robustness, while keeping
accuracy almost the same.

X
EL

§ 70 G * v Swish
5 SmooQReLU
[$)
Q Parametric Softplus *ELU
< 69" ¢ReLU * 0
g % Softplus

68 1 1 1 1
§ 33 34 35 36 37 38 39 40 41 42 43
2 Adversarial Robustness (%)
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https://arxiv.org/abs/2006.14536

1.33 What are Adversarial Examples?

e Adversarial Examples: Samples that an attacker has designed to cause the neural
network to make a mistake. E.g. add designed noise.

classified as classified as

Stop Sign Max Speed 100
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1.34 What is Adversarial Training?

Adversarial training trains networks with adversarial examples on-the-fly to optimize the
following framework:

argmink y, y)-p |maxL(@,x+¢€,y)|, (1.19)
0 €€S

where D is the underlying data distribution, L(:,-,-) is the loss function, 0 is the network
parameter, x is a training sample with the ground-truth label y, € is the added adversarial
perturbation, and S is the allowed perturbation range. As shown in Equation (1.19), ad-
versarial training consists of two computation steps: an inner maximization step, which
computes adversarial examples, and an outer minimization step, which computes param-
eter updates.
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