
JOURNAL 1

Isotropic Surface Remeshing without Large
and Small Angles

Yiqun Wang, Dong-Ming Yan, Xiaohan Liu, Chengcheng Tang, Jianwei Guo,
Xiaopeng Zhang, Peter Wonka

Abstract—We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and
improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the
removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with
other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to
remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following
other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time
adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based
on evaluations using different metrics.

Index Terms—Isotropic remeshing, non-obtuse remeshing, local operation, triangle quality.

F

1 INTRODUCTION1

Triangle meshes are omnipresent representations of2

three-dimensional (3D) data in scientific and engineer-3

ing applications from geometry modeling to physical4

simulation, due to its efficiency, simplicity, and flexibi-5

lity. With the recent progress in acquisition hardware6

and reconstruction techniques, acquiring point clouds7

with fine geometric details and creating highly com-8

plicated raw meshes with a large amount of points9

connected by badly shaped triangles (i.e., triangles10

with angles that are too small or too large) are11

considerably easy. However, for memory consump-12

tion reduction, computational efficiency and accuracy,13

reducing the number of points and simultaneously14

improving the mesh quality are often necessary. The15

goal of recent developments in remeshing is creating16

high-quality triangle meshes that could be used by17

practical applications based on raw data [2].18

Three desired qualities are involved when discus-19

sing a good remeshing algorithm: fidelity, simplicity,20

and element quality [3]. As the premise of surface21

representation, the fidelity, measured by various dis-22

tance metrics between the triangle mesh and refe-23

rence geometry, must be able to faithfully represent24

a geometric object. Moreover, for a memory-efficient25

• Y. Wang, D.-M. Yan, X. Liu, J. Guo, X. Zhang are with the
National Laboratory of Pattern Recognition (NLPR), Institute of
Automation, Chinese Academy of Sciences, Beijing 100190, China,
and University of Chinese Academy of Sciences, Beijing 100049,
China. E-mail: yiqun.wang@nlpr.ia.ac.cn, yandongming@gmail.com,
liuxiaohan2017@ia.ac.cn, jianwei.guo@nlpr.ia.ac.cn, xpzhang@ia.ac.cn

• C. Tang is with Stanford University. E-mail: tangcheng-
cheng717@gmail.com

• P. Wonka is with KAUST, Thuwal 23955-6900, Saudi Arabia. E-mail:
pwonka@gmail.com.

representation and computation, the number of verti- 1

ces and the complexity of mesh connectivity should 2

be reduced, which is encoded as the requirement 3

of mesh simplicity. Finally, the applications related 4

to solving partial differential equations often require 5

triangle meshes with well-shaped triangles, namely, 6

good element quality, to construct stable basis functi- 7

ons or enable robust numerical integrators [4]. The 8

most important criterion of the element quality is the 9

minimal/maximal angles. For example, for a wide 10

variety of applications such as geodesic distance com- 11

putation, acute meshes (i.e., meshes with only acute 12

triangles) are often desirable [5], [6], [7]. However, 13

these goals are often in conflict with each other. For 14

example, reducing the complexity will lower the fide- 15

lity, and vice versa. Numerous remeshing algorithms 16

have been proposed to achieve a balance among the 17

three desired qualities of triangle meshes, with the 18

additional concern of the computational speed. 19

Existing algorithms always consist of two main 20

parts: resampling geometry and rebuilding connecti- 21

vity. Local mesh operations can be used for these 22

parts. The geometry can be updated by vertex relo- 23

cation, and the connectivity can be updated through 24

edge flipping, edge collapsing, and edge splitting. For 25

example, mesh simplification attempts to reduce the 26

complexity of meshes by iteratively applying edge 27

collapsing operations [12]. This method tends to pre- 28

serve the fidelity as much as possible, but without 29

considering the angle quality. Another example is the 30

Delaunay mesh construction, which aims at conver- 31

ting input meshes into new meshes that satisfy the so- 32

called Delaunay property without altering the input 33

geometry [13]. A Delaunay mesh can be constructed 34

efficiently using only edge splitting and edge flipping. 35

JOURNAL 2

[MAI] [OUR][NOB][IFM][SPP][RAR]

Fig. 1: Comparisons of the remeshing results of the vase-lion model using different approaches. The top row shows the
input mesh (leftmost) and the remeshing results of previous approaches, including RAR [1], MAI [8], SPP [9], IFM [10],
NOB [11] (from left to right), using approximately 6.5 k vertices. The bottom row presents the results of our method
(leftmost) and those obtained by using the corresponding meshes in the top row as initializations. Our algorithm is able
to directly remesh the input surface, and can also be used as a post-process to improve the mesh quality of previous
approaches. The light red color indicates a triangle whose maximal angle is greater than the desired upper bound, βmax
(90◦ in this example), and the light blue color shows a triangle whose minimal angle is smaller than the lower bound,
βmin (30◦ in this example). Table 1 presents the detailed quality statistics.

However, this method does not improve the angle1

quality. Note that our results can be seen as a special2

type of Delaunay mesh with only acute triangles.3

To achieve an even distribution of mesh vertices,4

numerous methods focus on minimizing surrogate5

energy functions such as the centroidal Voronoi tes-6

sellation (CVT) [14] and optimal Delaunay triangula-7

tion (ODT) [15] . The underlying operations involved8

in CVT and ODT computation can be seen as a9

combination of vertex relocation and edge flipping.10

Although they produce good results in practice, these11

energy functions are not directly related to the mesh12

quality criteria previously discussed and our method13

can improve upon these techniques. The local mesh14

operations can be used directly for dynamic surface15

tracking [16] and real-time remeshing [17], [1], while16

guaranteeing the minimal angle bound [8]. However,17

to the best of our knowledge, no existing method can18

explicitly control both the minimal/maximal angle19

bounds at the same time for remeshing.20

The main motivation behind our work is designing21

powerful tools to optimize important mesh quality22

criteria directly, e.g., the minimal and maximal angle.23

The newly designed algorithm should have a similar24

performance to the real-time remeshing approach [1],25

and allow users to explicitly control the element26

quality. Additionally, we provide optional control to 1

allow users to gain balance between the fidelity and 2

computation time. Similar to previous works, we use 3

local remeshing operations, e.g., edge collapsing for 4

mesh simplification, edge splitting for subdivision, 5

and edge flipping for valence/angle optimization. 6

The main novelty of our approach is that it explores 7

new combinations of local remeshing operations and 8

proposes new trigger conditions that determine how 9

the local remeshing operations are combined. Moreo- 10

ver, our method can be applied directly to the input 11

mesh, or be used as a post-process of other existing 12

techniques. Figure 1 shows an example of remeshing 13

a complex input geometry. The key contributions of 14

this approach include the following aspects: 15

• We propose new combinations of local operations 16

for angle improvement. 17

• Our method produces meshes with superior an- 18

gle quality compared with current state-of-the-art 19

methods. In addition, we can also improve the 20

general triangulation quality reflected through 21

multiple statistics. 22

• We provide optional control to trade off com- 23

putation speed with feature-sensitivity (fidelity). 24

Moreover we provide optional control for users 25

to switch between fast remeshing and feature- 26

JOURNAL 3

sensitive remeshing (high fidelity).1

2 RELATED WORK2

Various types of remeshing techniques exist depen-3

ding on specific applications. In this section, we focus4

our discussion on the works that are most relevant5

to ours. Specifically, we emphasize the recent appro-6

aches for non-obtuse remeshing. A further systematic7

introduction to remeshing can be found in the survey8

papers [2], [18] and textbooks [19], [20].9

The non-obtuse (or acute) triangulation is first stu-10

died on the 2D plane [21], [22], [23], [24], [25]. Un-11

fortunately, none of these approaches can be directly12

generalized to surfaces in 3D. To the best of our13

knowledge, Li and Zhang [26] are the first ones to14

propose a non-obtuse remeshing algorithm on the15

basis of Laplacian smoothing and mesh simplification.16

Although they are able to generate non-obtuse meshes17

for smooth surfaces, they failed to eliminate small18

angles at the same time.19

Recent advances show that mesh optimization and20

smoothing techniques can drastically improve the21

mesh quality. These approaches include CVT [27],22

[14], centroidal Delaunay triangulation [28], ODT [15],23

blue-noise sampling [29], and discrete optimization24

(e.g., edge splitting, edge collapsing, and local smoo-25

thing). However, not all of them can produce non-26

obtuse remeshing.27

CVT-based approaches have been proven to gene-28

rate meshes with the highest quality. Considering a29

sampling domain and the number of sample points,30

the CVT energy is minimized by using either classic31

Lloyd iterations [30] or Newton-like methods [14].32

The final triangulation is extracted as the dual of33

the optimized Voronoi diagram. The main differences34

among different approaches are the methods used to35

approximate the Voronoi diagram on surfaces. Earlier36

works are pioneered by Alliez and coauthors [31], [3],37

[32]. They first parameterize the input mesh on a 2D38

parameter domain, and apply CVT to this 2D domain.39

Then, the points and triangulation are lifted back to40

the original surface to obtain the remesh. Generally,41

the parameterization-based approaches are able to ef-42

ficiently generate high-quality meshes. However, they43

suffer from the issues of robustness and distortion44

introduced during the parameterization.45

Recent works of Yan et al. [33], [34], [11] and46

Du et al. [35] directly compute CVT on mesh sur-47

faces, where the Voronoi diagram on surfaces is48

approximated by the restricted Voronoi diagram49

(RVD) [36]. The RVD-CVT-based approaches can ge-50

nerate high-quality meshes. Additionally, the most51

recent work [11] is able to produce non-obtuse meshes52

for smooth surfaces. However, the approach fails for53

inputs with sharp features or highly varying density54

functions, as discussed in the paper. Sun et al. [37]55

propose to reduce the number of obtuse triangles for56

anisotropic remeshing, where a hexagonal metric is 1

used to replace the Euclidean metric. However, this 2

approach also cannot remove all the obtuse triangles. 3

Another type of CVT-based remeshing is to use 4

the geodesic distance for computation [38], [39], [40], 5

[41], [42], [43]. Although geodesic-based methods can 6

generate meshes with the same quality as that of 7

RVD-based methods, they involve frequent geodesic 8

path computations, which drastically slow down the 9

remeshing process. 10

Blue-noise sampling has also been introduced for 11

surface remeshing, including capacity-constrained 12

blue-noise sampling [44], maximal Poisson-disk sam- 13

pling (MPS) [29], [45], [46], [47], farthest point optimi- 14

zation (FPO) [48], and the simple push-pull (SPP) [9] 15

approaches. The main goal of this category of ap- 16

proaches is to produce point samples with the so- 17

called ”blue-noise” property. The mesh quality is then 18

improved under certain constraints while keeping the 19

randomness of the point distribution. 20

Discrete optimization improves the mesh quality 21

by repeatedly applying local operators on the input 22

geometry, e.g., edge splitting, edge flipping, edge 23

collapsing, and vertex relocation. Our approach falls 24

into this category. Botsch and Kobbelt [17] propose 25

a simple and efficient framework for uniform remes- 26

hing, which contains four key components: splitting 27

long edges, collapsing short edges, valence optimi- 28

zation by edge flipping, and tangential smoothing. 29

This framework can generate uniform remeshing in 30

real time, which has been used for multi-resolution 31

shape modeling. Later, Dunyach et al. [1] generalized 32

the framework to real-time adaptive remeshing (RAR) 33

and applied it to mesh deformation applications. Both 34

[17] and [1] are able to remesh input surfaces in 35

real time, but without considering any bounds of the 36

output angles. To address this problem, Hu et al. [8] 37

improved the smallest angle of the mesh by repe- 38

titively applying edge collapsing, vertex relocation, 39

and edge splitting while bounding the approximation 40

errors and implicitly preserving features. Although 41

this algorithm could increase the smallest angle to 42

a user-specified threshold (up to 40◦), it introduces 43

numerous obtuse triangles at the same time, as shown 44

in Sec. 5. Liu et al. [13] proposed an efficient method 45

to construct Delaunay meshes by inserting fewer ad- 46

ditional points than the previous approach [49]. Only 47

simple operations, such as edge splitting and edge 48

flipping, are involved in the computation. Although 49

this algorithm does not alter the geometry of the 50

input mesh, it does not improve the angle quality 51

either. In our work, we simultaneously improve mini- 52

mal angles and decrease maximal angles to produce 53

meshes without too large and too small angles up 54

to the user specified angle bounds. As a method in 55

the category of discrete optimization, our approach 56

repeatedly applies local operations but with newly 57

designed trigger conditions. 58

JOURNAL 4

To improve the regularity of the vertices (e.g.,1

valence-6 vertices are considerably preferred in the2

interior of a mesh), multiple other approaches can3

be used, such as explicit remeshing [50], valence4

editing [51], and global parameterization [52], [53],5

[10]. These approaches can generate meshes with6

highly regular patterns. However, the triangles are7

always distorted and are difficult to use for adaptive8

remeshing due to strong constraints enforced by the9

regularity.10

3 OVERVIEW11

In this work, we present a simple yet effective appro-12

ach for isotropic remeshing by repeatedly eliminating13

large angles and improving small angles. These goals14

are achieved by designing two novel high-level opera-15

tions, i.e., large angle removal and small angle impro-16

vement, which are combinations of the standard local17

mesh operations, i.e., edge splitting, edge collapsing,18

edge flipping, and vertex relocation (cf. Fig. 2). The19

large angle removal operation is achieved by point20

insertion (edge splitting), whereas the small angle21

improvement operation is attained by point deletion22

(edge collapsing). By combining both operations, we23

are able to keep the number of vertices in the output24

mesh equal to a user-specified value.25

Fig. 2: Illustration of the standard local mesh operations,
i.e., edge collapsing, edge splitting, edge flipping and vertex
relocation (from left to right).

The proposed framework consists of two main com-26

ponents, i.e., initialization and optimization. First, the27

output mesh is duplicated from the input mesh, and28

is initialized by either inserting or removing vertices29

to reach a user-desired target number of vertices30

(Sec. 4.1).31

Next, we analyze the initial output mesh and label32

the triangles whose angles are not bounded by the33

user specified minimal and maximal values, e.g., the34

default bounds used in our experiments are [35◦, 86◦].35

Then, we repeatedly optimize the triangle quality by36

removing large angles and by improving the small37

angles (Sec. 4.2). Fig. 3 illustrates the remeshing pro-38

cess of our framework using the botijo model as an39

example. Moreover, we provide optional extensions40

that can improve the fidelity of the output mesh in41

Sec. 4.3. We explain the details of each step in the42

next section.43

4 OUR APPROACH 1

The inputs to our method include a two-manifold 2

triangle mesh,M; the specified minimal and maximal 3

angle bounds, βmin and βmax, respectively; and the 4

desired number of target vertices in the output mesh, 5

nt (optional). We assume that the feature curves of the 6

input mesh to be preserved are pre-specified by the 7

user or provided as input, if any. 8

4.1 Initialization 9

The goal of this step is to generate an initial mesh with 10

the user-specified number of target vertices, which 11

matches a sizing function defined on M. 12

In the context of uniform remeshing, we introduce 13

a constant target edge length, L, computed on the 14

basis of the total surface area, |M|, of the input 15

mesh. In the ideal case where the triangles are iden- 16

tical equilateral triangles, the average triangle area 17

roughly equals to |M|2N . Accordingly, the reference edge 18

length can be deduced as L = 2
4√3

√
|M|
2N by using 19

the relationship between the area and edge length 20

of equilateral triangles. Thus, the sizing function for 21

uniform remeshing is defined as ρ(x) = L. 22

For adaptive remeshing, we compute a smoothly 23

varying sizing function, ρ(xi), on every vertex by 24

using an approximation error, ε and the curvature 25

radius, ri, on each vertex of the input mesh [1]. We set 26

ρ(xi) =
√

6 ε ri − 3ε2 , computed by the relationship 27

between ri and the edge length ρ(xi), which means 28

that the specified length can approximate the mesh 29

surface within the approximation error. In addition, 30

we introduce two parameters, namely, hmin and hmax, 31

which are the minimal and maximal edge length 32

bounds of the sizing function ρ(xi). In the work of 33

Dunyach et al. [1], these parameters (i.e., ε, hmin, and 34

hmax), which are difficult to adjust, have to be set 35

manually by the user. Here, we introduce a simple 36

method to compute the recommended parameters. 37

Considering the input mesh, we first compute the 38

curvature radius, ri, on each vertex and the total 39

surface area |M|. Subsequently, we establish the rela- 40

tionship among |M|, ri, and ε in the ideal case where 41

the triangles are identical equilateral triangles, i.e., 42

S =
∑
i

{√
3
4 ρ(xi)

2
}

=
∑
i

{√
3
4 (6εri − 3ε2)

}
. ρ(xi), as 43

is a function of ri and ε, can be seen as a quadratic 44

equation of ε, which can be solved efficiently. Then, 45

we can deduce hmin and hmax from the maximum 46

and minimum edge length ρ(xi). 47

Once the sizing function has been computed, we 48

iteratively perform edge splitting for long edges 49

(‖xa,xb‖ > 4
3 min(ρ(xa), ρ(xb))) or edge collapsing 50

for short edges (‖xa,xb‖ < 4
5 min(ρ(xa), ρ(xb))) in 51

order to generate an initial output mesh with nt 52

vertices. We also remark that our approach can be 53

used as a post-processing step of numerous previous 54

remeshing approaches, by using their outputs as our 55

JOURNAL 5

Fig. 3: Remeshing processing of our approach. From left to right are: the input meshes (3353 and 2991 triangles with
large and small angles, respectively), initialized after splitting long edges (3368 and 3006, respectively), and results of one
iteration (758 and 201, respectively), two iterations (171 and 13, respectively), three iterations (44 and 2, respectively), and
15 iterations (0 and 0, respectively). Both large and small angles are eliminated progressively.

initial results, and keeping the number of vertices1

unchanged.2

4.2 Optimization3

The goal of this step is to improve the mesh quality4

by jointly eliminating large angles and improving5

small angles. All the triangles with small or large6

angles outside the desired bounds [βmin, βmax] are7

processed. The default angle bounds are [35◦, 86◦]8

if not explicitly specified. Our optimization is based9

on standard local mesh operators, i.e., edge splitting,10

edge collapsing, edge flipping, and vertex smoothing.11

However, we propose several novel trigger conditions12

and combinations of these operators, which can be13

efficiently used to achieve our goal. Alg. 1 presents the14

pseudo code of the proposed optimization procedure.15

Algorithm 1: Optimization
input : Initialized mesh Mi , parameter k, βmin, βmax
output: Output mesh M′ whose angles θ ∈ [βmin, βmax]

1 repeat
2 LargeAngleRemoval(k);
3 ValenceOptimization();
4 VertexSmoothing();
5 SmallAngleImprovement(k);
6 ValenceOptimization();
7 VertexSmoothing();
8 until ∀ θ, θ ∈ [βmin, βmax];

Alg. 1 shows four main components in this step:16

large angle elimination, small angle improvement, valance17

optimization, and vertex smoothing. In each iteration,18

we first scan all the triangles in the output mesh M′19

and store those triangles whose angles are outside the20

angle bounds in two separate lists Ll and Ls (one for21

triangles with angles larger than βmax, and the other22

for triangles with angles smaller than βmin). Then, we23

use an additional internal parameter k to control the24

number of triangles to be processed in each routine.25

To eliminate the large angles, we apply vertex26

insertion for the first k triangles with large angles27

following the procedure described in Sec. 4.2.1. Then, 1

we further locally apply edge flipping for valence 2

optimization in accordance with Sec. 4.2.2. Finally, we 3

apply local smoothing to the neighborhoods affected 4

by the previous operations. To improve the small 5

angles, we apply the same procedure as the large 6

angle elimination. The major difference is that, the 7

core component, instead of applying vertex insertion, 8

is the vertex removal operation mentioned in Sec. 4.2.4 9

with edge collapsing. Note that each large angle eli- 10

mination operation inserts one new vertex, whereas 11

each small angle improvement operation deletes one 12

vertex. By applying both operations at the same time, 13

we can keep the number of the vertices unchanged 14

during the optimization procedure. 15

4.2.1 Large angle removal 16

Vertex insertion is the essential operation for remo- 17

ving large angles. Starting with the list Ll of triangles 18

with angles larger than βmax, we apply k times vertex 19

insertion for the the first k triangles in Ll. We use two 20

different strategies for the smooth and feature cases 21

(for triangles that are incident to one or more feature 22

edges). Here, we make the assumption that all the 23

triangles in Ll are isolated for easy explanation. 24

Smooth case. If the current triangle to be processed 25

has no incident feature edge, then it is treated as the 26

smooth case. A majority of the triangles in Ll fall into 27

this category. For such case, we first merge the triangle 28

with the neighboring triangle sharing the longest edge 29

to form a quadrilateral Q. Then we split the common 30

edge shared by two triangles on the midpoint. Next, 31

we flip one of the four edges of the quad Q. We 32

select the edge after flipping whose affected angles 33

are optimal, i.e., the root mean square of the summed 34

difference between affected angles minus the optimal 35

value (60◦). The position of the newly inserted vertex 36

is further optimized by local tangential smoothing. 37

Figs. 4(a) and 4(b) illustrate this process. 38

Feature case. For input meshes with tagged feature 39

information, we have to exert additional effort in this 40

JOURNAL 6

(a) (b) (c) (d) (e) (f)

Fig. 4: Vertex insertion strategy for the smooth (a,b) and feature (c∼f) cases. The feature edges are drawn in blue. (a) After
merging the triangle with large angles with a neighbor along the longest edge to create a quadrilateral and subsequently a
pentagon, a vertex is inserted. This operation is equivalent to edge splitting followed by edge flipping. (b) This procedure
also works for the smooth case near the features. (c) The basic case where a single short edge is a feature is resolved
by pentagon pointer insertion, topologically equivalent to edge splitting followed by another edge flipping. (d) The case
where the long edge is a feature is reduced to case (c) by edge splitting. (e) The case where both the two short edges are
features is converted to case (c) by pentagon insertion. (f) A special case that can be resolved directly by edge flipping.

step. Figs. 4(c) to 4(f) present the typical cases when1

an edge of the triangle to be processed lies on the2

boundary or is labeled as a feature edge. Specifically,3

Fig. 4(c) shows that the most common case we en-4

countered is that a single short edge is a feature edge5

(the edge opposite to the maximal angle is a non-6

feature edge). This case can be handled by the method7

for smooth case discussed previously. The other cases8

could also be easily deduced to this basic case. For9

example, Fig. 4(d) shows that if the longest edge lies10

on the boundary or the feature, we apply a local11

modification by equally splitting the edge at the mid-12

point, and then proceed as the basic case in Fig. 4(c).13

Similar procedures are applied for the case when two14

short edges are features, as shown in Fig. 4(e). We also15

show another case that can be resolved directly by16

edge flipping rather than edge splitting in Fig. 4(f). In17

these situations, several adjacent triangles with large18

angles on the feature edges could be handled together.19

4.2.2 Valence optimization20

Once the new vertices are inserted, we further im-21

prove the regularity of M ′ by valence optimiza-22

tion [17], [1], which can be efficiently achieved by23

applying a serial of edge flipping. The goal of this24

step is to minimize the square sum of the difference25

between the valance of each vertex and its correspon-26

ding optimal valance. Note that the optimal valences27

for the inner and boundary vertices are 6 and 4,28

respectively.29

4.2.3 Vertex Smoothing30

Next, we apply several iterations (3 ∼ 5 in our31

implementation) of tangential Laplacian vertex smoo-32

thing to improve the angle quality of M ′. We use the33

following formula for vertex smoothing:34

ci =

∑
j∈N(vi)

wjpj∑
j∈N(vi)

wj
, pi ← ci − ninTi (ci − pi), (1)

where vi is the current vertex to be smoothed, ni 1

denotes the unit normal vector of vi, N(vi) represents 2

the one-ring neighboring triangle of vi, and wj and pj 3

indicate the weight and centroid of the j-th neighbo- 4

ring triangle, respectively. This step is necessary as 5

the previous angle optimization steps have modified 6

the geometry, whereas the valence optimization step 7

has changed the connectivity of the output mesh. If 8

the number of affected triangles is considerably less 9

than the total number of triangles, then we only apply 10

smoothing in a local neighborhood of the affected 11

regions, e.g., two or three rings of the affected vertices. 12

Otherwise, we apply global smoothing for the whole 13

output mesh. After each smoothing iteration, we pro- 14

ject the vertices in M ′ to the original input surface M 15

to maintain a high approximation fidelity. 16

4.2.4 Small angle improvement 17

After the large angle elimination, we use edge collaps- 18

ing for small angle improvement (vertex removal). 19

First, we collect all the triangles with small angles 20

less than βmin in a list Ls. Then we traverse the first 21

k triangles in Ls. For each visited triangle ts ∈ Ls, 22

we collapse the edge (if the collapse is legal) opposite 23

to the smallest angle of ts. Then local smoothing is 24

applied to further improve the angle quality of the 25

affected regions. In practice, if Ls is empty or less 26

than k, then we can temporarily increase the lower 27

bound βmin to guarantee that k triangles are collected 28

in Ls. Note that in the large angle removal step, k 29

new vertices are inserted. In this step, k vertices are 30

removed. The number of vertices in the output mesh 31

remains unchanged. Moreover, the internal parameter 32

k is important to the performance of the proposed 33

algorithm. We shall discuss the influence of k in Sec. 5. 34

4.3 Error-aware extensions 35

The previously described algorithm is efficient, be- 36

cause only standard local operations are involved 37

JOURNAL 7

for computation. However, as a consequence of high1

performance, the fidelity (especially in highly detailed2

regions) of the output mesh might be sacrificed due to3

over smoothing. To balance between the fidelity and4

efficiency, we propose the modified local operations5

that can reduce approximation errors when applied.6

Note that these modified operations are optional.7

The approximation error is introduced by operati-8

ons that modify the geometry of the input mesh. As9

edge splitting does not affect geometric fidelity, we10

only focus on vertex relocation, edge collapsing, and11

edge flipping to reduce approximation errors.12

Error-aware vertex smoothing. Recall that, in tangen-13

tial smoothing (Eqn. 1), the update vector ui of vertex14

vi is in the vertex normal plane. This formulation15

works well in smooth regions but has problems in16

regions with rich details when the number of vertices17

is not adequate. Fig. 5 presents a 2D illustration18

of this issue. Inspired by the feature sensitive term19

introduced in Lp centroidal Voronoi tessellation (Lp-20

CVT) [54], we slightly modify the magnitude of |ui| to21

alleviate the error caused by tangential smoothing. We22

first project the updated vector ui to every adjacent23

triangle, and then project back to the vertex normal24

plane. The smoothing distance |ui| can be resized by25

ui ←
∏

j∈N(vi)

{(
nui [nui]

t
)

Nv
i N

fj
i

}d

ui,

Nv
i =

(
I3×3 − nvi [nvi]

t
)
,

N
fj
i =

(
I3×3 − n

fj
i [n

fj
i]

t)
,

where n
fj
i denotes the adjacent triangle normal, nvi26

indicates the vertex normal weighted by the circum-27

jacent facet normal, nui is the unit vector of ui, and28

d indicates the number of projections controlling the29

degree of feature preservation. If d→∞, then ui → 0.30

An infinite number of projections mean that the vector31

is simultaneously fixed on all faces, so the value32

must be zero. In highly detailed regions (e.g., the hair33

of the vase-lion model), the smoothing distance |ui|34

becomes smaller. The smoothing distance can even35

become equal to zero on sharp features, whereas in36

smooth situations, |ui| is not considerable. During the37

projection phase, we construct the vector ui formed38

by the projection and steepest points on the reference39

mesh vertices or edges near the projection point. The40

place where the original geometry changes drastically41

will be maintained adaptively in the same way. With42

this modified smoothing operation, the approximation43

error could be reduced in some extent, compared with44

standard tangential smoothing.45

Error-aware edge collapsing. For the edge collapsing46

step, we carefully designed a simple vertex intensity47

to measure the sharpness of a vertex.48

Φi = min
j∈N(vi)

{
cos
(
θ
〈
n
fj
i , n

v
i

〉)m}
,

v

f
f

v

Fig. 5: 2D illustration of the error-aware vertex smoothing
scheme. The blue line represents a surface mesh, V1 and
V2 are the vertices on the mesh, the black horizontal line
indicates the normal plane of these vertices, nv1 and nv2
denote the vertex normal vectors, respectively, and nf1 and
nf2 stand for the face normal vectors. V1 is sharper than
V2. Meanwhile, u1 and u2 (black) are updating vectors
before applying projections. After multiple projections, the
magnitude of updating vector u′1 is significantly reduced
compared with that of u′2.

where nfji is the adjacent triangle normal, nvi denotes 1

the vertex normal weighted by the adjacent triangle 2

normal, and θ
〈
n
fj
i , n

v
i

〉
measures the angle between 3

two faces. The vertex intensity is between 0 and 1. 4

In practice, the parameter m is set to 3 in practice. 5

After defining the feature intensity, we designed an 6

adaptive condition for the collapse, which can be 7

interpreted as follows: vi can be collapsed to another 8

vertex vj , if Φi − Φj > −Ψ ·
(
Φi

2 − 0.5
)
. 9

Error-aware edge flipping. We apply the flipping 10

operation on the basis of the dihedral angle parameter 11

Θ, whenever θ
〈
nf0e , n

f1
e

〉
< Θ. We set Θ = 10◦ in 12

practice. Here nf0e and nf1e are two triangle normals 13

that are incident to the flipping edge e. 14

5 EXPERIMENTAL RESULTS 15

In this section, we demonstrate experimental results 16

of the proposed remeshing framework. Then, we 17

analyze the choice of the parameter k and the per- 18

formance and convergence behavior of the proposed 19

framework. Next, we evaluate the meshing quality 20

with standard metrics, and compare our method with 21

recent representative approaches. Finally, we perform 22

limit tests and discuss the limitations of our algorithm. 23

Our algorithm is implemented in Visual Studio 2015, 24

under the Windows 10 operating system. All the 25

results shown in the paper are conducted on a PC 26

with 4.2 GHz CPU and 8 GB RAM. 27

As discussed in Sec. 1, our algorithm can either 28

work directly on the original input, or start from the 29

results produced by any of the previous methods. 30

Figs. 1 and 6 show four examples of adaptive re- 31

meshing on smooth surfaces. Our algorithm achieves 32

the best angle bounds compared with previous ap- 33

proaches. When applied on the outputs of other algo- 34

rithms, our algorithm is able to further improve the 35

mesh quality by efficiently eliminating large/small 36

angles. We show two examples of remeshing inputs 37

with sharp features (Fig. 7) or boundaries (the Mask 38

example in supplemental materials). Our algorithm 39

JOURNAL 8

[MAI] [OUR][NOB][IFM][SPP][RAR]

Fig. 6: Comparison of adaptive remeshing using the bunny, the gargoyle and David models. For each test model, the
top row presents the input mesh and the remeshing results of previous approaches, including RAR [1], MAI [8], SPP [9],
IFM [10], and NOB [11]. The bottom row of each test contains the results of our method (left most) and the results by
using the corresponding mesh as initialization.

JOURNAL 9

[IFM] [OUR][NOB][FPO][MAI][RAR]

Fig. 7: Comparison of the remeshing results on models with sharp features or boundaries. The joint, sculpt, and mask
models are presented from top to bottom. For each test model, the top row is the input mesh and the remeshing results
of previous approaches, including RAR [1], MAI [8], FPO [48], IFM [10], and NOB [11]. The bottom row of each test
contains the results of our method (left most) and the results by using the corresponding mesh as initialization. Note that
the results of SPP [9] are not shown here as it does not support feature preservation.

100 101 102 103

The number of iterations

10-2

10-1

100

101

Th
e

pe
rc

en
ta

ge
 o

f L
ar

ge
/S

m
al

l t
ria

ng
le

s(
%

) Large Triangles(% k=1)
Small Triangles(% k=1)
Large Triangles(% k=3)
Small Triangles(% k=3)
Large Triangles(% k=5)
Small Triangles(% k=5)
Large Triangles(% k=10)
Small Triangles(% k=10)
Large Triangles(% k=20%)
Small Triangles(% k=20%)

100 101 102 103

The number of iterations

10-2

10-1

100

101

Th
e

pe
rc

en
ta

ge
 o

f L
ar

ge
/S

m
al

l t
ria

ng
le

s(
%

) Large Triangles(% k=1)
Small Triangles(% k=1)
Large Triangles(% k=3)
Small Triangles(% k=3)
Large Triangles(% k=5)
Small Triangles(% k=5)
Large Triangles(% k=10)
Small Triangles(% k=10)
Large Triangles(% k=20%)
Small Triangles(% k=20%)

100 101 102 103

The number of iterations

10-1

100

An
gl

e
En

er
gy

 /
Va

le
nc

e
En

er
gy

Angle Energy(k=1)
Valence Energy(k=1)
Angle Energy(k=3)
Valence Energy(k=3)
Angle Energy(k=5)
Valence Energy(k=5)
Angle Energy(k=10)
Valence Energy(k=10)
Angle Energy(k=20%)
Valence Energy(k=20%)

100 101 102 103

The number of iterations

10-1

100

An
gl

e
En

er
gy

 /
Va

le
nc

e
En

er
gy

Angle Energy(k=1)
Valence Energy(k=1)
Angle Energy(k=3)
Valence Energy(k=3)
Angle Energy(k=5)
Valence Energy(k=5)
Angle Energy(k=10)
Valence Energy(k=10)
Angle Energy(k=20%)
Valence Energy(k=20%)

Fig. 8: Comparing the convergence of our algorithm on
different k at each iteration. The x-axis is the number
of iterations, and the y-axis represents the percentage of
triangles with large/small angles. Left: uniform remeshing.
Right: adaptive remeshing. Here, the number of iterations
refers to each individual step in Alg. 1.

can successfully produce desired results while preser-1

ving the features and boundaries, due to our carefully2

designed feature handling schemes. We further tested3

our algorithm on a large variety of input meshes4

with different numbers of vertices, and obtained the5

desired output meshes robustly.6

Parameter selection. The parameter k is important.7

k=1 k=3 k=5 k=10 20%

The number of k (UNI)

0

1

2

3

4

5

6

7

8

9

T
he

 ti
m

e
of

 c
on

ve
rg

en
ce

 (
m

s)

#104

Fertility
Moai
Joint

k=1 k=3 k=5 k=10 20%
The number of k (ADA)

0

2000

4000

6000

8000

10000

12000

14000

16000

T
he

 ti
m

e
of

 c
on

ve
rg

en
ce

 (
m

s)

Bunny
Botijo
Sculpt

Fig. 9: Comparing the performance of our algorithm on
different k at each iteration. The x-axis is the number of
vertices in the output mesh M′, and the y-axis indicates the
time used for the convergence of each result. Left: uniform
remeshing. Right: adaptive remeshing.

A small k value can improve the output mesh quality 1

but this reduces algorithm performance. Meanwhile, a 2

large k value can improve the performance of the pro- 3

posed algorithm, but this might affect the distribution 4

of the mesh vertices, which leads to the unsatisfactory 5

fidelity of the output mesh. In our experiments, we 6

set k equals to 20% of the number of triangles with 7

large angle in each iteration by default, and k equals 8

to 5 for error-aware remeshing. We have tested the 9

influence of k for all the models used in this paper. 10

We illustrate the influence of k on convergence and 11

performance using the bunny and fertility models, as 12

shown in Figs. 8 and 9, respectively. The results of 13

other models can be found in supplemental materials. 14

Performance. We further analyze the performance 15

JOURNAL 10

Fig. 10: Remeshing results of the vase-lion model with decreasing resolutions. The numbers of vertices of these multi-
resolution are 115, 61, 42, 22, 10, 7, 4 and 2 k. Table 1 in supplementals presents the statistics.

0.5 1 1.5 2 2.5 3

The number of vertices (UNI) #104

0

2000

4000

6000

8000

10000

12000

14000

16000

T
he

 ti
m

e
of

 c
on

ve
rg

en
ce

 (
m

s)

Fertility OUR
Fertility OUR-ERR
Fertility IFM
Fertility RAR
Moai OUR
Moai OUR-ERR
Moai IFM
Moai RAR

0.5 1 1.5 2 2.5 3

The number of vertices (ADA) #104

0

0.5

1

1.5

2

2.5

T
he

 ti
m

e
of

 c
on

ve
rg

en
ce

 (
m

s)

#104

Botijo OUR
Botijo OUR-ERR
Botijo IFM
Botijo RAR
Sculpt OUR
Sculpt OUR-ERR
Sculpt IFM
Sculpt RAR

Fig. 11: Comparing the performance of our algorithm with
that of RAR [1] and IFM [10]. The x-axis is the number of
vertices in the final remeshing, and the y-axis represents
the time used for the convergence of each result. OUR
indicates our method using standard local operations, and
OUR-ERR refers to our method using modified operations.
Left: uniform remeshing. Right: adaptive remeshing.We set
20% of bad triangles as k in this experiment. Moreover, the
performance of our method using standard local operations
is in the same order of magnitude as RAR.

and the robustness of our algorithm. We apply the1

algorithm on a complex input mesh, i.e., the vase-2

lion model with 100 k vertices, which cannot be3

handled satisfactorily by any of the previous methods.4

We choose different numbers of vertices (Fig. 10)5

to produce a series of multi-resolution non-obtuse6

meshes. Fig. 11 shows the timing statistics versus the7

level of resolution. We also compare the speed with8

the currently most efficient algorithms, i.e., RAR [1]9

and instant field meshing (IFM) [10] in Fig. 11, to10

verify that our algorithm is almost as fast as RAR11

and IFM. Other recent approaches, i.e., Non-obtuse12

Remeshing (NOB) [11], Minimal Angle Improvement13

(MAI) [8], and SPP [9], would spend minutes or even14

cannot achieve the user-specified angle bounds on this15

difficult input.16

Convergence. To validate the convergence behavior17

of the algorithm, we plot the number of triangles18

with large/small angles vs. the number of iterations19

for both our approach and RAR in Fig. 12. We also20

measure the angle and valence energies. The angle21

energy is defined as the average sum of the squared22

distance between each angle and the optimal angle23

(i.e., 60◦). The valence energy is defined as the average24

sum of the squared distance of the valance of each25

vertex and the optimal valence, i.e., 6 for interior26

vertices and 4 for boundary vertices. Several examples27

are selected for this experiment, i.e., fertility, moai,28

botijo and sculpt. We observed the convergence of our29

algorithm in all tests.30

100 101 102

The number of iterations

10-2

10-1

100

101

Th
e

pe
rc

en
ta

ge
 o

f L
ar

ge
/S

m
al

l t
ria

ng
le

s(
%

) Large Triangles Fertility OUR
Small Triangles Fertility OUR
Large Triangles Fertility RAR
Small Triangles Fertility RAR
Large Triangles Moai OUR
Small Triangles Moai OUR
Large Triangles Moai RAR
Small Triangles Moai RAR

100 101 102

The number of iterations

10-2

10-1

100

101

Th
e

pe
rc

en
ta

ge
 o

f L
ar

ge
/S

m
al

l t
ria

ng
le

s(
%

) Large Triangles Botijo OUR
Small Triangles Botijo OUR
Large Triangles Botijo RAR
Small Triangles Botijo RAR
Large Triangles Sculpt OUR
Small Triangles Sculpt OUR
Large Triangles Sculpt RAR
Small Triangles Sculpt RAR

100 101 102

The number of iterations

10-1

100

An
gl

e
En

er
gy

 /
Va

le
nc

e
En

er
gy

Angle Energy Fertility OUR
Valence Energy Fertility OUR
Angle Energy Fertility RAR
Valence Energy Fertility RAR
Angle Energy Moai OUR
Valence Energy Moai OUR
Angle Energy Moai RAR
Valence Energy Moai RAR

100 101 102

The number of iterations

10-1

100

An
gl

e
En

er
gy

 /
Va

le
nc

e
En

er
gy

Angle Energy Botijo OUR
Valence Energy Botijo OUR
Angle Energy Botijo RAR
Valence Energy Botijo RAR
Angle Energy Sculpt OUR
Valence Energy Sculpt OUR
Angle Energy Sculpt RAR
Valence Energy Sculpt RAR

Fig. 12: Comparing the convergence of our algorithm with
that of RAR [1]. Top row: the x-axis is the number of iterati-
ons, and the y-axis represents the percentage of large/small
triangles. Bottom row: the angle/valance energies vs the
number of iterations. Left: uniform remeshing. Right: adap-
tive remeshing.

The convergence of our algorithm can be guaran- 1

teed algorithmically. In each iteration, we locally pro- 2

cess triangles with small/large angles. The operation 3

is accepted only if the small angle is improved or the 4

large angle is reduced. However, we also note that 5

processing angles in a region might affect neighboring 6

triangles(small spikes in Fig. 12). On the one hand, 7

these small fluctuations correspond to edge splitting 8

and edge collapsing in each iteration. Then, the angle 9

quality can be further experimentally optimized in 10

later smoothing iterations. On the other hand, the 11

smoothing operation is related to the ODT [15], [55] 12

energy function, which has been shown to improve 13

the triangle quality considering a fixed connectivity by 14

optimizing vertex positions. In contrast, our combined 15

operations (large angle removal and small angle im- 16

provement) can be seen as a connectivity optimization 17

via vertex teleportation, which helps to improve the 18

valence by jumping out of the local minima. 19

Evaluation and Comparison. Finally, we compare 20

the mesh quality with state-of-the-art approaches, in- 21

cluding 1) methods based on blue-noise sampling, 22

e.g., MPS [29], FPO [48], and SPP [9]; 2) CVT, e.g., 23

standard CVT [33] and augmented CVT with obtuse 24

triangle suppression [11]; 3) discrete optimization, 25

e.g., RAR [1] and MAI [8]; and 4) IFM [10]. 26

JOURNAL 11

Model Method |X| |t| Qmin Qavg θmin θ̄min θmax θ<βmax% θ>βmax% V6% dRMS(× 10−3) dH(×10−2)

Vaselion
(Standard

Local
Operations)
θ<βmin

= 35◦

θ<βmax = 86◦

Input/OUR 50k/6.5k 100k/13k 0.01/0.73 0.57/0.91 0.38/35.17 29.53/52.13 178.26/85.81 65.05/0.00 66.46/0.00 28.41/73.21 – /2.05 – /1.73
MPS/OUR 6.4k/6.4k 12.8k/12.8k 0.51/0.71 0.82/0.89 32.01/35.02 46.34/50.80 114.59/86.00 3.42/0.00 18.41/0.00 51.13/74.87 1.63/2.40 1.33/1.75
RAR/OUR 6.8k/6.8k 13.7k/13.7k 0.40/0.71 0.89/0.90 17.02/35.03 50.57/51.06 124.60/85.99 1.05/0.00 3.25/0.00 73.80/76.55 2.30/2.60 1.61/1.75
Mai/OUR 6.4k/6.4k 12.8k/12.8k 0.42/0.72 0.77/0.89 23.38/35.00 42.69/50.77 124.85/85.99 16.87/0.00 36.86/0.00 29.78/76.03 0.71/2.45 0.27/1.65
CVT/OUR 6.4k/6.4k 12.8k/12.8k 0.41/0.71 0.85/0.90 18.05/35.08 47.98/51.33 127.04/86.00 4.74/0.00 12.27/0.00 57.64/76.18 2.15/2.60 1.10/1.70
NOB/OUR 6.4k/6.4k 12.7k/12.7k 0.00/0.71 0.86/0.90 0.16/35.02 48.30/51.18 141.63/86.00 3.76/0.00 10.01/0.00 57.30/75.73 2.20/2.54 1.05/1.73
SPP/OUR 6.5k/6.5k 13k/13k 0.29/0.72 0.81/0.91 10.71/35.72 44.53/51.74 126.61/85.99 12.74/0.00 20.68/0.00 51.19/77.07 2.01/2.87 1.48/3.18
FPO/OUR 6.5k/6.5k 13k/13k 0.51/0.72 0.86/0.90 29.87/35.60 50.25/51.40 114.39/86.00 0.63/0.00 14.01/0.00 54.45/76.40 1.51/2.40 1.51/1.70
IFM/OUR 6.5k/6.5k 13k/13k 0.41/0.72 0.93/0.94 20.23/35.04 54.41/54.47 123.77/86.00 0.22/0.00 1.25/0.00 84.07/85.78 2.25/2.61 1.40/1.84

Vaselion
(Modified

Local
Operations)
θ<βmin

= 30◦

θ<βmax = 90◦

Input/OUR 50k/6.5k 100k/13k 0.01/0.64 0.57/0.87 0.38/30.11 29.53/49.08 178.26/90.00 52.20/0.00 59.11/0.00 28.41/66.03 – /1.54 – /1.26
MPS/OUR 6.4k/6.4k 12.8k/12.8k 0.51/0.64 0.82/0.87 32.01/30.58 46.34/48.83 114.59/90.00 0.00/0.00 11.64/0.00 51.13/61.24 1.62/1.41 1.33/1.28
RAR/OUR 6.8k/6.8k 13.7k/13.7k 0.40/0.65 0.89/0.88 17.02/30.02 50.57/49.67 124.60/89.99 0.26/0.00 1.49/0.00 73.80/66.77 2.30/1.77 1.61/1.23
Mai/OUR 6.4k/6.4k 12.8k/12.8k 0.42/0.64 0.77/0.86 23.38/30.00 42.69/47.79 124.85/90.00 0.03/0.00 26.87/0.00 29.78/63.36 0.71/1.41 0.27/1.14
CVT/OUR 6.4k/6.4k 12.8k/12.8k 0.41/0.64 0.85/0.87 18.05/30.00 47.98/48.83 127.04/90.00 1.12/0.00 7.18/0.00 57.64/63.44 2.15/1.88 1.10/0.99
NOB/OUR 6.4k/6.4k 12.7k/12.7k 0.00/0.64 0.86/0.87 0.16/30.10 48.30/48.85 141.63/89.99 0.84/0.00 5.30/0.00 57.30/62.84 2.20/2.00 1.05/1.05
SPP/OUR 6.5k/6.5k 13k/13k 0.16/0.64 0.81/0.87 7.64/30.03 44.50/48.59 157.68/89.99 3.92/0.00 14.11/0.00 51.19/61.57 2.01/1.86 1.48/1.46
FPO/OUR 6.5k/6.5k 13k/13k 0.51/0.65 0.86/0.87 29.87/30.15 50.25/49.18 114.39/89.99 0.01/0.00 7.24/0.00 54.45/61.50 1.51/1.76 1.51/1.14
IFM/OUR 6.5k/6.5k 13k/13k 0.19/0.65 0.91/0.90 11.33/30.11 52.22/51.77 155.23/89.99 0.39/0.00 1.76/0.00 73.65/72.68 1.34/1.34 1.16/0.99

Botijo

Input/OUR 3k/5k 6k/10k 0.03/0.72 0.59/0.90 1.57/35.11 30.72/51.67 176.54/85.98 64.44/0.00 63.96/0.00 37.83/72.48 – /0.51 – /0.35
MPS/OUR 5k/5k 10k/10k 0.55/0.71 0.82/0.88 32.00/35.00 46.14/50.06 109.65/86.00 3.73/0.00 18.97/0.00 52.53/63.62 0.87/0.59 0.59/0.47
RAR/OUR 5k/5k 10k/10k 0.57/0.71 0.89/0.90 30.10/35.05 50.76/51.22 106.72/85.98 0.24/0.00 2.03/0.00 76.33/76.93 1.18/1.06 1.11/1.10
Mai/OUR 5k/5k 10k/10k 0.47/0.72 0.77/0.90 26.89/35.50 43.00/51.02 119.59/86.00 14.61/0.00 39.10/0.00 30.75/69.97 0.35/0.54 0.13/0.44
CVT/OUR 5k/5k 10k/10k 0.62/0.72 0.92/0.92 31.43/35.76 52.98/52.89 99.14/85.97 0.06/0.00 0.81/0.00 81.30/81.39 0.72/0.68 0.34/0.34
NOB/OUR 5k/5k 10k/10k 0.70/0.74 0.94/0.94 31.13/36.41 54.17/54.15 88.37/84.94 0.01/0.00 0.02/0.00 81.33/81.40 0.48/0.48 0.32/0.32
SPP/OUR 5k/5k 10k/10k 0.70/0.71 0.89/0.90 33.02/35.57 50.50/51.22 89.47/85.97 0.04/0.00 1.24/0.00 67.36/75.34 0.68/0.64 0.57/0.57
FPO/OUR 5k/5k 10k/10k 0.52/0.71 0.85/0.89 31.00/35.05 50.29/50.58 113.17/86.00 0.40/0.00 15.02/0.00 57.54/66.54 0.68/0.60 0.47/0.46
IFM/OUR 5k/5k 10k/10k 0.36/0.72 0.93/0.93 15.92/35.39 54.02/54.01 132.86/86.00 0.92/0.00 2.20/0.00 86.63/86.76 0.51/0.51 0.41/0.40

Bunny

Input/OUR 35k/8k 70k/16k 0.00/0.71 0.71/0.91 0.00/35.11 36.75/51.85 180.00/86.00 31.44/0.00 53.82/0.00 75.27/76.17 – /0.38 – /0.33
MPS/OUR 8k/8k 16k/16k 0.41/0.71 0.80/0.90 21.84/35.08 44.98/51.70 126.67/85.99 7.54/0.00 23.34/0.00 47.48/76.58 0.48/0.36 0.42/0.38
RAR/OUR 8k/8k 16k/16k 0.56/0.71 0.90/0.90 28.96/35.02 51.46/51.58 107.15/86.00 0.23/0.00 1.28/0.00 75.54/75.60 0.35/0.35 0.43/0.43
Mai/OUR 8k/8k 16k/16k 0.43/0.72 0.77/0.91 22.41/35.15 43.03/51.92 123.91/85.99 14.05/0.00 39.32/0.00 29.70/76.06 0.34/0.35 0.12/0.35
CVT/OUR 8k/8k 16k/16k 0.64/0.72 0.93/0.93 34.80/36.00 54.23/54.02 98.78/85.98 0.01/0.00 0.28/0.00 86.83/85.78 0.53/0.53 0.37/0.35
NOB/OUR 8k/8k 16k/16k 0.72/0.74 0.94/0.94 36.36/36.36 54.45/54.42 89.45/84.46 0.00/0.00 0.02/0.00 86.80/86.83 0.58/0.58 0.38/0.38
SPP/OUR 8k/8k 16k/16k 0.70/0.72 0.89/0.90 37.03/35.04 51.07/51.42 89.51/86.00 0.00/0.00 3.43/0.00 74.76/82.26 0.42/0.37 0.56/0.51
FPO/OUR 8k/8k 16k/16k 0.49/0.71 0.84/0.90 30.01/35.06 48.60/51.70 116.33/85.99 2.38/0.00 16.98/0.00 52.34/77.15 0.49/0.36 0.45/0.42
IFM/OUR 8k/8k 16k/16k 0.39/0.71 0.92/0.91 20.84/35.01 52.78/52.61 129.51/85.99 0.77/0.00 2.84/0.00 78.97/80.34 0.42/0.40 0.47/0.45

Gargoyle

Input/OUR 30k/10k 60k/20k 0.22/0.71 0.77/0.90 7.88/35.00 42.03/51.57 143.85/86.00 20.95/0.00 29.39/0.00 41.33/71.22 – /0.65 – /0.56
MPS/OUR 10k/10k 20k/20k 0.50/0.70 0.82/0.88 32.00/35.00 46.33/49.48 115.00/86.00 3.63/0.00 19.09/0.00 51.73/63.06 0.78/0.71 0.68/0.65
RAR/OUR 10k/10k 20k/20k 0.00/0.71 0.69/0.89 0.00/35.02 37.68/50.62 180.00/86.00 37.25/0.00 42.02/0.00 50.69/76.27 0.62/0.71 0.57/0.54
Mai/OUR 10k/10k 20k/20k 0.46/0.70 0.77/0.88 25.49/35.02 42.98/49.45 119.91/86.00 14.83/0.00 37.86/0.00 29.96/61.07 0.33/0.65 0.13/0.58
CVT/OUR 10k/10k 20k/20k 0.44/0.71 0.87/0.89 21.91/35.01 49.42/50.44 123.36/86.00 2.27/0.00 5.84/0.00 62.59/66.86 0.84/0.70 0.38/0.45
NOB/OUR 10k/10k 20k/20k 0.44/0.71 0.88/0.89 21.78/35.01 49.77/50.43 117.02/86.00 2.11/0.00 5.11/0.00 64.73/68.24 0.83/0.75 0.38/0.47
SPP/OUR 10k/10k 20k/20k 0.24/0.70 0.77/0.88 9.22/35.00 41.92/49.57 148.57/86.00 23.03/0.00 29.03/0.00 44.65/61.93 0.98/0.77 0.86/0.85
FPO/OUR 10k/10k 20k/20k 0.48/0.71 0.85/0.89 30.51/35.01 49.38/50.54 117.54/86.00 1.80/0.00 15.89/0.00 52.41/70.59 0.75/0.66 0.62/0.62
IFM/OUR 10k/10k 20k/20k 0.41/0.71 0.93/0.93 20.00/35.01 54.21/53.88 122.84/86.00 0.15/0.00 1.12/0.00 80.72/80.88 0.72/0.71 0.56/0.56

David

Input/OUR 12k/15k 120k/60k 0.00/0.70 0.88/0.89 0.04/35.00 50.06/50.26 178.18/86.00 1.46/0.00 6.62/0.00 64.18/66.81 – /0.37 – /0.39
MPS/OUR 15k/15k 59k/59k 0.41/0.71 0.81/0.90 23.41/35.00 45.39/51.19 126.68/86.00 5.45/0.00 22.10/0.00 49.29/67.87 0.65/0.56 0.54/0.54
RAR/OUR 15k/15k 60k/60k 0.63/0.71 0.91/0.91 31.03/35.00 52.07/52.05 99.85/86.00 0.08/0.00 0.53/0.00 74.05/74.09 0.57/0.56 0.95/0.94
Mai/OUR 15k/15k 60k/60k 0.53/0.70 0.82/0.89 28.95/35.00 46.73/50.26 111.83/86.00 0.07/0.00 23.75/0.00 41.68/65.30 0.18/0.47 0.08/0.50
CVT/OUR 15k/15k 60k/60k 0.56/0.71 0.92/0.92 33.10/35.04 53.08/52.87 107.82/86.00 0.01/0.00 0.92/0.00 80.06/79.81 0.63/0.61 0.59/0.59
NOB/OUR 15k/15k 60k/60k 0.69/0.71 0.92/0.92 36.04/35.00 53.20/53.13 89.97/86.00 0.00/0.00 0.62/0.00 79.92/79.94 0.54/0.54 0.30/0.30
SPP/OUR 15k/15k 60k/60k 0.16/0.71 0.74/0.88 5.92/35.00 39.62/50.13 150.30/85.00 32.05/0.00 35.66/0.00 41.10/67.05 0.88/0.63 1.06/0.85
FPO/OUR 15k/15k 10k/10k 0.50/0.70 0.85/0.89 27.90/35.00 50.25/50.72 115.32/86.00 0.60/0.00 14.44/0.00 56.62/68.15 0.61/0.57 0.68/0.67
IFM/OUR 15k/15k 60k/60k 0.47/0.70 0.94/0.94 26.51/35.06 54.80/54.64 119.47/86.00 0.05/0.00 0.65/0.00 85.49/85.49 0.55/0.55 0.59/0.59

Joint

Input/OUR 0.2k/3.4k 0.4k/6.8k 0.01/0.71 0.22/0.88 0.48/35.09 9.35/49.87 173.21/85.99 98.65/0.00 91.03/0.00 27.15/75.21 – /0.41 – /0.25
MPS/OUR 3k/3k 6k/6k 0.59/0.70 0.82/0.89 31.98/35.08 46.08/50.80 104.96/85.98 2.79/0.00 21.34/0.00 54.23/71.46 0.55/0.48 0.37/0.29
RAR/OUR 3.4k/3.4k 6.8k/6.8k 0.07/0.70 0.86/0.88 4.50/35.14 48.28/49.70 171.00/85.98 1.42/0.00 5.63/0.00 78.36/78.58 0.40/0.40 0.31/0.26
Mai/OUR 3k/3k 6k/6k 0.00/0.71 0.87/0.92 0.11/35.28 49.78/52.70 179.77/85.99 4.69/0.00 8.21/0.00 75.11/76.84 0.46/0.48 0.22/0.25
CVT/OUR 3.4k/3.4k 6.8k/6.8k 0.58/0.72 0.91/0.92 32.90/36.00 52.99/53.00 105.67/85.96 0.03/0.00 3.29/0.00 82.03/83.29 0.60/0.48 0.26/0.25
NOB/OUR 3.4k/3.4k 6.8k/6.8k 0.57/0.71 0.93/0.93 26.99/35.51 53.42/53.85 101.05/85.97 0.62/0.00 3.26/0.00 81.53/83.19 0.99/0.45 0.42/0.21
FPO/OUR 3.4k/3.4k 6.8k/6.8k 0.54/0.72 0.85/0.91 32.39/35.50 49.90/52.55 110.77/85.94 0.28/0.00 15.71/0.00 57.58/80.28 0.74/0.47 0.39/0.31
IFM/OUR 3.4k/3.4k 6.8k/6.8k 0.53/0.73 0.96/0.95 31.12/36.19 56.11/55.91 110.99/85.65 0.07/0.00 0.31/0.00 90.44/90.70 0.58/0.47 1.07/0.36

Sculpt

Input/OUR 3.7k/3k 7.3k/6k 0.68/0.70 0.92/0.90 36.43/35.06 53.90/51.10 94.48/85.98 0.00/0.00 0.91/0.00 88.99/74.42 – /0.33 – /0.12
MPS/OUR 3k/3k 6k/6k 0.49/0.71 0.82/0.90 29.23/35.20 46.28/50.92 115.85/85.99 3.21/0.00 19.66/0.00 54.65/81.18 0.42/0.36 0.22/0.14
RAR/OUR 3k/3k 6k/6k 0.56/0.70 0.92/0.92 27.73/35.06 53.05/53.09 102.54/85.93 0.12/0.00 0.43/0.00 85.95/86.13 0.27/0.27 0.09/0.09
Mai/OUR 3k/3k 6k/6k 0.50/0.70 0.83/0.90 30.00/35.00 47.17/51.41 115.24/86.00 6.89/0.00 20.44/0.00 56.20/74.07 0.39/0.34 0.10/0.13
CVT/OUR 3k/3k 6k/6k 0.56/0.72 0.86/0.90 31.63/35.47 48.98/51.17 108.40/85.93 0.63/0.00 11.19/0.00 67.68/82.21 0.70/0.35 0.24/0.20
NOB/OUR 3k/3k 6k/6k 0.57/0.71 0.87/0.89 29.48/35.02 49.52/50.56 103.49/85.99 0.13/0.00 10.09/0.00 67.78/72.21 0.90/0.43 0.31/0.18
FPO/OUR 3k/3k 6k/6k 0.51/0.71 0.85/0.89 30.00/35.00 49.76/50.40 114.49/85.99 0.55/0.00 15.89/0.00 57.38/73.48 0.34/0.34 0.16/0.13
IFM/OUR 3k/3k 6k/6k 0.32/0.71 0.87/0.89 16.64/35.07 48.87/50.21 137.34/85.96 6.96/0.00 10.80/0.00 70.56/76.72 0.49/0.44 0.80/0.24

TABLE 1: Comparison of remeshing quality with previous techniques. The best result of each measurement is marked in
bold font. |X| is the number of vertices; |t| represents the number of triangles. Sec 5 explains the other measurements.

Table 1 lists the statistics. In each column, two1

groups of values are separated by ”/”. The former2

means the quality before applying our method, and3

the latter indicates the quality after applying our4

method. In the last example in the table, the values5

correspond to the example of multi-resolution remes-6

hing shown in Fig. 10. We use the standard evaluation7

criteria utilized in previous works [11], [8], [9]. In8

addition, θmin and θmax are the minimal and maximal9

angles in a mesh, respectively, and θ̄min denotes the10

average minimal angle of all triangles. In isotropic11

remeshing, the optimal angle of θmin and θ̄min is 60◦12

for a planar surface. However, achieving this value for13

curved surfaces is impossible, which is also affected 1

by the existence of singular vertices. Qmin and Q̄ave 2

measure the regularity of triangles. An equilateral 3

triangle has Q(t) = 1 and a degenerate triangle has 4

Q(t) = 0 [56]. A larger value of Q(t) indicates a 5

better shape of triangle t. The global regularity of the 6

remesh is dominated by the percentage of valence 7

6 vertices. We see that CVT-based approaches have 8

improved regularity. We also state the percentages of 9

the triangles with the minimal angle smaller than βmin 10

and the maximal angle larger than βmax. Our method 11

is shown to be the only one that can achieve both no 12

small and large angles in practice. 13

JOURNAL 12

The most related work with ours is RAR [1], which1

improves the mesh quality by further equaling the2

edge lengths. RAR has the fastest speed because only3

the splitting of long edges and collapsing of short ed-4

ges are involved in the computation. However, RAR5

lacks explicit control of the angle quality, as listed6

in Table 1, as a certain amount of small and obtuse7

angles exist in their results. Another closely related8

work is MAI [8], which aims to improve the minimal9

angle quality; however, it introduces numerous obtuse10

triangles at the same time. The efficiency of MAI can11

be low when the target number of vertices is high,12

because it processes one triangle at one iteration. The13

blue-noise sampling based approaches have low mesh14

quality due to their random nature. Although the15

most recent work SPP is able to produce non-obtuse16

meshes, it has no explicit control of the minimal17

and maximal angle bounds as our method. The same18

problem exists for CVT and NOB. The performances19

of blue-noise remeshing and CVT-related approaches20

are relatively slow because the global optimization is21

involved. Although IFM has high performance and22

regularity, it cannot produce acute meshes as our23

method. We exclude the results of MAI for uniform24

remesh because it is designed solely for automatically25

sizing control with bounded error.26

Discussion and Limitation. Our method runs robus-27

tly on a large variety of input meshes. However, we28

have some issues when the required angle bounds29

are too tight, or when remeshing surfaces with very30

thin and long features uses a small target number of31

vertices.32

We conducted two limit tests to explore the limitati-33

ons of our remeshing framework. In the first example,34

we select a smooth model without tiny features (i.e.,35

the Venus body) to test the extreme angle bounds that36

our algorithm can achieve, as shown in Fig. 13. We set37

the number of vertices to 2k, and keep increasing the38

lower bound and decreasing the upper bound until39

the algorithm no longer converges. Starting from the40

range [35◦, 86◦], the algorithm stops working when41

it reaches the bounds [46◦, 80◦] and [40◦, 76◦]. This42

example demonstrates that our approach can produce43

meshes with very high triangle quality. The result also44

confirms the common observation that the better the45

valence, the higher the triangle quality, and the larger46

the approximation error (Hausdorff distance).47

In the second example, we select a model with very48

thin features (the ear of the elk model) to test the49

robustness of the algorithm. Starting from 2 k vertices,50

we gradually decrease the number of vertices, as51

shown in Fig 14. The input angle bounds of this52

example are [30◦, 90◦]. The algorithm stops working53

when the vertex number reaches 800. This test also54

shows that the approximation error increases when55

the vertex budget decreases. The statistics of these56

tests are provided in the supplemental materials.57

These limitations can also be observed in the lion-58

Fig. 13: Limit test on the Venus body model by increasing
the lower angle bound and decreasing the upper bound
using a fixed number of vertices. From left to right are:
the input, our results with bounds [40◦, 77◦], [40◦, 76◦],
[45◦, 80◦], [46◦, 80◦]. The red and blue colors indicate the
triangles with angles large than 77◦ and smaller than 45◦,
respectively. The quality statistics is given in Table 1 in the
supplemental material.

Fig. 14: Limit test on the Elk model by decreasing the vertex
budget. From left to right: input, result of 2k, 1.6k, 1.2k, and
0.8k vertices. The algorithm does not converge when using
0.8k vertices. The input angle bounds in this example are
[30◦, 90◦]. The quality statistics are given in Table 1 in the
supplemental material.

vase examples as shown in Figs. 1 and 10. This input 1

mesh contains numerous tiny sharp features around 2

the hair region. Although our algorithm could im- 3

prove the angle quality over existing methods, it can- 4

not further reduce the Hausdorff distance near feature 5

regions using the default angle bounds [35◦, 86◦]. If we 6

slightly loosen the angle bounds a little bit to [30◦, 90◦] 7

and apply our error-aware local operators, then we 8

can further reduce the approximation errors (except 9

when comparing with MAI) as well as improve the 10

angle quality. 11

6 CONCLUSION AND FUTURE WORKS 12

We have presented a novel isotropic remeshing fra- 13

mework that simultaneously removes large angles 14

and improves small angles. The key components are 15

two carefully designed criteria for point insertion and 16

deletion. Our approach can either be used directly on 17

input raw meshes, or be used as a post-processing 18

step for any previous remeshing algorithm. The pro- 19

posed method is shown to run robustly for a large 20

variety of input meshes, even for those models with 21

complicated geometry details that cannot be handled 22

faithfully with state-of-the-art approaches. 23

Although our approach can achieve the best angle 24

quality compared with existing approaches, challen- 25

ges are present that deserve further investigation. For 26

example, how to select the smallest number of points 27

for a given approximation tolerance? What is the re- 28

lationship between the angle and valence energies? In 29

JOURNAL 13

the future, we also plan to improve the performance1

of our framework to achieve real-time remeshing (e.g.,2

by GPU acceleration [57]) with massive models, ex-3

tend our method for anisotropic remeshing [58], [59],4

and apply our approach to applications in animation5

and simulation.6

ACKNOWLEDGMENTS7

We thank anonymous reviewer for their valuable com-8

ments and suggestions. This work is partially funded9

by the National Natural Science Foundation of China10

(61772523, 61620106003, 61331018), the Beijing Natural11

Science Foundation (4184102), and the KAUST Visual12

Computing Center. Y. Wang and D.-M. Yan are joint13

first author with equal contribution. D.-M. Yan is the14

corresponding author.15

REFERENCES16

[1] M. Dunyach, D. Vanderhaeghe, L. Barthe, and M. Botsch,17

“Adaptive remeshing for real-time mesh deformation,” in18

Eurographics Short Papers Proceedings, 2013, pp. 29–32.19

[2] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene, “Recent20

advances in remeshing of surfaces,” in Shape Analysis and21

Structuring, 2008, pp. 53–82.22

[3] P. Alliez, É. C. d. Verdiére, O. Devillers, and M. Isenburg,23

“Isotropic surface remeshing,” in Shape Modeling International24

- SMI, 2003, pp. 49–58.25

[4] J. R. Shewchuk, “What is a good linear element? interpolation,26

conditioning, and quality measures,” in 11th Intl. Meshing27

Roundtable, 2002, pp. 115–126.28

[5] R. Kimmel and J. Sethian, “Minimal discrete curves and29

surfaces,” in Proc. of National Academy of Sci., vol. 95, 1998,30

p. 8431C8435.31

[6] X. Ying, X. Wang, and Y. He, “Saddle vertex graph (SVG): a32

novel solution to the discrete geodesic problem,” ACM Trans.33

on Graphics (Proc. SIGGRAPH Asia), vol. 32, no. 6, pp. 170:1–34

170:12, 2013.35

[7] K. Crane, F. de Goes, M. Desbrun, and P. Schröder, “Digital36

geometry processing with discrete exterior calculus,” in ACM37

SIGGRAPH 2013 Courses, 2013, pp. 7:1–7:126.38

[8] K. Hu, D.-M. Yan, D. Bommes, P. Alliez, and B. Benes, “Error-39

bounded and feature preserving surface remeshing with mi-40

nimal angle improvement,” IEEE Trans. on Vis. and Comp.41

Graphics, vol. 23, no. 12, pp. 2560–2573, 2017.42

[9] A. Ahmed, J. Guo, D.-M. Yan, J.-Y. Franceschi, X. Zhang, and43

O. Deussen, “A simple push-pull algorithm for blue-noise44

sampling,” IEEE Trans. on Vis. and Comp. Graphics, vol. 23,45

no. 12, pp. 2496–2508, 2017.46

[10] W. Jakob, M. Tarini, D. Panozzo, and O. Sorkine-Hornung,47

“Instant field-aligned meshes,” ACM Trans. on Graphics (Proc.48

SIGGRAPH Asia), vol. 34, no. 6, pp. 189:1–189:15, 2015.49

[11] D.-M. Yan and P. Wonka, “Non-obtuse Remeshing with Cen-50

troidal Voronoi Tessellation,” IEEE Trans. on Vis. and Comp.51

Graphics, vol. 22, no. 9, pp. 2136–2144, 2016.52

[12] P. Heckbert and M. Garland, “Survey of polygonal surface53

simplification algorithms,” in SIGGRAPH 97 Course Notes:54

Multiresolution Surface Modeling, 1997.55

[13] Y. Liu, C. Xu, D. Fan, and Y. He, “Efficient construction and56

simplification of Delaunay meshes,” ACM Trans. on Graphics57

(Proc. SIGGRAPH Asia), vol. 34, no. 6, pp. 174:1–174:13, 2015.58

[14] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang,59

“On centroidal Voronoi tessellation - energy smoothness and60

fast computation,” ACM Trans. on Graphics, vol. 28, no. 4, pp.61

101:1–101:11, 2009.62

[15] L. Chen, “Mesh smoothing schemes based on optimal delau-63

nay triangulations,” in International Meshing Roundtable, 2004,64

pp. 109–120.65

[16] T. Brochu and R. Bridson, “Robust topological operations for66

dynamic explicit surfaces,” SIAM J. Sci. Comput., vol. 31, no. 4,67

pp. 2472–2493, June 2009.68

[17] M. Botsch and L. Kobbelt, “A remeshing approach to multi- 1

resolution modeling,” in Proc. of Symp. of Geometry Processing, 2

2004, pp. 189–196. 3

[18] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. T. Silva, M. Ta- 4

rini, and D. Zorin, “Quad-mesh generation and processing: A 5

survey,” Computer Graphics Forum, vol. 32, no. 6, pp. 51–76, 6

2013. 7

[19] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon 8

Mesh Processing. AK Peters, 2010. 9

[20] S.-W. Cheng, T. K. Dey, and J. R. Shewchuk, Delaunay Mesh 10

Generation. CRC Press, 2012. 11

[21] B. S. Baker, E. Grosse, and C. S. Raffery, “Nonobtuse triangu- 12

lation of polygons,” Disc. & Comp. Geom., vol. 3, pp. 147–168, 13

1988. 14

[22] M. Bern, S. Mitchell, and J. Ruppert, “Linear-size nonobtuse 15

triangulation of polygons,” in ACM Symp. on Comp. Geom., 16

1994, pp. 221–230. 17

[23] H. Erten and A. Üngör, “Computing acute and non-obtuse 18

triangulations,” in CCCG 2007, 2007, pp. 205–208. 19

[24] H. Erten and A. Üngör, “Computing triangulations without 20

small and large angles,” in Sixth International Symposium on 21

Voronoi Diagrams, ISVD 2009, 2009, pp. 192–201. 22

[25] S. Saraf, “Acute and nonobtuse triangulations of polyhedral 23

surfaces,” European Journal of Combinatorics, vol. 30, no. 4, pp. 24

833 – 840, 2009. 25

[26] J. Li and H. Zhang, “Nonobtuse remeshing and decimation,” 26

in Proc. of Eurographics Symposium on Geometry Processing, 2006, 27

p. Proc. of Symp. of Geometry Processing. 28

[27] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tes- 29

sellations: applications and algorithms,” SIAM Review, vol. 41, 30

pp. 637–676, 1999. 31

[28] Z. Chen, J. Cao, and W. Wang:, “Isotropic surface remes- 32

hing using constrained centroidal delaunay mesh,” Computer 33

Graphics Forum, vol. 31, no. 7-1, pp. 2077–2085, 2012. 34

[29] D.-M. Yan and P. Wonka, “Gap processing for adaptive maxi- 35

mal Poisson-disk sampling,” ACM Trans. on Graphics, vol. 32, 36

no. 5, pp. 148:1–148:15, 2013. 37

[30] S. A. Lloyd, “Least squares quantization in PCM,” IEEE Tran- 38

sactions on Information Theory, vol. 28, no. 2, pp. 129–137, 1982. 39

[31] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry 40

Remeshing,” ACM Trans. on Graphics (Proc. SIGGRAPH), vol. 41

21(3), pp. 347–354, 2002. 42

[32] V. Surazhsky, P. Alliez, and C. Gotsman, “Isotropic remeshing 43

of surfaces: a local parameterization approach,” in 12th Intl. 44

Meshing Roundtable, 2003, pp. 204–231. 45

[33] D.-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang, “Isotropic re- 46

meshing with fast and exact computation of restricted Voronoi 47

diagram,” Computer Graphics Forum (Proc. SGP), vol. 28, no. 5, 48

pp. 1445–1454, 2009. 49

[34] D.-M. Yan, G. Bao, X. Zhang, and P. Wonka, “Low-resolution 50

remeshing using the localized restricted Voronoi diagram,” 51

IEEE Trans. on Vis. and Comp. Graphics, vol. 20, no. 10, pp. 52

418–1427, 2014. 53

[35] X. Du, X. Liu, D.-M. Yan, C. Jiang, J. Ye, and H. Zhang, 54

“Field-aligned isotropic surface remeshing,” Computer Graphics 55

Forum, 2018, accepted. 56

[36] H. Edelsbrunner and N. R. Shah, “Triangulating topological 57

spaces,” IJCGA, vol. 7, no. 4, pp. 365–378, 1997. 58

[37] F. Sun, Y.-K. Choi, W. Wang, D.-M. Yan, Y. Liu, and B. Lévy, 59

“Obtuse triangle suppression in anisotropic meshes,” Comp. 60

Aided Geom. Design, vol. 28, no. 9, pp. 537–548, 2011. 61

[38] O. Sifri, A. Sheffer, and C. Gotsman, “Geodesic-based surface 62

remeshing,” in Proceedings of the 12th International Meshing 63

Roundtable, IMR 2003, 2003, pp. 189–199. 64

[39] G. Peyré and L. D. Cohen, “Geodesic remeshing using front 65

propagation,” Int. J. Comput. Vision, vol. 69, no. 1, pp. 145–156, 66

2006. 67

[40] Y. Fu and B. Zhou, “Direct sampling on surfaces for high 68

quality remeshing,” in ACM symposium on Solid and physical 69

modeling, 2008, pp. 115–124. 70

[41] Y.-J. Liu, Z. Chen, and K. Tang, “Construction of iso-contours, 71

bisectors, and voronoi diagrams on triangulated surfaces,” 72

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 73

vol. 33, no. 8, pp. 1502–1517, 2011. 74

[42] X. Wang, X. Ying, Y.-J. Liu, S.-Q. Xin, W. Wang, X. Gu, 75

W. Mueller-Wittig, and Y. He, “Intrinsic computation of cen- 76

JOURNAL 14

troidal Voronoi tessellation (CVT) on meshes,” Computer-Aided1

Design, vol. 58, no. 0, pp. 51–61, 2015.2

[43] Y.-J. Liu, C.-X. Xu, R. Yi, D. Fan, and Y. He, “Manifold3

differential evolution (mde): A global optimization method4

for geodesic centroidal voronoi tessellations on meshes,” ACM5

Trans. on Graphics (Proc. SIGGRAPH Asia), vol. 35, no. 6, pp.6

243:1–11, 2016.7

[44] Z. Chen, Z. Yuan, Y.-K. Choi, L. Liu, and W. Wang, “Variational8

blue noise sampling,” IEEE Trans. on Vis. and Comp. Graphics,9

vol. 18, no. 10, pp. 1784–1796, 2012.10

[45] J. Guo, D.-M. Yan, X. Jia, and X. Zhang, “Efficient maximal11

Poisson-disk sampling and remeshing on surfaces,” Computers12

& Graphics, vol. 46, no. 6-8, pp. 72–79, 2015.13

[46] M. S. Ebeida, A. A. Rushdi, M. A. Awad, A. H. Mahmoud,14

D. Yan, S. A. English, J. D. Owens, C. L. Bajaj, and S. A.15

Mitchell, “Disk density tuning of a maximal random packing,”16

Computer Graphics Forum (Proc. SGP), vol. 35, no. 5, pp. 259–17

269, 2016.18

[47] A. Abdelkader, A. H. Mahmoud, A. A. Rushdi, S. A. Mitchell,19

J. D. Owens, and M. S. Ebeida, “A constrained resampling20

strategy for mesh improvement,” Computer Graphics Forum21

(Proc. SGP), vol. 36, no. 5, pp. 189–201, 2017.22

[48] D.-M. Yan, J. Guo, X. Jia, X. Zhang, and P. Wonka, “Blue-23

noise remeshing with farthest point optimization,” Computer24

Graphics Forum (Proc. SGP), vol. 33, no. 5, pp. 167–176, 2014.25

[49] R. Dyer, H. Zhang, and T. Möller, “Delaunay mesh con-26

struction,” in Eurographics Symposium on Geometry Processing,27

2007, pp. 273–282.28

[50] V. Surazhsky and C. Gotsman, “Explicit surface remeshing,”29

in Symposium on Geometry Processing, 2003, pp. 20–30.30

[51] Y. Li, E. Zhang, Y. Kobayashi, and P. Wonka, “Editing ope-31

rations for irregular vertices in triangle meshes,” ACM Trans.32

on Graphics (Proc. SIGGRAPH Asia), vol. 29, no. 6, pp. 153:1–33

153:11, 2010.34

[52] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,” in35

Proc. ACM SIGGRAPH, 2002, pp. 355–361.36

[53] M. Nieser, J. Palacios, K. Polthier, and E. Zhang, “Hexagonal37

global parameterization of arbitrary surfaces,” IEEE Trans. on38

Vis. and Comp. Graphics, vol. 18, no. 6, pp. 865–878, 2011.39

[54] B. Lévy and Y. Liu, “L p centroidal voronoi tessellation and its40

applications,” in ACM Transactions on Graphics (TOG), vol. 29,41

no. 4. ACM, 2010, p. 119.42

[55] Z. Gao, Z. Yu, and M. J. Holst, “Feature-preserving sur-43

face mesh smoothing via suboptimal delaunay triangulation,”44

Graphical Models, vol. 75, no. 1, pp. 23–38, 2013.45

[56] P. Frey and H. Borouchaki, “Surface mesh evaluation,” in 6th46

Intl. Meshing Roundtable, 1997, pp. 363–374.47

[57] Y.-S. Leung, X. Wang, Y. He, Y.-J. Liu, and C. C. L. Wang, “A48

unified framework for isotropic meshing based on narrow-49

band euclidean distance transformation,” Computational Visual50

Media, vol. 1, no. 3, pp. 239–251, 2015.51

[58] X. Wang, T. H. Le, X. Ying, Q. Sun, and Y. He, “User52

controllable anisotropic shape distribution on 3D meshes,”53

Computational Visual Media, vol. 2, no. 4, pp. 305–319, 2016.54

[59] Y. Cai, X. Guo, Y. Liu, W. Wang, W. Mao, and Z. Zhong,55

“Surface approximation via asymptotic optimal geometric par-56

tition,” IEEE Trans. on Vis. and Comp. Graphics, vol. 23, no. 12,57

pp. 2613–2626, 2017.58

Yiqun Wang received his Bachelor’s de-59

gree from Chongqing University, China. He60

is working toward the PhD degree in Institute61

of Automation, Chinese Academy of Scien-62

ces. His research interests include computer63

graphics, geometric processing and pattern64

recognition.65

66

Dong-Ming Yan received his PhD degree 1

from Hong Kong University in 2010, and his 2

Bachelor’s and Master’s degrees from Tsing- 3

hua University in 2002 and 2005, respecti- 4

vely. He is currently an associate professor 5

at the National Laboratory of Pattern Recog- 6

nition of the Institute of Automation, Chinese 7

Academy of Sciences. His research intere- 8

sts include computer graphics and geometric 9

processing. 10

11

Xiaohan Liu received his BE degree in soft- 12

ware engineering from Nanjing University of 13

Aeronautics and Astronautics in 2017. He 14

is currently working toward his PhD degree 15

in Institute of Automation, Chinese Academy 16

of Sciences. His research interests include 17

computer graphics and virtual reality. 18

19

Chengcheng Tang received his PhD and 20

MS degrees from King Abdullah University 21

of Science and Technology (KAUST) in 2015 22

and 2011, respectively, and his bachelor’s 23

degree from Jilin University in 2009. He is 24

currently a postdoctoral scholar in the Com- 25

puter Science Department at Stanford Uni- 26

versity. His research interests include com- 27

puter graphics, applied geometry, computati- 28

onal design, and machine learning. 29

30

Jianwei Guo is an assistant researcher in 31

National Laboratory of Pattern Recognition 32

(NLPR), Institute of Automation, Chinese 33

Academy of Sciences(CASIA). He received 34

his Ph.D. degree in computer science from 35

CASIA in 2016, and bachelor degree from 36

Shandong University in 2011. His research 37

interests include computer graphics, geome- 38

try processing and 3D shape analysis. 39

40

Xiaopeng Zhang received the PhD degree 41

in computer science from Institute of Soft- 42

ware, Chinese Academic of Sciences in 43

1999. He is a professor in National La- 44

boratory of Pattern Recognition at Institute 45

of Automation, Chinese Academic of Scien- 46

ces. He received the National Scientific and 47

Technological Progress Prize (second class) 48

in 2004. His main research interests include 49

computer graphics and image processing. 50

51

Peter Wonka received his PhD in computer 52

science and his MS in urban planning from 53

the Technical University of Vienna, Vienna, 54

Austria, in 2001 and 2002, respectively. He is 55

currently a professor in the Computer, Elec- 56

trical and Mathematical Science and Engi- 57

neering Division, King Abdullah University of 58

Science and Technology, Thuwal, Saudi Ara- 59

bia. His research interests include compu- 60

ter graphics, visualization, computer vision, 61

remote sensing, image processing, and ma- 62

chine learning. 63

