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Selection Expressions for Procedural Modeling
Haiyong Jiang, Dong-Ming Yan, Xiaopeng Zhang, and Peter Wonka

Abstract—We introduce a new approach for procedural modeling. Our main idea is to select shapes using selection-expressions
instead of simple string matching used in current state-of-the-art grammars like CGA shape and CGA++. A selection-expression
specifies how to select a potentially complex subset of shapes from a shape hierarchy, e.g. "select all tall windows in the second floor of
the main building facade". This new way of modeling enables us to express modeling ideas in their global context rather than traditional
rules that operate only locally. To facilitate selection-based procedural modeling we introduce the procedural modeling language
SELEX. An important implication of our work is that enforcing important constraints, such as alignment and same size constraints can
be done by construction. Therefore, our procedural descriptions can generate facade and building variations without violating alignment
and sizing constraints that plague the current state of the art. While the procedural modeling of architecture is our main application
domain, we also demonstrate that our approach nicely extends to other man-made objects.

Index Terms—Procedural modeling, building modeling, selections, grammars
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1 INTRODUCTION

1 Procedural modeling is useful to create a variety of2

buildings without modeling each building individually, e.g.,3

to synthesize a large environment. A popular approach for4

procedural building modeling uses grammars, e.g., CGA5

shape [1]. The main idea of a grammar is to derive a design6

hierarchically, typically relying on splitting operations. First,7

a mass model is generated. Then, the side faces of the mass8

model are extracted as facade polygons. Next, the facade9

polygons can be split into either columns or floors. After10

that, floors can be split into tiles and later tiles into walls,11

windows, or doors. In our work, we would like to improve12

upon two problems prevalent in this approach.13

First, CGA shape provides only limited opportunities14

to coordinate the different branches of the derivation. For15

example, a rule could be invoked for a tile somewhere on16

a building to place a window and a balcony. This rule now17

needs to decide locally how the window and balcony should18

be designed such that the design decisions are coordinated19

with all other elements of a building. It is easy to underes-20

timate how difficult that really is. Specifically, the correct21

alignment of elements is extremely difficult to model even22

for buildings of moderate complexity. This issue, among23

others, was tackled by CGA++ [2]. The proposed solution24

is to introduce language constructs that enable better com-25

munication between the different parts of a design. While26

this results in noticeable improvements, CGA++ still inherits27
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the limitation of CGA shape that a design is broken down 28

hierarchically with small shapes ultimately trying to make 29

decisions locally (see Fig. 1). In this work, we would like 30

to explore a departure from this traditional grammar-based 31

modeling. Our key idea is to use a global view to describe 32

key design decisions involved in the modeling. For example, 33

instead of windows deciding locally what size, alignment, 34

and type they should have, we would like to write global 35

rules that describe where to put what types of windows. 36

We thereby move from rules of the form: label → actions 37

to rules of the form selection-expression → actions. In 38

other words, while previous work mainly focused on im- 39

provements to the right-hand side of a rule, we propose 40

extensions to the left-hand side of a rule. 41

Second, the hierarchical splitting approach used by CGA 42

shape and CGA++ has several drawbacks. There are multi- 43

ple ways to view the same building. For example, looking 44

at a facade one might be interested to express a modeling 45

operation in terms of the floors, in terms of the columns, 46

or for a subset of tiles. The problem is not so much the 47

hierarchical splitting in itself, but the fact that the rule 48

writing forces a building to be split into only one sin- 49

gle hierarchy. If the rule writer commits to a floor-based 50

subdivision, it becomes very difficult to express modeling 51

operations that need to coordinate between multiple co- 52

lumns and vice versa. Further, a single hierarchy leads to 53

a larger amount of rules than necessary and to rules that 54

have no semantic. For example, in Fig. 1(c) the facade is 55

first split into a left region, a door column, and a right 56

region. Then the individual regions are split into floors, 57

etc. This structure imposes a hierarchy that has unnecessary 58

intermediate regions that are difficult to name semantically 59

and pose problems for formulating selections (e.g. all the 60

colored regions in Fig. 1(c)). To overcome these limitations, 61

we propose a solution to simultaneously manage multiple 62

hierarchies to support multiple views of the data without 63

splitting the shapes. Fig. 1 illustrates problems with the 64

previous approach and the advantages of our solution on 65

a selected example. 66
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Fig. 1. Illustration of modeling paradigms of SELEX and CGA shape.
(a) Empty facade. (b) Grids are used to enable different views of the
data, e.g. rows, columns, sub-grids, or individual grid cells. (c) Splitting
problems with current approaches, because merging of cells is not
possible: if performing splits to establish multi-cell regions, complex and
hard-to-maintain sequences of alternating vertical and horizontal splits
are required (e.g., first horizontally into three columns, then each column
vertically (these are three separate splits, need at least two different split
rules), then each row-fragment horizontally again; even in this simple
example already hard to keep all splits in sync and (in the case of
CGA shape) to find meaningful symbol names). (d) In our approach we
can select arbitrary rectangular sub-grids of a grid and place elements
relative to these. This enables modeling in a natural and semantically
meaningful way. (e) Elements are often arranged according to a grid to
simplify alignment, but single elements may span multiple grid cells or
be placed in between grid cells. In particular, incorporating elements that
straddle two cells, each of them containing a further element, such as
the yellow and blue ornaments in the top floor, entails a complex split
structure. We support overlapping selections, e.g. a single-cell selection
to place each window and a double-cell selection to place ornaments.

In practice, there are two types of modeling scenarios67

where our approach can provide significant advantages68

over previous work. First, we can express facade designs69

in such a way that the alignment between elements will70

be correctly maintained when resizing a facade or when71

introducing procedural variations. Second, we can model72

mid-rise and high-rise buildings that have a fuzzy boundary73

between mass model and facade. Our procedural frame-74

work is the first that provides a reasonable solution to model75

these buildings.76

In summary, we make the following contributions:77

• We propose the concept of selection-based procedural78

modeling to replace traditional grammar derivations79

where shapes are selected based on labels.80

• We can generate procedural facade descriptions that81

always exhibit correct resizing behavior, i.e. keeping82

alignments and important constraints, in contrast to83

previous work.84

• We can model the geometry of many mid-rise and high-85

rise buildings that could not be modeled before in a86

reasonable fashion.87

2 RELATED WORK88

Procedural modeling has been successfully employed in a89

variety of areas, such as plant modeling [3] and street mo-90

deling [4], [5]. We refer the reader to a recent survey paper91

for a review of procedural modeling of virtual worlds [6].92

Of particular interest in our review is the way how93

different production systems match shapes that will be94

modified. In the context of architecture, the seminal work of 95

Stiny introduced the concept of shape grammars [7]. These 96

grammars work on a configuration of line segments and 97

the underlying selection operation is based on matching 98

a given arrangement of lines to sub-shapes of the current 99

configuration. Stiny later suggested a simplification to set 100

grammars [8] where matching works by identifying an ele- 101

ment from a set. Wonka et al. [9] proposed control grammars 102

that can select all tiles of a subgrid of a single regular grid 103

and Lipp et al. [10] used descriptors to encode derivation 104

paths for interactive selections. Compared to previous work, 105

our proposed framework is significantly more powerful and 106

flexible. This enables a user to describe architecture in a 107

more succinct as well as in a more natural way that is 108

semantically meaningful and more similar to how a human 109

would describe a building. 110

Related to matching is the control of the derivation 111

order in a grammar. Examples of existing approaches are 112

rule priorities [1], evaluation phases [11] and construction 113

stages [12]. The control of derivation order was significantly 114

extended by CGA++ [2]. In general, the expressiveness of 115

CGA++ is very high so that many things can be modeled 116

somehow. However, CGA++ also inherits the limitations of 117

CGA shape that we try to overcome in this paper. A more 118

detailed discussion on grammar-based procedural modeling 119

can be found in the following course notes [13]. 120

An alternative to pure procedural modeling is the com- 121

bination of optimization with declarative or procedural 122

descriptions. There exist multiple recent frameworks specifi- 123

cally targeted at the modeling of facades and buildings [14], 124

[15], [16], [17], [18], urban layouts [19] and also multi- 125

ple approaches pitched for more general procedural mo- 126

deling [20], [21], [22]. This type of work has different types 127

of goals, often it is the simplification of the user experience 128

to make modeling easier for novice users. By contrast, our 129

goal is to push the envelope of what architecture can be 130

described and modeled. 131

Another important avenue of recent work is the combi- 132

nation of machine learning and procedural modeling. One 133

goal is inverse procedural modeling, where grammar rules 134

and grammar parameters can be learned from data. One 135

example approach is Bayesian model merging [23] that was 136

adapted by multiple authors for learning grammars [24], 137

[25]. By implementing this approach we noticed that current 138

grammar rules are too difficult to process in machine lear- 139

ning applications, because there are too many dependencies 140

between rules. One motivation of our work is to derive a 141

modeling system that can be easier combined with machine 142

learning techniques such as Bayesian model merging. 143

Most commercial procedural modeling systems for ur- 144

ban modeling in industry build on the paper by Mueller et 145

al. [1], e.g. [26], [27], and [28]). One important contribution 146

to procedural modeling in industry is the use of a graph- 147

based modeling interface, e.g. Sceelix [27]. VoxelFarm [28] 148

evolves voxel representations. These ideas are orthogonal to 149

the concept of selection-based procedural modeling. 150

Our system builds on ideas presented in other areas of 151

computer science for specifying selections. Specifically, we 152

evaluated selections in jQuery [29] and XPath [30]. We found 153

that XPath was a more advanced way to specify selections 154

and used it as inspiration for our language. Similar to XPath, 155
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Fig. 2. Different design choices to organize shapes.

we also emphasize the tree structure of the data as each156

selection navigates down from the root node. Different from157

XPath, we introduce many extensions for urban modeling,158

e.g., selections on grids and grouping operations on lists.159

3 SELECTION-BASED LANGUAGE FOR PROCEDU-160

RAL MODELING161

In this section, we describe our language SELEX. First, we162

will explain the representation that the language evolves,163

a shape hierarchy consisting of multiple types of shapes164

(Sec. 3.1). Second, we give a brief description of the language165

itself in Sec. 3.2. Third, we explain selection-expressions in166

Sec. 3.3. Selection-expressions are the most important con-167

cept introduced in this paper. Fourth, we give more details168

on the modeling operations, called actions, used by the169

language in Sec. 3.4.170

3.1 Shape definitions171

Here, we discuss details of our shape concept. One important172

design decision is how to organize the collection of shapes173

evolved by the language. One design choice is simply to174

operate on a set of shapes without any hierarchy (See175

Fig. 2(e)). This is very general, but also quite difficult to176

realize as it is hard to formalize certain selections. Another177

possibility is to organize the given shapes in a tree. That is178

the classical approach used by grammar-based procedural179

modeling. This is simple to realize, but it requires commit-180

ting to one particular hierarchy. Especially for facades, mul-181

tiple hierarchies (or trees) exist at any time and modeling182

operations are typically expressed in different hierarchies.183

For example, sometimes windows should be selected based184

on floors (rows) and sometimes based on columns of a185

facade (See Fig. 2(b,c)). One possibility to overcome this186

limitation is to explicitly create and maintain multiple hier-187

archies in parallel (See Fig. 2(d)). However, this easily leads188

to consistency problems and there is a very large number189

of possible intermediate shapes to group other shapes. Our190

solution to this problem is to use grids as virtual shapes.191

These grids can generate any subregion as auxilliary shape192

on the fly without explicitly having to generate and manage193

the subregion (See Fig. 2(f)). Floors and columns in a facade194

are just special cases of subregions that can be generated.195

That means that there are two different shape types: virtual196

shapes as explained above and construction shapes. We call197

all other shapes that are not virtual shapes construction198

shapes. The construction shapes are very similar to shapes in 199

previous work, e.g. CGA shape and CGA++. Virtual shapes 200

can be placed on a 2D construction shape. They typically 201

have multiple rows and columns and therefore consist of 202

multiple cells. These grids guide the placement of other con- 203

struction shapes, but they are not used to split construction 204

shapes. For a construction shape, multiple virtual shapes 205

can exist which enables us to model complex layouts on a 206

given polygonal shape. Virtual shapes can be used in three 207

ways. First, they can be used to locate a position. In most 208

cases, we place a shape by first selecting a cell of a grid and 209

adding a shape at a location inside the grid cell. Second, 210

virtual shapes facilitate the selection of construction shapes 211

that are contained inside them. For example, to select shapes 212

in the same row or column. Third, virtual shapes help to 213

define the resizing behavior. The grid specification includes 214

information about the spacing of rows and columns and the 215

way rows and columns repeat if enough space is available. 216

As a result, the alignment of shapes will be guided globally 217

instead of locally as in CGA shape. 218

We use a set of built-in attributes for each shape. Label 219

is the name of the shape, e.g. "window". Labels can be 220

unique or shared among multiple shapes. Type indicates if 221

the shape is a virtual shape ("virtual"), a construction shape 222

("construction"), or a cell ("cell") of a virtual shape. Dim is 223

a binary variable indicating a 2D or 3D shape. As topology 224

information we store a link to the parent, a list of children, 225

and a list of neighbors. The scope describes an oriented box 226

in 3D space using variables describing a local coordinate 227

frame (xaxis, yaxis, zaxis), a position in R3 (denoted by 228

xpos, ypos, zpos), and size information (xsize, ysize, zsize). 229

Our language evolves a hierarchy of shapes and stores 230

them in a tree. Shapes are added to the tree by certain functi- 231

ons in our language. Each shape can only have one parent 232

and only construction shapes are able to have children. In 233

our current version, shapes cannot be deleted, but they can 234

be set to invisible. The root node is a shape with a label 235

"root". 236

2D shapes are often used to create subdivisions on other 237

2D shapes, e.g. facades or windows. 3D shapes are typically 238

used to model elements that are extruded from the facade or 239

hanging structures, e.g., a balcony or a window ornament. 240

In our shape hierarchy construction shapes have children 241

that are either attached shapes or contained shapes. An attached 242

shape is a 3D shape that is linked to a 2D shape. Sometimes 243

the attached shape has a face contained inside the 2D 244

shape, sometimes the shapes do not touch. For example 245

the 3D shape of a balcony could be attached to a 2D shape 246

describing a window position inside a facade. A contained 247

shape is a 2D shape that is contained inside its 2D parent 248

shape or a side face of a 3D parent shape. A connected shape 249

is a 2D shape that shares an edge with another 2D shape. 250

Topologically, a connected shape is considered a neighbor 251

in the context of selection-expressions. See Fig. 3 for an 252

illustration. 253

3.2 Introduction to the language 254

The proposed procedural modeling language SELEX execu- 255

tes one command at a time. A command can be either a rule 256

or a variable assignment. A rule has the following form: 257
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balcony

win

root

building

facade

leftWall cornerWall rightWall

balconywin

leftWall

cornerWall

rightWall

Fig. 3. For the current shape (leftWall), we illustrate a contained shape
(win), an attached shape (balcony) and a connected shape (cornerWall).

1 ##C1:
2 facW = 17.6; facH = 12.8;
3

4 ##C2:
5 { <> −> addShape("facade", ...); }
6

7 ##C3: split facade into cells and set it as the working node
8 { <[label=="facade"]> −> createGrid("main", ...); }
9 { <[label=="facade"]/[label=="main"]> −> setHeadNode(); }

10

11 ##C4: add a door touching the ground;
12 {<cell()[colLabel=="mid"][rowLabel=="gnd"]>
13 −> addShape("door", ...); }
14

15 ##C5: add the glass windows above the door
16 { <cell()[colLabel=="mid"][rowIdx>1][::groupCols()]>
17 −> addShape("glass", ...); }
18

19 ##C6: add ledges at the left side of the top floor.
20 { <cell()[colLabel=="left"][rowLabel=="top"][::groupPairs()]>
21 −> addShape("ledge", ...); }
22

23 ##C7: add the two−cell window at the right side of the top floor.
24 {<cell()[colLabel=="right"][rowLabel=="top"][::groupRows()]>
25 −> addShape("win4", ...); }
26

27 ##C8: add windows on the ground floor.
28 { <cell()[colLabel in ("left", "right")][rowIdx==1]>
29 −> addShape("win1", ...); }
30

31 ##C9: add windows on the second and third floor.
32 { <cell()[colLabel in ("left", "right")][rowIdx in rowRange(2,−2)]>
33 −> addShape("win2", ...); }
34

35 ##C10: add windows in the left side of the top floor.
36 { <cell()[colLabel=="left"][rowLabel=="top"]>
37 −> addShape("win3", ...); }
38

39 ##C11: generate walls to fill the space.
40 { <root()/[label=="facade"]> −> coverShape(); }

Listing 1. SELEX code for Fig. 1(e).

258
selection−expression −> actions;259260

where the selection-expression selects a list of shapes from261

the current shape tree, and actions are commands executed262

on each shape in the list, e.g. shape refinements. For exam-263

ple, in Listing 1 command C2-C11 are rules. An assignment264

is of the form:265

266
identifier = expression;267268

where the identifier denotes a variable and expression eva-269

luates to a value. For example, in Listing 1 commands270

labeledC1 are variable assignments. We use an object model271

to process data of different types: Boolean, float, integer,272

string, list, pair, shape, and construction-line. A list is a list273

of other types of objects and we also support lists of lists.274

A pair consists of two objects. The first object should be275

comparable, and can be a number, a string, or a Boolean276

value. The second object can be any kind of object. 277

Our language also supports common language con- 278

structs, such as random-selection, conditionals, evaluators, 279

and assignments. The most important aspect of SELEX are 280

selection-expressions that can select shapes from a shape 281

tree. These will be described in the next sub-section. The 282

details of the language are described in the additional mate- 283

rials. 284

3.3 Selection-based procedural modeling 285

A selection-expression selects a list of shapes from the 286

shape tree using selectors interleaved with the operator "/". 287

Each selector takes a list of shapes as input and returns a 288

list of shapes. The implicit input to the first selector is a list 289

containing the root node of the shape tree. The operator "/" 290

takes a list of shapes as input and executes the remaining 291

commands for each shape in the list. 292

Selectors are grouped in selector sequences that consist 293

of specialized selectors that can have three different 294

types: topology-selector (e.g. child, descendant), attribute 295

selector (e.g. "[label=="window"]") and group selector (e.g. 296

"[::groupRows()]"). The selectors cannot be arbitrarily mixed 297

within a sequence and they need to occur in the given 298

order. A selection-expression has the following form: 299

300

301
< [topoS] [attrS | groupS]* / [topoS] [attrS | groupS]* / ... > 302303

That means within each selector sequence, there are zero to 304

one topology-selectors (topoS), zero to many attribute selec- 305

tors (attrS), and zero to many group selectors (groupS). The 306

topology-selector needs to come first (mainly to improve 307

the performance of our implementation), but the order of 308

the attribute and group selectors can be interleaved. If a 309

selection-expression is empty, it returns the input. When 310

a shape that does not exist is specified, the corresponding 311

selection will return an empty shape and the rule will not 312

be executed. Before going into the details of the individual 313

selectors we give a simple example in Fig. 4 on an abstract 314

graph. In the following, we give a shortened description of 315

the individual selectors. An exhaustive description is given 316

in the supplementary material. 317

C[h=2] C[h=1] C[h=2] C[h=1] C[h=3] D[h=2]D[h=2]

A A B

root

Fig. 4. The nodes selected by the selection-expression "<[label="A"]
/ [label="C"][h>=2]>" are highlighted in green. First, the selection-
expression selects the children labeled "A" from the root node. For
these two nodes labeled "A" all children labeled "C" with an attribute
value h >= 2 are selected.

A topology selector takes a list containing a single shape 318

as input, and outputs a list of shapes with the specified 319

topology relation to the input shape. A topology selector has 320

the form [topology-function()] using one of the following functi- 321

ons: "child()", "descendant()", "parent()", "root()", "neighbor()", and 322
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"contained()". The function "contained()" is default for a virtual323

shape and "child()" is default for a construction shape.324

An attribute selector takes a list of shapes as input, and325

returns a list of shapes whose attributes satisfy some condi-326

tions. In its basic form, the selector has the form [attributename327

comparison value]. The comparison operator is specified as in328

other programming languages, e.g. ==, <=, >=, ! =,329

and "in". Examples are "[label = "facade"]" and "[label in ("win-330

dow_arch", "window_rect")]". Alternatively, in its more general331

form, an attribute selector is simply a boolean expression332

and attributes can also be derived online by executing333

functions on a shape. Examples are "[isEmpty()]", "[numCols()334

> 4]", or "[toShapeX(0.5) > 2]". The first example selects shapes335

that do not have child construction shapes, the second exam-336

ple selects shapes that have more than four columns, and the337

third example selects shapes based on the x-coordinate of338

the shape center. The function "toShapeX(0.5)" scales the input339

value 0.5 by the xsize of a shape. An important function is340

"pattern(regex, pat)" which checks if the pattern character of341

"regex" at the index position of a shape matches "pat". For342

example, "pattern("(AB)*", "A")" tests if an input shape is at an343

odd index position, and "pattern("A(B)*A", "A")" tests if an in-344

put shape is at the first or last position of an input list. Also,345

more complex examples are possible and meaningful, e.g.346

"pattern("AC(ACCA)*CA", "A")", but regular expressions have347

inherent ambiguities when multiple repetitions are used.348

For example, for the case "pattern("A*B*A*"", "A")", we try349

to keep an equal amount of repetitions. Nested repetitions,350

e.g. of the form (BA*B)*, are also ambiguous and currently351

not supported. Functions "isEven()" and "isOdd()" are special352

cases of the command "pattern(regex, pat)", which check if a353

shape has an even or odd index in a list of selected shapes.354

We use "rowIdx" and "colIdx" as the topological position of355

a cell with respect to the region spanned by input virtual356

shapes. For example, "rowIdx==1 && colIdx==1" specifies the357

left bottom cell of a grid.358

A group selector takes a list of shapes as input, and359

applies grouping operations to return a list of combined360

shapes. A group selector only operates on virtual shapes361

and regroups subregions, e.g. combines cells of a virtual362

shape into floors. The unique aspect of the group selector363

is that it not only selects cells, but also groups cells toget-364

her to form larger subregions of a grid. Group selectors365

are implemented using grouping functions. This results in366

selectors of the following form: [::grouping-function()]. Function367

"groupRows()" and "groupCols()" merge adjacent virtual shapes368

(i.e. cells) with the same row or column index. Function369

"groupRegions()" merges all adjacent virtual shapes, which370

form one or multiple rectangular regions. We show an exam-371

ple in Fig. 5. Function "groupEach(n)" merges every n adjacent372

virtual shapes. Function "groupPair()" generates all possible373

pairings of two subsequent shapes. For example, given374

"ABCD" it will return "AB", "BC", and "CD". Function "cells()"375

decomposes a virtual shape as a list of virtual shapes with376

one cell. Function "sortBy(d, pos, order=1)" sorts the selected377

shapes by relative position "pos" in the dimension "d" with378

the increasing (order=1) or decreasing (order=0) order. We379

show three additional example selections in Fig. 6. For the380

example in Fig. 1, Listing 1 shows the selection to insert the381

door in C4, the selection to insert the large window above382

the door (shown in pink) in C5, and the selection for the383

(a) (b) (c) (d)

groupCols() groupEach(2) groupRegions()

Fig. 5. Given the red selected region of (a), command "groupCols()"
groups the cells into columns to create a list of virtual shapes (shown
in orange in (b)). Then command "groupEach(2)" groups adjacent co-
lumns to yield a list of two regions shown in (c). At last, command "grou-
pRegions()" combines the virtual shapes into a single region shown in
(d).

root

building

facade

mainGrid

(a) (b)

(c) (d) (e)

Fig. 6. (a): A grid used to illustrate multiple selections (b): "<des-
cendant()[label=="facade"]/ [label =="mainGrid"]/ [type=="cell"] [ro-
wIdx in (1,2)] [colIdx== 3]>" (c): "<descendant()[label=="facade"]/ [la-
bel=="mainGrid"]/ [type=="cell"] [rowIdx in (3,4)] [colIdx in (1,2,4,5)]
[::groupRegions()]>" (d): "<descendant()[label=="facade"]/ [label ==
"mainGrid"]/ [type=="cell"] [rowIdx in (1,2)] [colIdx in (2,4)] [::group-
Cols()] [::cells()]>".

large window on the top right (shown in green) in C7. The 384

selection to place dividing elements on the top left between 385

windows is shown in C6. 386

3.4 Actions 387

Actions are described by a sequence of functions. In our cur- 388

rent implementation, the user can only use built-in functions 389

that are provided by our system. The sequence of functions 390

is executed for each shape in the shape list generated by the 391

selection-expression. These actions mainly follow previous 392

work, so we refer the reader to the supplementary material 393

for a detailed description. 394

The most important actions are functions used to create 395

new shapes, e.g. "addShape", "attachShape", "coverShape", and 396

"connectShape". These shape commands create new shapes 397

and add them to the current shape hierarchy. The parent of 398

a new shape can be specified explicitely or implicitely using 399

default values. Typically, the parent is the input construction 400

shape, or in case of a virtual shape the first ancestor that is 401

a construction shape. For example, in Fig. 7(a) we show an 402

example of the addShape function. For the example in Fig. 1 403

the code in Listing 1 makes extensive use of the "addShape" 404

function, since the example is only 2D. 405

Another aspect of modeling complex residential buil- 406

dings is that they require a careful control over what 407

geometry is actually being generated. We therefore use 408

commands to create geometry inside shapes that are not 409

covered by other shapes with the "coverShape" function (see 410

Fig. 7(b)). Further, we provide several functions to create 411

virtual shapes (grids). An example is provided in Fig. 7(c). 412
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(a) (b) (c)

Fig. 7. (a) We show a simple facade where 6 cells were selected. After executing the action addShape for each of the cells we obtain the result
with new construction shapes added (shown in blue). (b) We show a single shape containing four shapes. After executing the action coverShape
for the shape, the geometry shown in brown is generated. (c) We show the generation of a single grid as child of a construction shape defined by
two sequences of construction lines. After executing the action addGrid for the grid cell, a virtual grid shape is generated.

To locally improve the layout, we also provide versions413

of the addShape action that can specify constraints (e.g.,414

same size, symmetry, distance to the boundary, overlapping415

and alignment between shapes). The constraints are then416

resolved locally using quadratic programming with linear417

constraints. Since these actions are novel, we devote the next418

subsection to describing them in detail.419

3.5 Constraint Functions420

(a) (b) (c) (d)

Fig. 8. We compare snapping with and without the use of labels. (a)
Given an initial layout with shapes a,b, and c. (b) A new shape labeled
d is added. (c) In snapping without labels the shape d snaps to the
closest snap lines, e.g. the left of shape a and the left of shape c. (d)
Using snapping with labels allows for finer control, e.g. snapping the x-
coordinate of the center of shape d to the x-coordinate to the center of
shape a.

In general, it is difficult to specify the location of a421

shape in a stochastic grammar, because we cannot know422

exactly what shapes have been placed previously and where423

they are. Our solution is to setup an optimization problem.424

The variables in the optimization are the lower left corner425

position (x∗, y∗) and size (w∗, h∗) of a newly inserted426

shape in conjunction with the two functions "addShape" and427

"attachShape".428

Constraint Specification: In SELEX, a sequence of con-429

straints can be specified with the following command:430

431
constrain(constraint1, constraint2, ...),432433

We then translate the specified constraints into linear con-434

straints of a mixed integer quadratic programming formula-435

tion. The linear constraints we currently support are align-436

ment, symmetry, distance to the boundary, and intersection437

avoidance. In the following we describe alignment in more438

detail and leave the description of other constraints to the439

additional materials.440

Alignment: We considered two design choices for this 441

problem based on auxiliary lines (or planes) called snap- 442

lines. The first design choice is to decide if snap-lines 443

should be placed explicitly by a command, or implicitly 444

defined by the boundaries of previously generated shapes. 445

We chose to use the boundaries of previously generated 446

shapes. This is less general, but also creates less overhead 447

for generating snap-lines. The second design choice is to 448

decide if snap-lines should be named with a label or be 449

unlabeled. We chose to use labeled snap lines. We reuse 450

the labels of previously inserted shapes as snap-line labels. 451

New shapes that are generated with snapping enabled only 452

consider snap-lines with a specified label. In Fig. 8, we show 453

an example comparing snapping with and without labels. 454

We observed that labeled snap-lines are useful to make 455

traditional snapping [1] [27] more robust. 456

Alignment can be specified between two shapes. The 457

input shape and a reference shape specified by a shape label. 458

We support the following types of alignment: "left", "right", 459

"top", "bottom", "center-x", "center-y", "one2two-x", "one2two-y". 460

461
snap2(shapeLabel1, snapType1, shapeLabel2, snapType2, ...) 462463

For example, the function "constrain( snap2("window1", 464

"left"), snap2("window1", "center-x"))", specifies that the input 465

shape should be left and center-x aligned with a shape 466

labeled "window1". We visually illustrate examples of "left" 467

and "one2two-x" in Fig. 9. 468

(a) (b)

Fig. 9. Two example alignments. In each subfigure, the left side is deri-
ved without alignments, while the right side is derived with alignments.
(a) Alignment "left" aligns the input shape in green to a reference shape
in white. (b) Alignment "one2two-x" aligns the input shape in green to
the center of the bounding box of two white reference shapes. The red
dashed line denotes the snapping position, while the red bounding box
marks the bounding box of two reference shapes.

In the detection step, shapes with the specified label are 469

selected. For example, alignment "left" aligns one element 470

to another as shown in Fig. 9(a), but alignment "one2two- 471

x", "one2two-y" try to align one element to the bounding 472
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box of two nearby elements with the given label. Thus,473

the bounding boxes are returned as the selected shapes as474

shown in Fig. 9(b). Among the selected shapes, the final475

candidates are shapes that satisfy the specified alignments to476

input shape within a threshold (half of the width or height477

of the input shape in our experiments). For example, left478

alignment will test if the difference between left edges of the479

selected shape and the input shape is within the threshold.480

In the second step, snapping position si is calculated.481

For example, left alignment will use the nearest edge of the482

selected shape with respect to the left edge of the input483

shape as illustrated in Fig. 9(a). For alignment "one2two-x",484

"one2two-y", the nearest horizontal or vertical center position485

relative to the horizontal or vertical center position of the486

input shape will be used, as illustrated in Fig. 9(b).487

At last, alignment can be achieved by adding the alig-488

nment constraints to an optimization. Assuming we would489

like to align to a position si, the constraint is formulated as:490

x∗ + αi ∗ w∗ = si, where αi equals to −0.5, 0.0, 0.5 for left,491

center-x, and right alignment, respectively.492

If multiple alignments are specified within a snap2493

function, one of these alignments should be enforced. For494

example, the function "constrain(snap2("window1", "left", "win-495

dow1", "center-x"))", specifies that the input shape should be496

either left or center-x aligned with a shape labeled "window1".497

Selecting one constraint from n equality constraints of a
form x∗+αi ∗w∗ = si can be reformulated as a set of linear
constraints as follows:

x∗ + αi ∗ w∗ − si +M ∗ bi ≥ 0,∀i ∈ [1, n],

x∗ + αi ∗ w∗ − si −M ∗ bi ≤ 0,∀i ∈ [1, n],
n∑
j

bj = n− 1,

bi ∈ {0, 1},∀i ∈ [1, n],

(1)

where M is set to a large constant (10000 in our code).498

The specified constraints may be compatible or not. To499

tackle potential conflicts in the constraints, we incrementally500

check the compatibility. If no conflict is detected, we just add501

the constraint to the constraint set. Incompatible constraints502

are dropped. That means, that constraints specified first503

implicitly have a higher priority. At last, an optimizer will504

enforce the selected constraints to obtain optimal shape505

parameters. The constraints are only checked once when a506

shape is added.507

The optimization uses a quadratic objective function508

with linear constraints. The variables in the optimization509

are the (final) position (x∗, y∗) and size (w∗, h∗) of a newly510

inserted 2D shape. The objective function encodes that the511

final position and size should be close to the approximate512

specification (x, y, w, h) in a least squares sense:513

(x∗ − x)2 + (y∗ − y)2 + (w∗ − w)2 + (h∗ − h)2, (2)

Since the variables can be floating point or integer, the514

problem is a Mixed Integer Quadratic Programming (MIQP)515

problem. In our implementation, Gurobi [31] is utilized as a516

solver.517

4 MODELING EXAMPLE518

The example shown in Figure 10 illustrates virtual shapes519

and selection-expressions. Details about this example are520

given in the figure caption. This illustration should give 521

the reader a good intuition about the capabilities of our 522

approach. In addition, we highlight two of the modeling 523

steps in Figs. 11(a) and 11(b). The figures show the current 524

3D model to the left and the current shape tree to the right. 525

5 RESULTS AND DISCUSSION 526

We present experimental results of our procedural modeling 527

system, using modeling examples of 2D facades, 3D buil- 528

dings, chairs, tables, shelves, and parking lots. Our system 529

is implemented using C++ and Python. All experiments 530

shown in this paper are conducted on a computer with dual- 531

core 2.70 GHz Intel Xeon CPUs and 64GB RAM. 532

5.1 Comparison to traditional splitting rules 533

We compare our selection-based procedural modeling stra- 534

tegy with traditional split-based modeling. The main point 535

of the comparison is to demonstrate that traditional split- 536

based modeling leads to invalid designs in more complex 537

cases. The idea of split-based modeling is to hierarchically 538

split a design by the rules of the grammar. This modeling 539

strategy is employed by the original version of CGA shape 540

and it can also be used in other modeling systems, e.g. [27] 541

and [28]. We create results using CGA shape as the repre- 542

sentative system for split-based modeling. 543

We use a small dataset of 10 facades. The goal of the data 544

set was to highlight difficult shape configurations and alig- 545

nments, see Fig. 12. For example, the alignments between 546

elements of different sizes in F027, F030 and F032, and the 547

alternating ornament styles in F004, F006. 548

We first designed a deterministic size-independent pro- 549

cedural description using SELEX and CGA shape that takes 550

a rectangle of arbitrary size as input. We tried to ensure 551

that the competing CGA shape description is created in 552

a reasonable way. Therefore, we use three human users 553

to model the facades using CGA shape in addition to an 554

automatic method proposed by Wu et al. [32]. We then select 555

the best design for the comparison. We compare the results 556

on an input rectangle of the same size as the given reference 557

image. We can observe that SELEX as well as CGA shape 558

can replicate the input layouts, but the description length 559

and the resulting shape complexity varies. We use the num- 560

ber of shape operations and the number of commands (in 561

SELEX) / number of rules in CGA shape as an approximate 562

measure for the complexity of the procedural description. 563

From the results in Table 1 we can see that our description 564

uses fewer commands and operations than the CGA shape 565

description. Currently, our commands are a bit longer than 566

CGA shape rules therefore the actual file size is comparable. 567

Further, we can see that the shapes generated / managed 568

by our procedural description are fewer than the shapes 569

generated by CGA shape. Only after subdividing all shapes 570

for rendering, our description yields the same number of 571

shapes (polygons) as CGA shape. This is a key advantage of 572

our method. While the higher number of shapes produced 573

by the CGA shape description is not a problem in itself, 574

the number is indicative of how many auxiliary splits are 575

encoded in the CGA shape grammar that do not carry 576

semantics (see Fig. 13 for an example). These splits will 577
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(j)(i)

(h)(g)

(l)(k)

(a) (f)(e)(d)(c)(b)

(n)(m) (o)

Fig. 10. A modeling example. (a) User-specified footprint polygon. (b) The footprint is extruded into a building. (c) All facades of the building are
split into floors by adding a grid as a virtual shape. This grid works similar to construction lines in technical drawing and does not actually split
the building geometry. (d) Each facade inherits the floor information and is split into a finer grid by specifying columns. The columns are labeled
with "colLeft", "colMidLeft", "colMidRight", "colRight". (e,f,g) The columns are selected by label "colMidLeft", "colMidRight", "rowDown" and
push/pull operations are applied to form the mass of the building. (h) A subregion on the left side is selected and a sub-grid is added. (i) Multiple-
cells in the main grid are selected to add shapes spanning across several cells. (j) Even/odd rows in a sub-region from the second row to the last
row are selected. (k) A connecting shape is selected. (l) Even/odd rows are selected and different sub-grids are added. (m) First the wide and then
the narrow columns are selected to add wide and narrow windows respectively. (n) Additional windows and doors are added. (o) Assets are added.

root

building

front right back

wl wlm wrm wrt wrb fmain

wmain

left

root

building

front right back

wl wlm wrm wrt wrb
fmain

wmain

left

(a)
… …

root

building

frontleft right back

wlm wrm wrt wrb
fmain

wl

wmain wsub wmain wsub wmain(b)

Fig. 11. Two examples with shape tree. (a) For the given model on the left with the shape tree on the right, we select shapes using the following
selection expression: "<descendant()[label=="wl"] / [label=="wmain"] / [type=="cell"] [rowIdx in rowRange(2,-2)] [colIdx in colRange(2,-2)]
[::groupRegions()]>". The selected shapes are highlighted in red. (b) For the given model on the left with the shape tree on the right, we select
shapes using the following selection expression:"<descendant()[label=="wrm"] / [label=="wmain"] / [type=="cell"] [rowIdx in rowRange(2,-1)]
[::groupRows()] [pattern("(ab)*", "a")]>". The selected shapes are highlighted in red.

(a)

(j)(i)(h)(g)

(e)(d)(b)

(a) (e)(d)(c)(b) (j)(i)(h)(g)F001 F002 F030 F006F004 F027 F003 F032 F062 F063(f)

(c)

(f)

Fig. 12. Ten facades used in our evaluation and comparison. The facades were selected to exhibit various forms of alignment and constraints.

partially contribute to the problems CGA shape has when578

resizing layouts as described in the next experiment.579

Second, we compared the results on input rectangles580

of different size. For each layout we decided on a set of581

constraints that are essential to the layout and that should 582

be preserved during resizing. These constraints are same- 583

size constraints, alignment constraints (top, bottom, left, 584

right, middle), alignments of one element to multiple other 585
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(a) (b)

(c)

...

root
facade

doorwin bmainorn ledge cornice text wall
... ...

root
facade

eave

wall nt0

floor1

cornicewall nt1

floor0

nt2

wall

nt3

win wall

win wall

nt4 nt6 nt5

wall win wall wall win wall

ledge nt6 ledgent3

win wall wall text wall

nt3

win wall

door orn

Fig. 13. Different shape trees are generated by split grammars such as
CGA shape and SELEX. We show the input layout (c), the shape tree of
CGA shape (b), and the shape tree of SELEX (a). Basically, SELEX has
a flat structure, resulting in far fewer intermediate shapes. For example,
there is no shape for floors in SELEX, but it is easy to access floors and
columns by querying the virtual grid shape.

TABLE 1
Comparison of ten facades modeled with CGA shape and SELEX.

#rule is the number of rules in CGA shape, and the number of
commands in ours. #op denotes the number of shape operations,

which are the split and repeat operations in CGA shape, and actions in
SELEX. #finalShapes gives the number of shapes in the final SELEX
model and the number of terminal shapes in CGA shape. #allShapes

counts the number of shapes managed. These are terminal and
non-terminal shapes in CGA shape and contruction and virtual shapes

in SELEX. The difference between #finalShapes and #allShapes
indicates that the structure of SELEX is flat compared to CGA shape.

F001 F002 F003 F004 F006 F027 F030 F032 F060 F062

CGA

#rule 14 34 15 28 22 29 31 27 21 24
#op 14 34 15 28 22 29 31 27 21 24

#finalShapes 63 94 36 106 94 254 152 104 68 60
#allShapes 99 148 56 161 136 348 218 170 113 96

Ours

#rule 7 10 6 13 11 19 14 22 12 14
#op 7 16 9 20 14 22 23 24 14 16

#finalShapes 64 87 32 102 78 258 119 108 75 62
#allShapes 66 89 34 104 80 262 121 114 77 65

elements, and the minimal and maximal empty space to586

the boundary of the layout. We implemented a constraint587

specification language and an automatic constraint checking588

algorithm for this purpose. A more detailed description of589

the modeled constraints is given in the additional materials.590

Distinguishing important from accidental constraints is a591

modeling problem in itself, but several constraints are ge-592

nerally accepted as important. For example, if windows are593

aligned across floors in the input, then this is an essential594

aspect of the design. We only encoded such essential con-595

0 500 1000 1500 2000 2500

CGA
Our
CGA
Ours
CGA
Ours
CGA
Ours
CGA
Ours
CGA
Ours
CGA
Ours
CGA
Ours
CGA
Ours
CGA
Ours

F0
01

F0
02

F0
03

F0
04

F0
06

F0
27

F0
30

F0
32

F0
62

F0
63

Missing
Detected

#constrs
7000 8000 9000

∫∫
∫∫

∫∫

Fig. 14. Comparison with CGA shape on the alignment constraints. We
produce 12 resizing results for each facade. The whole table can be
found in the appendix. Our method can keep all alignments, while CGA
shape fails to keep all alignments on eight out of ten facades. The total
number of constraints is different because the resizing behavior of CGA
shape and SELEX differs (see Fig. 15).

Fig. 15. Illustration of the resizing problem. From left to right: input la-
youts, results of CGA, and our results. Important constraints are violated
using CGA shape. For both facades CGA shape splits first into floors
and then each floor into walls and windows. In the top row we show
the worst case result. There is a slight difference in the width of the
wall shape in the second floor on the left and the right of the facade.
After resizing, the repeat rule for the windows on the left and the right
produces a different number of repetitions. This is due to the fact that
the shape on the left side is a bit smaller. On the bottom we show the
common case of misalignments. The windows in floors two to four are
aligned in the input layout. However, CGA shape destroys the alignment
between floors three and four. This problem is inherent when modeling
with a single splitting hierarchy and impossible to fix in a reasonable
manner.

-> ( )*(a)

(b)

(c)

Fig. 16. Alignments collapse because of the inconsistent scaling of walls
when repeating some shapes in the example. (a) The derivation of non-
terminals is shown, where * means repetition of some shapes. (b, c) Two
rows illustrate the derivation for different sizes of a layout, respectively.
The first column shows intermediate results when deriving a grammar.
The middle column givens the derivation of the non-terminals. The right
column is the final result. The misalignments are highlighted in the red
bounding boxes.

straints for our tests. We evaluated the modeling quality by 596

generating 12 resized versions of each facade and automati- 597

cally checking the preservation of the expected constraints. 598

The results in Fig. 14 show that CGA shape often violates 599

important constraints. Even a few violated constraints can 600

mean that the resulting layout has undesirably low quality. 601

We illustrate this using examples shown in Figs. 15 and 16. 602

In general, here are some reasons why CGA shape fails in 603

the resizing comparison: 604

• CGA shape needs to commit to vertical or horizontal 605

splits. This typically means that the alignment of ele- 606

ments will be correct in the chosen splitting direction 607

and incorrect in the other direction after resizing. 608

• CGA shape splits into too many auxiliary regions. 609

Auxiliary regions require CGA shape to commit to a 610

distribution of the available space early on. This distri- 611
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Fig. 17. Facade variations generated by our system. The input layout is
highlighted in the yellow box. Other results are sampled variations for
facades of different size.

bution conflicts with the alignment of shapes created612

further down in the derivation tree.613

• CGA shape has difficulty modeling layouts that need614

multiple overlapping hierarchies or that place elements615

in muliple "cells".616

• CGA shape has difficulty modeling patterns that need617

global control, e.g. A(BA)∗ ornaments on top of iden-618

tical windows.619

Third, we generated stochastic procedural descriptions620

using SELEX. Since CGA shape already fails on the simpler621

task of creating size-independent descriptions, this problem622

will only get worse when introducing procedural variations.623

In Fig. 17 we show several variations of a single facade624

generated by our system. We can observe that all alignments625

are correctly maintained.626

5.2 Comparison to selection-based modeling627

Alternatively, it is possible to use existing software to mimic628

our proposed selection-based modeling. This is possible629

for example in CGA shape by quering indices that are630

automatically generated and also in CGA++. In addition,631

that requires a lot of pre-calculation and flow control sta-632

tements in the rules. Since a prototype of CGA++ is not633

easily available, we also chose to compare to CGA shape for634

this comparison. The main purpose of the comparison is to635

show that using selection-based procedural modeling with636

correct alignment is not easily feasible in current modeling637

systems. We originally wanted to use the 10 facades from638

the previous comparison, but we found it a bit too difficult639

to correctly implement the alignment in CGA shape. We640

therefore generated three new stochastic facade models that641

can be resized and that can produce procedural variations642

to illustrate the problem. One model is very simple and two643

models have medium complexity. The results are shown in644

Fig. 22. Not only are the descriptions in CGA shape longer,645

they are also very difficult to generate, because there is no646

easy way to encode the alignment correctly. The full code is647

provided in the supplementary materials.648

5.3 Residential building modeling 649

Here we provide some examples of residential buildings 650

modeled with our system. We believe that these buildings 651

are generally too difficult to model with existing procedural 652

modeling software. We took photographs or renderings of 653

existing buildings stemming from an internet search for resi- 654

dential building. We selected the buildings in such a fashion, 655

that their complexity exceeds the modeling capabilities of 656

CGA shape. Specifically, we were looking for a non-trivial 657

interplay between the facade structure and the mass model. 658

For these buildings it is no longer possible to model the 659

facade as a tapestry on extruded shapes. We first took 660

these images as reference and encoded these buildings using 661

SELEX. Then we generalized the description to make the 662

buildings size independent. We show the recreated buil- 663

dings and selected resized versions in Figs. 18, 19, and 20. 664

Subsequently, we generated more complex procedural va- 665

riations of these buildings. We show selected variations 666

in Fig. 18 right and Fig. 21. In these examples, keeping 667

alignments across different facade regions is difficult. This 668

difficulty increases with 1) the number of regions a facade 669

has (e.g. because the mass model is not simply an extruded 670

polygon, but has many faces). 2) the number of possible 671

structural variations through resizing, stochastic parame- 672

ters, or stochastic rule selection. 3) the complexity of the 673

patterns or element arrangements. 674

5.4 Modeling furniture 675

Our current implementation is suitable to model a wide 676

range of man-made objects. Here, we show the application 677

of our framework to modeling furniture. Since most furni- 678

ture is built using symmetry, alignment, and a regular arran- 679

gements of parts, our framework is ideally suited to model 680

arrangements of individual furniture parts. We generated 681

stochastic grammars that can generate many variations of 682

desks, chairs, tables, shelves, and beds and show selected 683

models in Fig. 23. The main point of these examples is to 684

highlight the part arrangements. Therefore, we only use 685

boxes as assests for the individual shape parts. 686

5.5 Modeling parking lots 687

Our framework is also suitable to model layouts, e.g. shop- 688

ping malls, floor plans, parks, and parking lots. We selected 689

parking lots as representative example and implemented a 690

stochastic grammar to generate variations of parking lots 691

(see Fig. 24 for a generate model). Parking lots typically 692

consist of strips of parking lots (single or double) that exhi- 693

bit interesting variations in spacing between dividers and 694

parking lots, irregular spacing due to handicapped lots, and 695

alignment between lots and objects such as trees and lamps. 696

In addition, there is the alignment and arrangement of the 697

individual strips that has to be handled by the grammar. 698

5.6 Time performance 699

The derivation of the procedural buildings is fairly fast, 700

since the optimization to enforce the alignments and other 701

linear constraints is only performed locally. The buildings 702

shown in this paper are generated in 1 to 23 seconds. See 703

Table 2 for the timings and the complexity of the models 704
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(a)

(c)(b)(a)

(c)

(b)

(d)

Fig. 18. Selection-based procedural modeling enables us to design complex residential buildings. We created procedural models based on reference
images shown on the left. Our corresponding procedural models are show in the middle (a,b,c). The advantage of procedural models is that they can
be used to generate many variations. In (d) we show one such variation stemming from the building shown in (c). The difficulty of these examples
is the interplay between facades and mass model.

(a) (d)(c)(b)

(a)

(d)(c)

(b)

Fig. 19. Modeling examples of 3D buildings and their corresponding reference images.

(a)

(b-1)(a-1)

(b)

(a-2) (b-2)

Fig. 20. The resizing results of selected 3D buildings. We show the reference images (a,b), the modeling results recreating the reference images
(a-1, b-1) and one selected resizing result for each building (a-2, b-2).

Fig. 21. For two reference images, we show our procedural reconstruction and four variations.

shown in this paper. For the timings we measure the gene-705

ration of the buildings in their original size.706
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Fig. 22. Three stochastic facade models. For each model we show statistics for SELEX and then for CGA shape in brackets. We show the number
of rules r, the number of operations o, the number of lines l, the number of words w, and the number of characters c.

(a) (b)

Fig. 23. Modeling examples of SELEX for indoor scenes, including chairs, shelves, beds and tables.

Fig. 24. Modeling example of SELEX for a parking lot.

TABLE 2
Statistics for 3D building modeling. The average time for building

generation is 6.24s.

B001 B002 B003 B004 B005 B006 B007 B008 B009 B010

#rules 31 79 72 78 81 80 99 45 80 86

#ops 55 110 89 123 119 123 189 72 151 138

#allShapes 270 370 409 734 672 764 268 329 3716 996

#finalShapes 194 265 355 590 546 653 202 288 2080 789

Time(s) 1.11 2.47 2.52 5.08 5.43 8.38 3.38 1.85 23.19 8.99

5.7 Discussion on the shape hierarchy707

A fundamental design choice of implementing selection-708

based procedural modeling is how to create and update709

the shape hierarchy. The solution proposed in the paper710

explicitly models the hierarchy as new shapes are inserted 711

as children into the shape tree, based on the commands that 712

are used to create new shapes. 713

An alternative method would add shapes to an unstruc- 714

tured set of shapes and then automatically compute one 715

or multiple shape hierarchies. Our method is significantly 716

more efficient and simpler to implement. However, we con- 717

sider the second alternative to be an interesting challenge 718

for research combining procedural modeling with machine 719

learning. 720

5.8 Limitations 721

In our current implementation, we do not model curved 722

shapes directly, but only import them as assets. Therefore 723
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(a) (b)

Fig. 25. Two examples that are beyond the modeling capacity of SELEX.
(a) A building with curved surfaces. (b) Processing complex polygons,
e.g. polygons with holes.

we cannot model most curved facades (see Fig. 25(a)). We724

also did not implement operations to process complex poly-725

gons, e.g. splitting operations for polygons with an arbitrary726

number of vertices or polygons with holes (see Fig. 25(b)).727

Finally, we did not spend any time to optimize the syntax of728

our modeling language, because that makes the examples729

harder to read. As a result, the descriptions are probably730

quite a bit longer than they have to be.731

6 CONCLUSIONS AND FUTURE WORK732

We presented a novel approach to procedural modeling733

using expressive selections instead of the simple matching734

of labels in current grammars. To this end, we introduce a735

procedural modeling language to encode procedural objects736

using selection expressions that enables us to model with a737

global view of the data. Our results show that our procedu-738

ral description can generate stochastic variations correctly,739

e.g. correct resizing behavior, in contrast to the current state740

of the art. As challenging examples we demonstrated mo-741

dels of mid- and high-rise buildings that have no reasonable742

description in other procedural modeling languages like743

CGA shape and CGA++. In future work, we would like to744

combine SELEX with machine learning techniques to learn745

a procedural shape space from a large set of input models.746

ACKNOWLEDGEMENTS747

We would like to thank Michael Schwarz for developing748

an initial version of the language and procedural modeling749

system with us in 2015/2016. He proposed the concepts750

of virtual, attached, and contained shapes and contributed751

to the development of the navigation-based selection and752

constraint handling. He also created Figure 1 and suggested753

the term selection expression.754

We also had multiple helpful discussions with Peter Rau-755

tek and Liangliang Nan about SELEX. Fuzhang Wu helped756

with the comparison to CGA shape. Further, we would like757

to acknowledge funding from the Visual Computing Center758

(VCC) at KAUST through the CARF program and the Na-759

tional Natural Science Foundation of China (61620106003,760

61802362, 61772523, and 61331018).761

REFERENCES762

[1] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool,763

“Procedural modeling of buildings,” ACM Transactions on Graphics,764

vol. 25, no. 3, pp. 614–623, 2006.765

[2] M. Schwarz and P. Müller, “Advanced procedural modeling of 766

architecture,” ACM Transactions on Graphics, vol. 34, no. 4, pp. 767

107:1–107:12, 2015. 768

[3] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of 769

Plants. New York: Springer-Verlag, 1990. 770

[4] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,” in 771

Proceedings of SIGGRAPH 2001, 2001, pp. 301–308. 772

[5] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interactive 773

procedural street modeling,” ACM Transactions on Graphics, vol. 27, 774

no. 3, pp. 103:1–103:10, 2008. 775

[6] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey 776

on procedural modelling for virtual worlds,” Computer Graphics 777

Forum, vol. 33, no. 6, pp. 31–50, 2014. 778

[7] G. Stiny, “Introduction to shape and shape grammars,” Environ- 779

ment and Planning B, vol. 7, no. 3, pp. 343–351, 1980. 780

[8] ——, “Spatial relations and grammars,” Environment and Planning 781

B, vol. 9, no. 1, pp. 113–114, 1982. 782

[9] P. Wonka, M. Wimmer, F. X. Sillion, and W. Ribarsky, “Instant 783

architecture,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 669– 784

677, 2003. 785

[10] M. Lipp, P. Wonka, and M. Wimmer, “Interactive visual editing 786

of grammars for procedural architecture,” ACM Transactions on 787

Graphics, vol. 27, no. 3, pp. 102:1–102:10, 2008. 788

[11] M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and 789

D. Schmalstieg, “Parallel generation of architecture on the GPU,” 790

Computer Graphics Forum, vol. 33, no. 2, pp. 73–82, 2014. 791

[12] M. Schwarz and P. Wonka, “Procedural design of exterior lighting 792

for buildings with complex constraints,” ACM Transactions on 793

Graphics, vol. 33, no. 5, pp. 166:1–166:16, 2014. 794

[13] ——, “Practical grammar-based procedural modeling of architec- 795

ture,” in SIGGRAPH Asia 2015 Courses, 2015. 796

[14] M. Bokeloh, M. Wand, H.-P. Seidel, and V. Koltun, “An algebraic 797

model for parameterized shape editing,” ACM Transactions on 798

Graphics, vol. 31, no. 4, pp. 78:1–78:10, 2012. 799

[15] J. Lin, D. Cohen-Or, H. Zhang, C. Liang, A. Sharf, O. Deussen, 800

and B. Chen, “Structure-preserving retargeting of irregular 3D 801

architecture,” ACM Transactions on Graphics, vol. 30, no. 6, pp. 802

183:1–183:10, 2011. 803

[16] F. Bao, M. Schwarz, and P. Wonka, “Procedural facade variations 804

from a single layout,” ACM Transactions on Graphics, vol. 32, no. 1, 805

pp. 8:1–8:13, 2013. 806
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