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In this document, we first provide a detailed derivation of the proximal
operators used in the paper. Then, we present additional results of our
experiments.
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1 DETAILED DERIVATIONS FOR PROXIMAL
OPERATORS

In Algorithms 2 and 3 of the main text, four proximal operators
were introduced: proxλ1G∗

f
, proxµ1Ff , proxλ2G∗

u
and proxµ2Fu . In

this section we provide a derivation of these proximal operators.
First, we simplify the notations, by denoting:

w̃j = wj + λ1Kf ū
j

g̃j = gj + λ2Ku f̄ j

b̃t = warp(ft+1,↑us+1
t ) − ft − ∇Swarp(ft+1,↑us+1

t )· ↑us+1
t

For Algorithm 2:
Case of proxλ1G∗

f
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we insert whole function into G, thus we have: Ff (u) = 0 and
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s ) =κ1
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where the operator Kf is defined as:
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Now it can be shown that the problem ?? is equal to solve a saddle
problem :

min
x

max
y

Kf · y + 0 −G∗
f (y), (4)

Incorporating it into CP algorithm [Chambolle and Pock 2011],
we obtain:
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Gf (·) is the Huber penalty function. Therefore, the proximal op-
erator of G∗

f (·) is a point-wise shrinkage operation similar to the
case of the TV norm [Chambolle and Pock 2011] with an additional
multiplicative term Hf 1 :

Hf 1 =
1

1 + λ1 · ϵ1
κ1
κ4

The first term of Gf (.) in Equation 1 is an affine linear L1 norm and
the proximal operator can be solved [Boyd et al. 2011] directly as:

wj+1
4 = min(1,max(w̃j+1

4 + λ1(b̃t +∇Swarp(ft+1,↑us+1
t ) · ūj ),−1))

With this, proxλ1G∗ (·) (line 4 in Algorithm 2 ) is defined. The sec-
ond proximal operator in the same algorithm, proxµ1Ff (·) is simply
the identity since Ff (u) = 0.

For Algorithm 3: We require the proximal operator for data term
Gu(·), with

Gu(Kuf) =
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Thus the operator Ku is given by
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Incorporating these definitions into the CP algorithm [Chambolle
and Pock 2011], we obtain:

gj+1
1 = proxλ2G∗

u
(g̃j1)

gj+1
2 = proxλ2G∗

u
(g̃j2) (9)

gj+1
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u
(g̃j3)

Just as in Equation 5, the solution for Equation 9 is a point-wise
shrinkage operation multiplied by a Huber factor Hf 2. For Equation
9, the solution is:

gj+1
p =

κ3
κ3 + 2κ2λ2

g̃jp p = 1, 2, 3 (10)

The proximal operator for data term Fu(·) is

proxλ2Fu (u) = argmin
f

∥Af − p∥2
2 +

1
2λ2

∥f − u∥2
2 . (11)

This is a least squares problem, and we use SART solving this func-
tion iteratively in a matrix free manner[Aly et al. 2016]. The update
equation for each voxel f ′j in the volume f ′ is:

f ′(t+1)
j = f ′(t )j + φ

∑
i ∈S

√
2λ2pi−

√
2λ2

∑
k aikx

(t )
k −y (t )

i√
2λ2

∑
k aik+1 ai j∑

i ∈S ai j
. (12)

where t is the iteration, φ is a relaxation parameter , S is a set of
projection rays under consideration, and ai j is the element in row i
and column j of the system matrix A and defines the contribution
to ray sum i from voxel j. and pi is measured projection value. In
practice, φ is set as 0.5, and 3 iterations of plain SART algorithm are
applied as initialization for the proposed optimization framework.

2 ADDITIONAL RESULTS
In the following we show additional results for both synthetic data
and real scan data.

2.1 Quantitative evaluation with synthetic data

a b c

Fig. 1. Synthetic deformation for a copper foam volume. (a) Initial volume
obtained with real CT acquisition. The deformation is a uniform rotation,
where the volume rotates from left to right. Frames (b) and (c) frames 150
and 300 of this sequence.

We rotated the volume between successive projections with a
fixed angle ϕ. Figure 1 shows frames 150 and 300 of the sequence
with ϕ = 0.1◦. Different values of ϕ were given in the Table 1, and
demonstrate that the method starts breaking down around values
of ϕ > 0.3◦. As stated in the paper, notice that these results can not
necessarily be generalized to arbitrary data, since the performance
of our method also depends on the amount of local volume structure.

Metric 0.1 0.2 0.3 0.4 0.5
PSNR 34.81 30.56 26.15 19.76 16.68
SSIM 0.95 0.88 0.79 0.67 0.54

Table 1. Calculated PSNR [dB], and SSIM for different rotation velocities
[◦/∆t ].

2.2 Qualitative evaluation with real scans
Figure 2 compares our method to different alternative reconstruc-
tions for the fluid dataset. The methods are

• a standard implementation of 3D tomography using SART
• the ROF regularized 3D reconstruction, i.e. SART with an
additional Total Variation prior

• SART with a Huber norm spatial gradient prior instead of TV
• SART with a Huber norm spatial prior, as well as temporal
smoothing. This is a joint 4D reconstruction, but without
deformation estimation and warping.

• Our full space-time tomography approach
For the fluid dataset, the mold is a stationary object, while the fluid
deforms. The 3D reconstruction methods all fail to resolve the sharp
geometric features of the mold as well as the bubbles in the fluid.
In the video, these errors are also visible as temporal noise. The
temporal smoothing prior significantly improves the reconstruction
of the static mold, although there is still some noise left (see video),
but it cannot significantly improve the fluid reconstruction. Our
method, by comparison, reconstructs sharp, noise-free mold features
as well as fluid details.
Additional visualizations for the mushrooms, dough, rose, and

sugar dataset are shown in Figure 3, Figure 4, Figure 5, Figure 6,
respectively.
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Fig. 2. Isosurface rendering results for liquid data with different methods.
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Fig. 3. Slice visualization and comparison for mushrooms data,
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Fig. 4. An additional visualization of the dough dataset, SART-ROF is compared with our method.
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Fig. 5. Additional comparison for rose dataset between SART-ROF and our method.

, Vol. 1, No. 1, Article . Publication date: April 2018.



Supplementary Material – Space-time Tomography • :5

Frame 02 Frame 05 Frame 10 Frame 20 Frame 30 Frame 40 Frame 45

SA
R

T-
R

O
F

O
u

rs

Fig. 6. An additional visualization of the sugar dataset, SART-ROF is compared with our method.
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