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Abstract—We present a novel and efficient approach for computing joint graph layouts and then use it to visualize collections of
segmented meshes. Our joint graph layout algorithm takes as input the adjacency matrices for a set of graphs along with partial,
possibly soft, correspondences between nodes of different graphs. We then use a two stage procedure, where in the first step, we
extend spectral graph drawing to include a consistency term so that a collection of graphs can be handled jointly. Our second step
extends metric multi-dimensional scaling with stress majorization to the joint layout setting, while using the output of the spectral
approach as initialization. Further, we discuss a user interface for exploring a collection of graphs. Finally, we show multiple example
visualizations of graphs stemming from collections of segmented meshes and we present qualitative and quantitative comparisons with

previous work.

Index Terms—Multi-graph layout, spectral graph layout, multi-dimensional scaling, topological exploration

1 INTRODUCTION

Graphs provide a convenient and commonly used repre-
sentation of visual data, such as segmented 3D meshes, 3D
scenes, and images. For example, a segmented 3D mesh can
be encoded as a graph, where each node represents a com-
ponent on the shape and the edges represent connectivity
between the components. A 3D scene can be represented as
a graph with objects as nodes and edges encoding relation-
ships between objects.

To visually analyze a single graph one has to find
an informative embedding or layout in two dimensions.
Such a layout is typically driven by the idea that similar
nodes should be placed close together and dissimilar nodes
should be further apart. Popular algorithms for such a
layout are metric multi-dimensional scaling, spectral graph
drawing [1], or the algorithm of Kamada and Kawai [2],
among myriad others.

For analyzing collections of graphs, however, it is no
longer sufficient to provide a layout for each graph indepen-
dently. A visual comparison between graphs in a collection
should help answer questions such as: what components
occur in one graph, but not in another? What is the domi-
nant structure of the collection? In which parts of the graphs
does the collection exhibit most variability, which graphs
are outliers? Which one of the several given collections has
the largest variability, etc. Answering such questions can be
greatly simplified if the graphs are laid out in a consistent
manner, while respecting the properties of each graph as
much as possible.

In the first part of the paper (see Sec. 3), we propose two
new algorithms for jointly embedding a collection of graphs
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in a consistent manner. The first algorithm is an extension
of spectral graph drawing to multiple graphs, while the
second is an extension of metric multi-dimensional scaling
designed similarly to jointly handle sets of graphs. While
each of these algorithms is useful by itself, the first algorithm
can quickly find a good approximate solution, but has some
difficulty laying out the local details. We therefore use these
algorithms in sequence with the first algorithm providing
the initialization for the second one. In Fig. 1 we illustrate
the benefit of our joint embedding compared to embedding
each graph individually. An interesting challenge that we
tackle in our work is that nowhere in our pipeline do
we only rely on precise node-to-node correspondences, or
assume that all graphs have the same number of nodes. In-
stead, our framework can deal with partial, soft and group-
wise correspondences. This issue is especially important for
graphs stemming from segmented meshes, because these
graphs often have multiple nodes with the same label (e.g. a
cow typically has four nodes labeled leg). In the evaluation
section (see Sec. 5), we demonstrate superior performance
of our algorithm compared to the state-of-the-art in a user
study. We compare to a baseline method of embedding each
graph individually [2] and a state-of-the-art joint embedding
method using MDS [3] with virtual edges [4].
To summarize, our main contributions are:

1) We introduce two new algorithms for computing joint
graph layouts. First, we propose an extension of the
classical spectral graph drawing method to the setting
of multiple graphs and then we introduce an efficient
and elegant majorization approach for consistently re-
fining multiple layouts.

2) We propose and evaluate a solution to our prob-
lem formulation by comparing to other state-of-the-art
methods in a user study and further we evaluate our
optimization algorithm by comparing against BFGS, a
classical quasi-Newton optimization algorithm.

The reason why we are particularly interested in study-
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Fig. 1: First row: a collection of segmented and labeled 3D Armadillo models. Second row: the graphs corresponding to
the shapes, where each node represents a connected component on a shape and edges show their adjacency. Each graph
layout is computed independently using the Kamada-Kawai algorithm. Third row: graph layouts obtained with our joint
embedding algorithm. The last column shows the overlaid shapes and graphs of the whole collection. We also highlight
some variations in the segmentation data, e.g.: (A) one ear is wrongly connected to the torso, (B) the torso is decomposed
into four separate parts, (C) two ears are missing, and (D) the head is wrongly labeled as torso.

ing graphs of segmented meshes is because segmented
meshes are at the core of popular mesh processing al-
gorithms, e.g. machine learning for mesh segmentation,
component-based shape synthesis, and scene understanding
for 3D scanning.

2 RELATED WORK

Several classical graph drawing algorithms for node-link di-
agrams are iterative and compute forces on nodes of the lay-
out, e.g. [2], [5], [6], or they are built on dimension reduction
algorithms such as multi-dimensional scaling [3], [7], PCA,
locally-linear embedding, and Laplacian Eigenmaps [8]. For
a broader review of graph visualization techniques, we refer
the reader to recent surveys [9]. Many toolkits for graph
drawing are available, e.g. [10]-[12].

Another class of algorithms studies the visualization
of dynamic graphs, e.g. see [13], [14] for recent surveys.
Within the literature of dynamic graph visualization our
method is most closely related to drawing superimposed
node-link diagrams. Unlike most work in this direction,
which is mainly theoretical, e.g. [15]-[19] and studies very
small graphs whose edges do not intersect, we place special
emphasis on robustness and efficiency of our techniques,
without guaranteeing intersection-free results.

The papers more similar to our work, can be classified
according to two design choices. The first choice is if the
optimization computes graph layouts sequentially (e.g. [20],
[21]) or jointly (e.g. [22], [23]). Sequential layouts are more
suitable to graphs that are naturally ordered in a sequence.
To compute a sequential layout, the node locations of the
previous graph are considered as constraints for the node
locations of the next graph in the sequence. For our problem,
ajoint layout computation is important. The second choice is
if the optimization uses soft (e.g. [20], [24]) or hard (e.g. [22],
[25]) constraints to layout nodes with the same labels. In our
case hard constraints are not suitable, because our graphs
typically have multiple nodes with the same label. That
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Fig. 2: Framework Overview. Top: A set of graphs is given
as input. In this example the graphs are derived from
segmented 3D shapes. Middle: the initialization given by the
consistent spectral graph drawing algorithm. Bottom: the
final consistent embedding with approximately preserved
graph distances obtained with our consistent layout refine-
ment algorithm using stress majorization.

would lead to degenerate layouts. In summary, we consider
a joint layout problem using soft constraints, perhaps most
similarly to the work of Erten et al. [4]. Below, we compare
to a representative algorithm to show the advantages of
our work. In contrast to all previous work, however, we
can more systematically handle correspondences between
groups of nodes and for the first time enable general linear
combinations of nodes.

3 JOINT GRAPH LAYOUTS

The input to our method is a collection of graphs and partial
correspondences between node sets of different graphs. To
obtain consistent and structure preserving graph layouts
we formulate an objective function that aims to produce
layouts that both preserve the distances between nodes



within individual graphs and, at the same time, to enforce
consistency across the layouts of different graphs. There are
two important challenges that our approach is aimed to
overcome: first, in most practical settings we cannot rely on
different graphs having the same number of nodes or even
on the existence of precise node-to-node correspondences.
Another important difficulty, which is already present in
designing layouts of individual graphs and exacerbated in
our setting is that objectives with both attractive and repul-
sive forces typically lead to non-linear non-convex energies,
with potentially many local minima, making it difficult to
find global (or even good local) optima.

To tackle these challenges we proceed in two stages (See
Fig. 2). First, we formulate an easier problem, by gener-
alizing the classical spectral graph drawing to the case of
multiple graphs (See Section 3.2), which allows partial and
soft correspondences. Our optimization algorithm considers
the following two terms: the smoothness of each layout
(forcing adjacent graph nodes to be laid out nearby) and the
consistency of the layouts across different graphs. This gen-
eralization has the key property of admitting an efficiently
computable globally optimal consistent embedding. How-
ever, spectral graph drawing can lead to cluttered layouts,
since it lacks repulsive forces between nodes. Therefore,
we provide an efficient layout refinement algorithm based
on stress majorization (See Section 3.3). Our extension also
allows partial and soft correspondences and improves upon
the output of the spectral drawing method by aiming to pre-
serve distances within individual graphs, while maintaining
consistency across embeddings. Together, these two steps
allow us to find a high quality solution extremely efficiently,
making our method flexible and scalable to graphs with a
significant number of nodes.

3.1 Problem Formulation

Input. We assume that we are given a collection of graphs
{Gr}7_,, where Gy, = (Vi, E)) with |Vj;| = my. Vi, denotes
the set of nodes and Ej denotes the set of edges. For
each graph G, we are given a possibly weighted adjacency
matrix A¥ € R™**™* An entry af; denotes the weight of
an edge from node ¢ to node j in graph k. If afj = 0 no
edge exists between the corresponding nodes. Further, we
assume to be given distances 6@- between some pairs of
nodes ¢ and j in each graph k. The distances can be given
as separate input, or derived from the adjacency matrix as
graph distances, e.g. using Dijkstra’s algorithm. For each
pair of graphs (G,,Gy), we are also given a set of ¢,
correspondences, encoded by matrices Sp,, € R°a*™» and
Tpq € Ra*™a which encode relations between the nodes
of different graphs.

Objective. Given this input, we would like to find the
d-dimensional coordinates X (¥) € R™+*4 where 1 < k < n
and typically d = 2 or d = 3, such that:

1. For each graph, the distances 51@ are approximately
preserved.
2. For each pair of graphs (G, Gy), Spg X P) =~ T),, X(@.

We remark that our notion of relations between graphs
encoded via matrices Spq,T}q is very general and allows
to encode any linear dependencies between nodes or their

Al
—_ T T = -~ \\\ —_— T T
- - N //é’ \\
( )« \
\\ // \\___//—\ \
~___ L \
B \ e\
——————————————— > \
J2
/‘—\
C _____ o\ Y
______ N ) D
Gp ~=/ Gq

Fig. 3: Correspondence Matrix. Our goal is to find consis-
tent layouts for the graph G, and G, (nodes are colored by
labels and indexed by numbers), such that the nodes with
the same label have consistent locations in these two graphs.
Specifically, we may hope the (A) blue nodes {1, 2} in G, are
mapped to the blue nodes {1,2,3} in G, (B) node 3 in G,
is mapped to node 4 in Gy, (C) node 4 in G, is mapped
to nodes {6,7} in G4, while (D) no constraint is added to
node 5 in G|,

groups. For example, it can easily accomodate precise node-
to-node correspondences (in which case S), is a permuta-
tion matrix, whereas 7T}, is identity), or partial probabilistic
maps, which can be expressed using convex weights. Below
we provide a few examples of pairs S,q, T}, but we would
also like to stress that throughout our algorithms we do not
place any restrictions on these matrices, which contributes to
the flexibility of our method.

We note also that although the two objectives lead to
a non-linear non-convex energy, as we show below, it is
possible to use a surrogate term for the second part of
the energy, such that the global optimum can be obtained
with spectral techniques, even though the formulation is not
convex. This leads to a consistent spectral graph drawing
approach (Section 3.2), which can in some simple cases be
used by itself or as an initialization to the consistent stress
majorization algorithm described in Section 3.3.

Example. For a better understanding of the modeling
expressiveness, we describe a specific example using the
graphs in Fig. 3. For this example, we denote the node
positions as {x;}{_, for graph G}, and as {y,}_, for graph
Gg. In the first constraint the user expresses the idea that
the set of blue nodes {1,2} in G, are mapped to the set of
nodes {1, 2, 3} in G, with a generalized linear equation. The
second equation encodes that the node 3 in G, is mapped
to node 4 in G. In the third equation, the node 4 in G, is
mapped to a probability distribution over the nodes {6, 7} in
G4. Node 5 in G, does not appear in any equations. These
location constraints can be formulated with the following
linear equations:

a121 + 2w = biyr + bayz + bays
T3 =Yg (1)
x4~ pys + (1 = p)yr
The linear system of Eq. (1) can be equivalently formu-
lated using matrices:
SpgX = TpgY ()
where
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In the most general form SX = TV, constraints are
encoded with a generalized linear map for arbitrary S and
T'. That means we can encode soft correspondences as a
special case SX = Y where S is a stochastic matrix (rows
sum to one, all entries are non-negative).

3.2 Consistent Spectral Graph Drawing

Let L* be the standard weighted Laplacian matrix associ-
ated with graph G}. Using the notation above, the Lapla-
cian can be computed as L* = diag(A¥1) — A*, where
1 is the constant vector of all ones. The classical spectral
graph drawing method [1], [26] consists of computing the d
principal eigenvectors of L* and using them as coordinate
functions X for drawing the graph Gy. Intuitively this
method tries to find an embedding that is as smooth as
possible so that adjacent vertices have similar coordinates
(e, ||LFX )|y is small) under the constraint that each
coordinate function has a fixed unit norm, encoded by the
constraint (X (¥))T X *) = J4.

Our first goal is to extend this approach to the case of
embedding multiple graphs with partial correspondences.
For this we formulate the following problem:

X =argmin E;(X) + Ey(X), ©)]
XTX=I
n
Ei(X) =) |LFX®|3,
k=1
By (X) = Z Hﬂpq(quX(p) - quX(q))H%-

1<p<q<n

Here, X is constructed by stacking the matrices X *) on top
of each other.

Note that the first term in the energy tries to repli-
cate the smoothness objective in classical spectral graph
drawing, while the second term enforces the consistency
of the embedding across multiple graphs, described ear-
lier. For each correspondence we can optionally consider
an importance parameter. For two graphs G, and G, the
importance parameters are collected in a diagonal matrix
[ipg € R»a*Cva. For simplicity, we denote Bpg = 3 11pqSpq
and Dp, = %Mqupq-

We also remark that the smoothness term can be alter-
natively formulated via the quadratic form (X )7 Lk X (%),
Our analysis below can easily be modified to incorporate
such a term instead of the energy F:, and we found the
performance and layout quality to be similar with these two
options.

Although the problem described in (3) seems signifi-
cantly more involved than the one found in standard spec-
tral graph drawing, we found an elegant reformulation of
the optimization problem into a sparse eigen-decomposition
problem for a larger matrix. In the paper, we only present
the main result and defer the detailed derivation to the
Appendix. In particular, consider the matrix W € R™*™,

Fig. 4: Top: input shape collection, represented as graphs
with nodes denoting the individual components of the
shapes (colored) Bottom: joint embedding with consistent
spectral drawing. Note that although the nodes with the
same color are consistently positioned across graphs, each
individual layout does not necessarily preserve graph struc-
ture well.

where m = Y_}'_, my. W is defined by blocks of W,, €
R™» ™4 35 follows:

qu:{

The following proposition (proved in the Appendix)
guarantees that the optimum embedding coordinates can
be obtained by computing the principal eigenvectors of .

(LP)TLP + Zk,;? (ngBpk + D{I)ka) ifp=gq
- (sz;quq + ququ) otherwise

Proposition 1. Assuming fi,q = /[iqp, the globally opti-
mal coordinates X for the energy in Eq (3) are given by
the eigenvectors corresponding to the d smallest non-zero
eigenvalues of .

Figure 4 shows a result of consistent spectral drawing for
a set of graphs for which exact node correspondences are not
known due to label ambiguity. As can be seen in this figure,
although the drawing obtained with this method is indeed
consistent, it is nevertheless not very informative, since
multiple nodes can potentially come into close proximity
resulting in a very cluttered visualization. The primary rea-
son for this phenomenon is that the energy described in (3)
does not contain any terms aimed at preservation of graph
distances in the embedding. In other words, it is possible
that the result of spectral graph drawing is foo smooth since
there are no forces to push nodes apart. For this reason, in
the following section we describe a refinement technique
that tries to preserve the consistency of the drawing while
enforcing the structural properties of individual graphs.

3.3 Layout Refinement using Stress Majorization

As mentioned above, one particular limitation of the energy
function given in Eq. (3) is that it lacks terms that would
maintain distances between nodes after the embedding.
Therefore, we introduce another term to the energy with the
goal of explicitly preserving the graph node distances. Thus,
the optimal embedding X should minimize the following



objective function:

F(X)=FE(X)+ Ey(X) + E3(X), 4)

n 2
Bs(X) =Y > AP (I - x| -6),

k=11<i<j<my

where 58?') are graph distances between the i-th and j-th

node in the graph Gy and /\g) are scalar weights which
give us control over the importance of the preservation of
distances between each pair of nodes in each graph.

To find the optimal consistent embeddings X of Eq. (4),
one possibility would be to use standard non-linear opti-
mization approaches, such as BFGS or other quasi-Newton
techniques. Note, however, that the energy might not be
differentiable if some nodes have the same coordinates.
Moreover, the computation of the gradient can be expensive
and standard techniques can easily get trapped in shallow
local minima.

Therefore, following [27] we use a convex majorization
technique which is both efficient and produces high quality
results. This convex majorization technique is commonly
used for optimizing the metric Multidimensional Scaling
(MDS) energy (in a similar form of E3 in Eq. (4)), which
is proposed by de Leeuw [7] and applied to graph drawing
by Gansner [3]. We extend the existing problem formulation
by additional terms (E; and E; from Eq. (3)) related to
smoothness of the layout of each graph and consistency
of the layouts of different graphs. We built on de Leeuw’s
work to derive a stress majorization algorithm based on
the Cauchy-Schwartz inequality for our extended problem
formulation (See Appendix B for the derivation).

Specifically, we first introduce a majorizing function
g9(X, Z) for our objective function F(X) given in Eq. (4),
such that g(X,Z) is quadratic in X given any fixed Z,
F(X) < ¢g(X,2), and F(Z) = g(Z,Z). The supporting
point Zj, will be updated iteratively to provide a descent
direction for F(X), and the algorithm is guaranteed to
converge to a local minimum.

Specifically, following [27] we propose the following
optimization procedure:

1 Set Z = Z,, where Zj is initialized by the Spectral
Layout.

2 Update X* by solving the linear system given in Algo-
rithm 1

3 If F(Z) — F(X") < ¢, then stop.

4 Set Z = X" and go to 2.

Note that not all objective functions admit a majorizing
function that is easy to optimize. However, as shown in
the following proposition (proved in the appendix) such
a function can be obtained for the energy function F'(X)
given in Eq. (4).

Proposition 2. There exists a majorizing function g(X, 2Z)
for the energy given in Eq. (4) such that the optimization of
9(X,Z) with a fixed Z can be done using a solution of a
single linear system of equations.

This proposition ensures that even though Eq. (4) leads
to a non-convex non-linear optimization problem, it can
nevertheless be optimized efficiently by solving a sequence

Algorithm 1: Update rule for our layout refinement
algorithm with stress majorization.

1) For every graph k construct the matrix L} s.t.
(L5)i; = f)\gf) ifi7#jand ), )\l(-f) otherwise.

2) For every graph k and every pair of graphs p, ¢
construct:

1
My = (LM)TLF + B Z (Dzj;kDPk + ngBkP) + LY
pF#k
Npg = _B;Z;qu - Dququ
1
Qpg = 5(35«131)(1 + Dququ)
3) Contruct the matrix V' given blockwise as:

My+MI+ Y (Qur+ QL) ifp=gq
Vg = k#p

Npq+ N7,
4) Construct the block-diagonal matrix U with the k-th
block given by the matrix W# “ where
Wwz® 22{M 6 ifi
20— if4
K max (e’,||Z£k)7Z§k)H) J
YA .
and }°, —W; " otherwise.

ij
5) Solve the linear system of equations VX* = UZ.

otherwise

N

Fig. 5: Stress Majorization Refinement Iterations. The first
column shows the human shapes from the Princeton Shape
Benchmark; the second column shows the consistent spec-
tral drawing initialization; the following columns are the
result from the 5th, 8th, 10th, 15th, 30th and 50th iterations
respectively (c; = 2,co = c3 = 100,¢4 = 0.6).

of convex problems. Despite this, both in theory and in
practice, having a good initialization is fundamental to get a
high quality result efficiently. Therefore, we use the solution
found with the approach described in Section 3.2 and refine
it with the stress majorization method described above. This
two-stage approach allows us to avoid undesirable local
minima of Eq. (4) and at the same time maintain scalability
of the method, making it capable of processing collections of
graphs potentially with thousands of nodes. Fig. 5 illustrates
the iterative process of the stress majorization algorithm
initialized by the spectral drawing algorithm (the second
column).

In summary, the algorithms described in this section
can compute joint graph layouts for a set of graphs with
given correspondences. In the next section, we introduce
a topological shape space exploration framework that uses
these joint graph layouts for visualization.



4 TOPOLOGICAL SHAPE SPACE EXPLORATION

Fig. 6: User Interface. In the left sidebar we show a set of 3D
models represented by pre-computed 3D renderings. In the
top bar, we show pre-computed 3D renderings of all models
that have the same topology as the currently selected one.
The main view shows the graph of the selected model while
the lower right shows an interactive 3D rendering. The up-
per right shows an overlay of topologically similar models.
The selected node (pink in the main view) is propagated
both to the overlay view as well as the interactive 3D view
(the tail is highlighted).

4.1 User Interface

We developed a user interface that enables exploration of
collections of 3D models based on the consistent graph
embedding algorithms. We have a flexible user interface
that provides multiple views of the data. These views are
shown in subwindows that can be rearranged. See Fig. 6 for
an example configuration. We provide the following views:
1) A mesh view, showing a single rendered 3D mesh. 2) A
scrollable list showing renderings of multiple 3D models.
3) A view for a single or multiple graphs in the same
coordinate system. 4) A grid view showing a set of graphs
side-by-side.

We provide standard user interface elements to control
the views such as scrolling, zooming, and panning. We also
provide standard selection tools, e.g., for selecting models,
nodes and edges.

We also provide multiple types of parameters for the vi-
sualization, such as setting node sizes, labeling, and coloring
nodes according to a computed distortion function.

Our interface also provides meaningful links between
the different views. For example, the grid views are linked
so that all the graphs can be zoomed and translated simul-
taneously. Another example is that selecting a graph will
automatically update the mesh exploration view to show
the corresponding model. We can also select a component
in the 3D mesh view which results in highlighting the
corresponding node of the graph. An important feature is
the propagation of selections.

We also include basic tools to select a subset of graphs,
e.g. based on the number of nodes or the number of nodes
of a particular type. One important graph selection tool is
to select graphs based on the similarity to a selected source
graph. The resulting list is typically processed in a sorted
fashion.

6

For navigation, we offer different possibilities. 1) Given
a sequence of graphs, the user can cycle through graphs in
the sequence. The transition can either be hard switching
or a smooth transformation. 2) A user can navigate from a
currently selected graph to similar graphs in the collection.

Please see the accompanying video for a demonstration
of the user interface.

4.2 Preprocessing

We take a collection of segmented and labeled 3D meshes
as input and convert each mesh to a graph representation.
We show two types of meshes in this paper: manifold trian-
gle meshes from the Princeton Shape Benchmark [28] and
CAD models from the Stanford ShapeNetCore dataset [29].
For each mesh, we first create connected components by
merging connected triangles with the same label. Then
we create a labeled node for each component and create
an edge with weight one between all components that
are directly connected (or intersecting). For the Princeton
Shape Benchmark we use the provided segmentation and
labels. For the ShapeNetCore dataset the per-face labeling
comes from [30]. A common problem with CAD meshes
are topological inconsistencies, such as incomplete connec-
tivity, self-intersections, duplicate faces, etc. The Stanford
ShapeNetCore dataset is not free from such defects, result-
ing in multiple sets of small topological components that
each form one larger semantic unit. We therefore perform
a proximity-based topological cleanup. We detect pairs of
components that intersect or are closer to each other than a
small threshold. We merge a pair of such components if they
share the same label. Otherwise, we keep them separated
but add an edge between the corresponding nodes in the
graph.

Moreover, we establish correspondences between nodes
with the same labels across different graphs. The particular
challenge of these datasets is that each graph can contain
multiple components with the same label and that there is
no clear one to one correspondence between nodes. We use
probabilistic maps (soft maps) with uniform distribution to
construct the generalized linear correspondences S and 7T'.

5 RESULTS

All the experiments are performed on a workstation with
a 3.10GHz processor and 64 GB memory. The graph pro-
cessing algorithms are implemented in MATLAB and the
user interface is implemented in C++ using OpenGL.

To evaluate our framework, we tested our method on
five datasets: the Princeton Shape Benchmark [28], the
Stanford ShapeNetCore dataset [29], the Stanford Scene
database [31], floor plans and food networks [32]. Table 1
shows the graph complexity of each dataset and the corre-
sponding runtime performance.

Specifically, we tested six model categories (Airplane,
Ant, Armadillo, FourLeg, Human and Teddy) from the
Princeton Shape Benchmark [28]. Each category has twenty
different shapes. We also tested our methods on four shape
categories (Rocket, Motorcycle, Car, and Airplane) from the
Stanford ShapeNetCore dataset [29]. Specifically, there are
66 rockets, 198 motorcycles, 474 cars, and 2035 airplanes.



Dataset Total No. of Total Total Running time (s) Initial Final No.
No. of | Unique | No.of | No.of Pre- Spectral Stress Energy | Energy of
Graphs | Labels | Nodes | Edges | process Drawing Majorization | (x10%) | (x10%) | Iterations
Airplane 20 5 125 106 0.0624 0.1004 0.2499 3.2077 0.1286 77
Ant 20 5 220 200 0.0698 0.1048 0.2625 9.6259 | 0.5671 81
g Armadillo 20 11 337 365 0.1063 0.1216 0.5591 27.099 1.3486 111
& | FourLeg 20 6 190 172 0.0949 0.1107 0.3767 8.2606 | 0.4849 125
Human 20 8 271 260 0.1000 0.1156 0.4932 16.481 0.7491 128
Teddy 20 5 160 142 0.0951 0.1079 0.1662 5.6188 | 0.2085 50
Rocket 66 3 286 238 0.2614 0.2151 1.1059 27.937 1.6932 141
O | Motorcycle 198 6 1340 1552 1.3556 1.3092 10.031 19543 | 15235 123
% Car 474 4 2017 1576 6.4641 6.1177 53.168 176.94 29.773 222
Airplane 2035 4 14978 17201 110.75 144.08 1397.0 5116.2 1198.2 50
Scenes 6 31 74 94 0.0615 0.1011 0.1185 4.2547 0.4043 99
Floor plans 4 22 84 88 0.0579 0.0918 0.1244 8.3810 | 0.7013 116
Food network 4 75 300 9494 0.0982 0.1220 3.9745 107.85 71.793 781

TABLE 1: Final Result. A summary for each dataset, including the Princeton Shape Benchmark (PSB), the Stanford Scene
database, the Stanford ShapeNetCore dataset (SNC), floor plans, and food networks; the performance measurements for
the experiments on each dataset, including the running time for each step, the initial and final energy, and the total number

of iterations until convergence.
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Fig. 7: Illustration of the failure of the MDS-based method. Here, the parameter a is the ratio between the weight of
graph-distance preservation and the weight of consistency preservation. When a is small (e.g. a = 2 for collection A and
a = 1 for collection B), the graphs are consistent, but the information about the graph structure is almost completely

lost. When « is large (e.g., @ = 60 for collection A and a =

64 for collection B), the graph distance for each graph is

well-preserved. However, the consistency among the graphs is broken. For collection A, the light-green and purple nodes
(in the red dashed circle) are mixed together and similarly for the nodes with color red, green and blue in collection B.
Even after tuning the parameter a per visualization to give a balance between the distance and consistency preservation
(e.g. a = 24 for collection A and a = 8 for collection B), it is not possible to create a good result.

In terms of running time (see Table 1), the first step,
which consists of the consistent spectral graph drawing, is
obtained by solving a simple sparse eigen-decomposition
problem. Therefore, the time spent on the first step is corre-
lated with the total number of graphs and nodes but remains
efficient for graphs with hundreds or even thousands of
nodes. The time spent on the second step using stress ma-
jorization depends on the graph complexity and the tradeoff
among different terms in the energy function. We show
visualizations of the datasets throughout the paper and also
in the accompanying video and additional materials. More
details about the Stanford Scence database, floor plans, and
food networks is provided in the additional materials.

5.1 Evaluation of the Problem Formulation

To evaluate our problem formulation, we compare to two
alternative graph embedding methods: (1) embedding each
graph individually using Kamada-Kawai algorithm [2]; (2)
jointly embedding the graphs using MDS [3] with virtual
edges added between nodes of different graphs that have
the same label [4]. We choose this approach, because it
uses the same distance preservation term as our method.
Therefore, the comparison can better highlight the difference
between our consistency term and virtual edges.

We compiled a list of analysis tasks for exploring a
collection of graphs and designed a list of representative
questions to evaluate the different algorithms:

Q1 Are the graphs in the collection the same or not?
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Fig. 8: Sample Task Q7. The user is given a collection of
graphs in an overlaid fashion where the graphs are drawn
jointly using either the MDS-based method or our method
(randomly chosen). Then the user is asked to select from
(A-H) the subgraphs that appear in the dominant structure
of the given collection. The purpose is to measure how well
the user understands the graph collection with the given
embedding, which can be further used as a measure of the
usefulness of the embedding. In this example, the correct
answers are (C,E,EG). Fig. 9 shows that using our method,
80% of the users can give the correct answer while only 43%
of the users give the correct answer using the MDS-based
method.

Q2 Which graph is different from the rest?

Q3 Which collection has a larger variability?

Q4 What is the dominant structure of this collection?

Q5 Nodes with what label have a larger variability?

Q6 How many orange nodes do most of the graphs have?
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Fig. 9: Average Accuracy. The average accuracy over 104
users and two independent datasets for each task. Indepen-
dent: the graphs in the collection are drawn independently
using the Kamada-Kawai method. MDS: the graphs are
drawn jointly using the MDS method. ours: the graphs are
drawn jointly using our method.
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Fig. 10: Time. The summary statistics (4, 5, § quartiles and

outliers) of time the user spent over 104 users and two in-
dependent datasets for each task. Independent: the graphs in
the collection are drawn independently using the Kamada-
Kawai method. MDS: the graphs are drawn jointly using the
MDS method. ours: the graphs are drawn jointly using our
method.

Q7 Which subgraphs appear in the dominant structure of
the given collection?

In Fig. 8 we show an example of the kind of a question
from the last category (Q7).

To remove the bias, we used different graph collections
for different tasks and the order of the selections for each
task is randomized for each test. We tested each task on
two independent datasets and collected responses from 104
users using an internet-based survey tool. Fig. 9 shows the
average accuracy and Fig. 10 shows the summary statistics
of the time that the users spent for different tasks with dif-
ferent methods. Specifically, with pre-aligned graphs (using
our method), it takes less time to get a higher accuracy com-
pared to the graphs without alignment (using the Kamada-

Final Energy Runtime
Dataset (x10%) (s)

Stress Stress

BFGS Major. BFGS Major.

Airplane 0.2387 0.1286 | 62.378  0.6871
Ant 1.6183 0.5671 | 90.615 0.8114
Armadillo 1.3480 1.3486 | 404.94 1.3807
FourLeg 1.5759 0.4849 105.85 1.1918
Human 0.7683 0.7491 | 28395 1.2646
Teddy 0.2085 0.2085 | 208.40 0.4675
Scenes 0.3882 0.4043 27.279  0.2330
Floor plans 0.7137 0.7013 19.510  0.2439
Food network | 73.7916  71.7925 | 207.89  5.8086
Rocket 6.1400 1.6934 36291  4.8124

TABLE 2: The final energy and the runtime of using the
BFGS and our stress majorization: our approach takes less
time to reach a lower final energy.

Kawai for each graph independently). We can also observe
that our method achieves much higher accuracy within sim-
ilar or even less time compared with the MDS method where
the graph distances fail to be preserved properly. Therefore,
the results provide a strong indication for the importance
of consistent alignment and graph distance preservation for
understanding a collection of graphs.

Fig. 7 gives two specific examples for the comparison
between the MDS-based method and ours. Both collection
A and B have around 50 graphs with similar structures
and the graphs are drawn jointly in an overlaid fashion.
For the MDS-based method, the parameter a is the ratio
between the weight of graph-distance preservation and the
weight of consistency preservation. We can see that it is
hard for MDS-based method to balance the graph distance
preservation and the consistency. As a result, all possible
parameter settings for the parameter a lead to artifacts in the
MDS-based layouts. To avoid problems due to parameter
settings as much as possible, we tuned the parameters
per visualization for the MDS-based method, but used the
default parameters for our method. Even though this gives
an advantage to the MDS-based method in the user study,
the results of our method are still better.

We also show a comparison with the MDS-based method
on large datasets: the Stanford SNC dataset. Fig.11 shows
(A) rockets, (B) motorcycles, and (C) airplanes from the Stan-
ford SNC dataset using the metric MDS (left) and our joint
layout framework (right). For the metric MDS method, a
distance matrix is constructed for the whole graph collection
with added virtual edges such that (1) the distance between
the two nodes from the same graph is the consistent with
their original graph distance; (2) the distance to the nodes
from different graphs with the same label is set to zero; (3)
the distance-preserving weight for the nodes from different
graphs with different labels is set to zero such that these
nodes pairs will be ignored in the MDS stress energy. The
results show that the metric MDS layout does not depict
important information that is clearly visible in our joint
layouts. See the figure caption for the description of selected
examples.

5.2 Evaluation of the Optimization Algorithm

We conducted a comparison between our proposed stress
majorization algorithm with BFGS to optimize the energy
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Fig. 11: Comparison to MDS. The metric MDS layouts (left) and our joint layouts (right) for (A) rockets, (B) motorcycles,
and (C) airplanes from the SNC dataset (nodes colored by labels). The MDS layouts cannot preserve important aspects
of the graph structure that are clearly visible with joint layouts. In (A) joint layouts show that rockets have multiple fins
(colored orange) and that there is a large variety in the number of fins across the dataset. In (B) joint layouts show that
motorcycles generally have two wheels (colored yellow) and that the gas tank (orange) is often connected to the seat (light
green). In (C) joint layouts show the airplanes often have two wings (purple) and that there is variability in the number of

engines (orange) across the dataset.
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Fig. 12: Energy ratio per iteration: the energy (normalized by
the initial energy) per iteration from ten datasets using two
different methods, the BFGS (dashed lines) and the stress
majorization (solid lines).

Fig. 13: Overlaid 20 Airplanes from the Princeton Shape
Benchmark: the BFGS method (left) and the stress majoriza-
tion method (right).

function Eq. (4). The result shows t