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Figure 1: Tree L-Systems A design transformation computed from two different L-systems (first and last images). Our method can compute a
sequence of intermediate results transforming one design into the other by combining and merging the L-systems rather than the geometry of
the two trees.

Abstract
We introduce design transformations for rule-based procedural models, e.g., for buildings and plants. Given two or more
procedural designs, each specified by a grammar, a design transformation combines elements of the existing designs to generate
new designs. We introduce two technical components to enable design transformations. First, we extend the concept of discrete
rule switching to rule merging, leading to a very large shape space for combining procedural models. Second, we propose an
algorithm to jointly derive two or more grammars, called grammar co-derivation. We demonstrate two applications of our work:
we show that our framework leads to a larger variety of models than previous work, and we show fine-grained transformation
sequences between two procedural models.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Architectural design over centuries gives us many examples for the
reuse, evolution, and the combination of designs [SMR04, Kni94].
We study these design transformations and present algorithms for
their technical realization in the context of rule-based procedural
modeling.

Rule-based procedural modeling systems, such as L-systems and
shape grammars, provide an efficient method for the automatic
creation of scenes with rich geometric detail. The rules specify how
to iteratively evolve a design from a crude initial shape to a highly
detailed model.

The simplest way to realize design transformations is to switch
rules between different procedural models, e.g., to replace the win-
dow rule of one building with the window rule of another building.
Rule switching can be used to combine two or more procedural mod-
els using the framework of Bayesian model merging [TYK∗12].

We improve on this initial idea. Rule switching is the simplest
method to obtain design transformations, but it only provides coarse-
grained control and a limited number of new designs. In our frame-

work we complement rule switching with rule merging, i.e., combin-
ing the effect of two rules. In contrast to rule switching, rule merging
generally leads to an infinite number of variations. For our solution
we need to overcome two major challenges. First, we need to be
able to merge rules that are structurally different, e.g., they generate
a different number of shapes and place them in different spatial
arrangements. Second, grammars also exhibit structural differences
globally. As a consequence, it is often not possible to establish sim-
ple one to one correspondences between shape (rule) labels. In such
cases we can only establish sparse correspondences and it is not
sufficient to merge individual rules. We propose a solution to this
problem by merging shape trees that are the result of (partial) deriva-
tions using multiple rules. We call this new derivation framework
grammar co-derivation.

To summarize, we present the following main contributions. On
the technical side, we propose algorithms for rule merging for rule-
based procedural modeling. On the application side, we can generate
a larger space of design variations than competing methods (Fig. 2)
and we demonstrate fine-grained transformation sequences between
different procedural designs (Figs. 1 and 3). Transformation se-
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original designs:

semantic matches:all discrete variations:

random fine-grained variation samples:

Figure 2: Coarse-Grained Versus Fine-Grained Transformations
Two simple grammars have correspondences (called semantic
matches) for the production rules that generate the mass models
and the building style (top right). Discrete rule switching spans
only a very limited shape space with four designs, the two original
designs (top left) plus two variations (middle left). Fine-grained
rule merging can span a shape space with infinitely many designs
(bottom).

quences are gradual transformations of one design into another, and
they can be shown as computer animations. The generation of such
transformation sequences is difficult to achieve using existing work.

2. Related Work
Grammar-based Procedural Modeling Shape grammars were
invented by Stiny [Sti75]. In their original form, the derivation
was too difficult to control and typically done with the user in
the loop. Existing methods resort to very simple shapes or use
graphs to represent shapes and subgraph matching to identify the
rules, e.g., Grape [GE11]. A simplification of shape grammars are
set grammars [Sti82] where rules act on a set of labeled shapes
rather than on an arrangement of lines. Another milestone are
L-systems which use a parallel replacement strategy. They have
been successfully applied for plant modeling [Pru86, PL90] and
extended to query and interact with their environment during deriva-
tion [PJM94, MP96]. Several shape grammar frameworks have been
developed for modeling streets and buildings [PM01, WWSR03,
MWH∗06, KPK10].

An inspiration for this project was Terry Knight’s book Transfor-
mations in Design [Kni94]. It describes how certain architectural
styles evolved over time. The book goes further than just defining
the styles with shape grammars; it introduces meta rules that do not
operate on the shapes but rather modify the grammar’s production
rules. The evolution of a style can thus be represented by a sequence
of meta rules that are applied to the shape grammar. Knight’s work
is based on the archetypal shape grammars by Stiny. While she
discusses architectural concepts, our work focuses on the techni-
cal aspect of automatically computing design transformations. We

discrete transformation sequence:

different fine-grained transformation sequences:

Figure 3: Transformation Sequences Discrete switches can only
create very limited transformation sequences while fine-grained rule
merging enables the generation of different interpolation paths that
morph one design into another.

demonstrate our idea of co-derivation both in the context of gram-
mars similar to CGA shape [MWH∗06] and L-systems [Pru86].

There are many other extensions for grammar-based proce-
dural modeling, e.g., for interactive rule editing [LWW08], for
guiding the derivation process of stochastic grammars [BŠMM11,
TLL∗11, RMGH15], for extending scopes to arbitrary convex
polyhedra [TKZ∗13], for a more expressive and context-sensitive
grammar syntax combined with elements of functional program-
ming [SM15], etc. There also exist evolutionary techniques for
L-systems [McC93, Jac01, Bur13] that are similar to our method.
They, however, apply changes to the grammar at random while we
always transform between two or more designs.

Inverse Procedural Modeling & Grammar Induction In com-
puter graphics there are several recent approaches that study how to
generate design variations given a single existing design. Bokeloh
et al. [BWS10], Stava et al. [ŠBM∗10], and Talton et al. [TYK∗12]
all propose methods to compute simple shape grammars from input
designs to generate variations of those input models. The main dif-
ference between our work and previous work is the granularity of the
combination. While previous work mainly relies on rule switching,
our grammar co-derivation and rule merging operations lead to a
much larger shape space.

Algorithms that try to learn grammars tend to build on very sim-
ple context-free grammars, or they only learn rule parameters for
predefined grammars. Most often this is done for building façades
since their hierarchical split patterns render the induction process
easier [MZWG07, STKP11, MMWG11, WRPG13, MG13].

Morphing & Style Transfer Our design transformations com-
bine elements of volume morphing and style transfer — two suc-
cessful modeling methods in computer graphics. Volume mor-
phing was pioneered by Lerios et al. [LGL95] and Kanai et
al. [KSK97]. An overview over different morphing methods is given
by Alexa [Ale02]. Similar to our work are the methods by Alhashim
et al. [ALX∗14, AXZ∗15] that do not only blend shapes geometri-
cally but also topologically.

Style transfer is the process of applying the style of one exemplar
model to another target model. Often geometric high frequency de-
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tails are re-targeted and applied to another mesh [BIT04, MHS∗14].
The same idea has also been applied to images [HJO∗01].

Structure Preserving Editing There are structure-aware methods
that automatically keep the finer geometric details intact while
the coarse shape of a 3D model is changed [CLDD09, BWKS11,
BWSK12]. Our method also has to deal with geometry changes
at the structural and detail levels. We have the advantage to work
with rule-based procedural models; if a design changes at a coarse
level, the structure of the detail shapes can be kept consistent by
reevaluating their production rules. Our challenge is to keep that
consistency when combining elements from different grammars.

Design Exploration The space of all possible design transforma-
tions for a set of grammars could be interpreted as a parametric
model that spans a shape space. That space could be navigated
with an interactive exploration tool, e.g., the work by Talton et
al. [TGY∗09] or Dang et al. [DLC∗15].

3. Overview
3.1. Grammar Definitions

As our proposed concepts are applicable to a broader range of rule-
based procedural modeling systems, we describe our framework for
a generalized set grammar, similar to CGA shape [MWH∗06] and
L-systems [Pru86]. We define a grammar G as a four-tuple:

G = 〈NT,T,ω,P〉.

The grammar operates on shapes where each shape is assigned ex-
actly one label, or symbol. The symbols stem from two disjoint
sets: non-terminals (NT ) and terminals (T ). A shape can have a
list of geometric and non-geometric attributes. The most important
attributes are encoded by the scope [MWH∗06], i.e., a local coordi-
nate frame and the shape’s size defining a (bounding) box in space.
The grammar derivation starts with a single shape labeled with the
special symbol ω ∈ NT , the axiom or starting symbol. During the
grammar derivation, a shape is selected and a production rule (or
just rule), is applied to it. P is the set of rules of the form:

predecessor : cond→ successor,

where predecessor is a symbol ∈ NT and successor is a general
procedure (or program) that generates zero, one, or more successor
shapes labeled with symbols (∈ NT ∪T ). A rule can only be ap-
plied if its condition cond is met. A condition can depend on shape
attributes (e.g., the scope’s size, position, etc.), the rule’s parameters
(in case of parametric grammars), and other shapes. In our examples,
we use conditions for occlusion queries [MWH∗06] in building
grammars and as a recursion counter in plant grammars (the max
number of derivation steps is initialized to n and decreased during
derivation so that a rule can stop the recursion when n < 0). We use
the term deterministic grammar if there is only a single possible
derivation for all possible starting shapes. Otherwise, a grammar is
called stochastic. Procedural modeling systems differ in the way a
successor can be defined. Typically, commands like translation, scal-
ing, rotation, instantiation of mesh and texture assets, and splitting
rules are used.

The derivation generates a shape tree. After applying a rule to a
non-terminal shape, all the shapes generated by successor will be
added as children. We assume the derivation order to be breadth-first.

3.2. Framework Overview

Our framework consists of multiple components. In a preprocess
we establish sparse correspondences between rules of the input
grammars (Sec. 4.1). These correspondences help our proposed
co-derivation (Sec. 4.2) to synchronize the simultaneous derivation
of two grammars. The co-derivation algorithm uses two different
strategies for rule merging: 1) a general shape matching and blend-
ing algorithm (Sec. 4.3) and 2) a specialized algorithm for split
rules (Sec. 4.4). We further describe the extensions necessary for
our two applications together with their results: co-derivation using
multiple grammars is important for generating variations of designs
(Sec. 5.1), and we introduce a user interface to control transforma-
tion sequences (Sec. 5.2).

4. Co-Derivation of Shape Grammars
4.1. Sparse Correspondences

We require a sparse set of correspondences between the symbols
(rules) of the input grammars. These correspondences are called
semantic matches. In general, this is a modeling problem that does
not have a single correct solution, and we let the users adjust the
semantic matches according to their design intent. We use the tuple
notation 〈Syma,Symb〉 to say that symbol Syma in one grammar
matches symbol Symb in another.

Since the structure of the grammars can be quite different, not
every rule will have a valid match. For the presented examples, only
24-54% of the rules have matches. We allow one-to-many matches,
i.e., it is possible that a rule has more than one match in another
grammar. For example, one grammar might have different rules
for GothicWindow and RoundWindow which both match the only
Window rule in the other grammar. The axioms of all grammars are
always set to be a semantic match.

Finding semantic matches automatically is a very challenging
problem and beyond the scope of this paper. We have the user an-
notate selected rules with tags coming from a set of architectural
vocabulary (e.g., mass model, roof, façade, floor, window tile, win-
dow, etc.). Rules with the same tag are automatically matched while
non-tagged rules are not matched. This assignment works in most
cases. Otherwise the user can manually refine the semantic matches.

4.2. Grammar Co-Derivation

Grammar co-derivation is an extension of traditional grammar
derivation to two grammars. We first look at the problem of ex-

Algorithm 1 coDerivationStep_1(shape, grammar)
1: derive(shape, grammar)
2: repeat
3: done = true
4: for each l ∈ leaves(shape_tree) do
5: sym = symbol(l)
6:
7: # keep deriving non-terminal leaves without semantic matches
8: if @ semantic match for sym && sym ∈ NT then
9: derive(l, grammar)

10: done = f alse
11: until done
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Semantic matches:
〈A,A〉, 〈L,L〉,
〈C,C〉, 〈R,R〉 1) Derive shape with

both grammars

2) Collapse shape trees
and concatenate transfor-
mations

3) Merge and blend
resulting shapes

Figure 4: The Co-Derivation Step 1) A shape, whose symbol A has
a semantic match, is separately derived with both grammars. 2) Both
subtrees are collapsed and all leaf shapes are transformed into a
common coordinate system. 3) The resulting shapes are combined in
a merge step according to user preferences. Shapes can come from
the first (green) or the second (red) grammar. If a shape’s symbol
has a semantic match, it can also be blended together with matching
shapes from the other subtree (brown). Blended shapes are labeled
with the match tuple.

tending a single derivation step, and then use our proposed solution
to design a complete grammar co-derivation algorithm.

The elementary step of a traditional shape grammar is to select a
shape, select a rule, and replace the shape by its successor by adding
newly generated shapes as children in the shape tree. We call the
elementary step of grammar co-derivation, used to derive shapes
with semantic matches, a co-derivation step. The co-derivation step
generates separate partial derivations of a shape x for each grammar
and merges both outputs. The fundamental challenge of designing
a co-derivation step is the following: if we only apply a single rule
from each of the two input grammars to x, we likely end up with sets
of incompatible shapes. Some of these will have semantic matches
and others will not. However, good merging results can only be
achieved if we work with two sets of shapes where all of them either
have semantic matches or are terminal shapes. A co-derivation step
therefore needs to synchronize the derivation. Each grammar needs
to derive shape x until only terminal shapes or shapes with semantic
matches exist. Our co-derivation step has three parts (also see Fig. 4).

1. Derive x with both grammars. Similar to traditional grammar
derivation, we also use breadth-first order, but stop at shapes that
have a semantic match or that are terminals. See Alg. 1.

2. Collapse the two subtrees. For each of the two subtrees, we
bring all shapes into a common coordinate system and delete
intermediate nodes.

3. Merge all shapes of both collapsed subtrees into a final shape set.
The merging can either combine shapes from the two derivations,
discard shapes, or copy shapes unmodified. The resulting shapes

are appended to the shape tree as x’s children. The merging
operation is more involved and we will explain two merging
algorithms in Secs. 4.3 and 4.4.

To define a complete co-derivation, we recursively apply co-
derivation steps until all the shape tree leaves become terminal
shapes. See Alg. 2 for pseudo code.

4.3. Rule Merging

The input to this step are two sets of shapes, one from grammar
Ga and one from grammar Gb. The output of this step is a single
set of shapes that are either directly copied from Ga or Gb and/or
shapes that are combined by blending pairs of shapes. In general,
this is an underspecified problem with many possible solutions. In
order to manage this large design space, we propose the following
method to parameterize the solutions. For each semantic match, we
use a parameter ps ∈ [0,1]. ps = 0 means that all shapes are directly
copied from grammar A while ps = 1 means all shapes are directly
copied from grammar B. In addition, we use a single threshold th
(default 0.5) to facilitate certain discrete decisions, e.g., when to
switch assets.

To compute the resulting set of shapes, we need three ingredients:
1) a distance metric that can be computed between each pair of
shapes, 2) a matching algorithm that computes matches based on
the distance metric, and 3) an interpolation algorithm that combines
matched (and unmatched) shapes.

We propose a distance metric d that is the sum of two compo-
nents, a semantic distance ds and a geometric distance dg. The
semantic distance ds is zero if there is a semantic match between
the labels of the two shapes and infinity otherwise. That means
that two shapes can only be matched if there also exists a semantic
match between their corresponding symbols. The distance-metric
dg compares shape positions and scope sizes by summing up the
point-to-point distances of the eight scope corners.

We propose two automatic ways to compute matches based on
the metric d. (We allow the user to override the automatic assign-
ment for additional artistic control, but this option is not used in any

Algorithm 2 Co-Derivation Process
1: shape_tree = new node(〈Axiom,Axiom〉)
2:
3: repeat
4: for each l ∈ leaves(shape_tree) do
5: if symbol(l) /∈ T then
6: # derive twice and collapse shape trees to height 1
7: st1 = copy(l)
8: coDerivationStep(st1, grammar1)
9: collapse(st1)

10: st2 = copy(l)
11: coDerivationStep(st2, grammar2)
12: collapse(st2)
13:
14: # calculate resulting set of shapes
15: res = mergeAndBlend(leaves(st1), leaves(st2))
16: l.append(res)
17: until shape_tree does not grow anymore
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Figure 5: Shape Matching & Blending The two automatic strate-
gies for shape matching are Munkres assignment (top left) or closest
distance matching (top right). Munkres matches are always bidirec-
tional. (bottom) The merged and blended resulting shape sets are
shown for the parameter values of 1

3 and 2
3 with a threshold of 0.5.

of our results.) 1) The first strategy uses the Munkres (or Hungar-
ian) algorithm [Mun57] for finding a minimum weight maximum
matching in a weighted bipartite graph. It results in only one-to-
one and one-to-none matches. 2) The second matching algorithm
assigns each shape from Ga’s output the closest shape derived by
Gb and vice versa. Note that this assignment, unlike the result of
the Munkres algorithm, is not necessarily symmetric. All pairs of
shapes that mutually map to each other are included in the set of
pairs. The Munkres matching method might leave remaining single
(unmatched) shapes while the closest distance approach will likely
end up with some unidirectional matching pairs.

Our proposed interpolation algorithm works as follows. Singles
from Ga and unidirectional pairs pointing from Ga to Gb are kept if
the corresponding parameter ps is below the threshold th and vice
versa. The advantage of this approach is that it also allows one-to-
many matches. A shape matching and blending example is given
for both proposed strategies in Fig. 5. The shapes of matching pairs
are blended by interpolating their scope attributes according to the
corresponding parameter ps. Position, size, and color are linearly
interpolated, while we use quaternion slerp to interpolate the shapes’
orientations with respect to their centers. For overlapping blended
shapes, an additional parameter decides if they are kept as is or if
they are merged together (which enables interesting scenarios such
as the one with multiple houses merging into one building shown
in Fig. 12). Currently, we do not support the morphing of asset
geometry attached to the shapes. We simply use the threshold to
switch between the assets from Ga and Gb. The same applies to all
textures. In the output, all blended shapes are labeled with tuple
names.

4.4. Rule Merging for Split Rules

Split rules [WWSR03, MWH∗06] are a particular type of rule to
define the successor of a shape. They are most commonly used for
architectural modeling. A split rule subdivides a shape along an axis
into a set of smaller shapes that are tightly aligned. For example,
a split rule along the y-axis can partition a façade into individual
floors. An advantage of split rules is that they can be written to
adapt to the size of shapes (encoded by the scope). For example, a
split rule can generate a reasonable number of floors for façades of
any height. An important aspect of split rules is that they partition

the scope, i.e., none of the successor shapes should overlap, and
all the space defined by the scope should be filled by successor
shapes. The previously described solution cannot guarantee these
two conditions, because the shapes produced by a split rule cannot
be transformed independent of each other. For example, a shape in
the split pattern can only become larger if other shapes shrink. Our
method for handling split rules guarantees that the output is also a
valid split pattern. We again use a parameter for semantic matches
to parametrize the solution space.

Our proposed algorithm has two steps, structure computation
and geometry computation. The first step computes a sequence of
symbols (thereby deciding on the number, type, and relative position
of symbols). The second step computes the shape attributes, such as
size.

Structure Computation For example, a string for a split pattern
of a building floor consisting of windows (W ), pillars (P), and wall
pieces (ω) could be:

{ω,W,ω,P,ω,W,ω,P,ω,W,ω,P,ω,W,ω,P,ω,W,ω}.

In building designs the split patterns consist of relevant shapes such
as ornaments or windows. For our split transformation algorithm that
is tailored towards such architectural patterns, the wall pieces that
make up the spacing between the important elements are irrelevant.
The user indicates the symbol that is used for spacing (default Wall).
The example pattern is reduced to:

{W,P,W,P,W,P,W,P,W}.

The removed wall shapes will be reinserted again in the geometry
computation step.

We propose an algorithm based on an edit distance between two
strings. We optimize the edit distance and take the lowest cost edit
sequence to compute intermediate strings. The algorithm takes two
reduced strings as input (src and dst) and produces a sequence of
intermediate strings. A single parameter value pr will define what
string of the sequence is used at the current state.

The edit distance is computed by summing the cost of elementary
edit operations:

basic edit operation symmetric version

delete

insert

switch

delete all

insert all

semantic switch

Figure 6: Edit Operations Overview of all edit operations for split
transformations. For details see Sec. 4.4.
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Figure 7: Façade Split A transformation between two hierarchical façade split patterns. The first (top left) and last (bottom right) images
show the two inputs to the algorithm, and the remaining eight images show intermediate steps. The entire transformation applies 18 gradual
changes to façade structure over the timeline. For elements with semantic matches, scope sizes and shape colors are smoothly interpolated.

• delete – Removes a single symbol from the string. Only applicable
if the symbol (or a semantic match) appears in src and dst but
more often in src.
• insert – Inserts a single symbol. Can be used if the symbol (or a

semantic match) appears in src and dst, but more often in dst.
• switch – Exchanges the positions of two different, neighboring

symbols.
• delete all – Removes all symbols with a given label that only

appears in src.
• insert all – Inserts all symbols with a given label that only appears

in dst.
• semantic switch – Replaces all symbols of a label with semanti-

cally matching symbols.

Since split rules are predominantly used for regular patterns with
repeating elements or with a clear structure, we also want edit
operations that keep such regularities intact. For strings that are
symmetric, i.e., they read the same from the left and the right (like
a palindrome), we define symmetric versions of the delete, insert,
and switch operations. These symmetrically apply the same edit
operation twice. Further, if a string is symmetric, edits that result in
a symmetric string again will be preferred over edits that break the
symmetry. All edit operations are summarized in Fig. 6. Two simple
examples of what is possible with such edits are shown in Fig. 8.

Each possible edit operation has an assigned cost that reflects
how drastic the change of the string is. The task of finding a smooth
sequence of strings that gradually changes from src to dst can be

delete all delete delete

switch switch switch semantic switch

Figure 8: Edit Sequences Two simple sequences that apply edit
operations. (top) First all pillars are removed, then the number of
windows is gradually reduced to three. (bottom) A door is moved
from the left to the right with subsequent switches, then a semantic
switch changes the door style.

cast as a shortest path problem on a graph that can be solved with
Dijkstra’s algorithm. Graph nodes represent strings while each edit
operation and its cost correspond to a weighted edge. We never store
the entire graph in memory since we do not know it upfront. We
expand it on the fly; when the search arrives at a specific string, we
grow the graph by adding all remaining neighbors of the current
node. All edit operations except the symmetric ones have a cost
of 1. If an edit breaks the string’s symmetry its cost is increased
by 100 to assure that a non-symmetry breaking sequence is given
priority (if one exists). Symmetric edit operations cost 2.5. They are
less gradual than two normal edit operations because they change
two symbols at once. However, it is often not possible to apply two
subsequent normal edit operations without breaking the symmetry.
To prevent the search from exploding, we also penalize edits that
result in strings that are longer or shorter than the two input strings.
This speeds up the search without changing its outcome.

Geometry Computation This step of the algorithm sets the shape
sizes and adds spacing between the elements by reinserting walls.
Our observation to make this algorithm work is that we not only
need to consider the sizes of shapes in the two input sets but also
the average sizes of shapes occurring in the model in general. We
fully derive all input grammars and compute the average sizes of all
shapes with a specific symbol and the average distances between
neighboring shapes. If a symbol in the output has a semantic match,
the average shape sizes from grammars Ga and Gb are interpolated
according to the parameter pr. The average distances are used to
reinsert Wall shapes of that size. If two symbols do not appear as
neighbors in the input, the average spacing between one symbol
and any other symbol is used instead. The sum of the sizes of all
resulting shapes might not exactly match the size of the parent scope.
Therefore we uniformly rescale the Wall shapes to match the size.
In Fig. 7 we show an example result of our method for transforming
split rules applied to two hierarchical patterns consisting of several
nested splits.

5. Applications & Results

We describe how we use and adapt the basic design transformation
framework to enable our two modeling applications, and we present
their results.
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Figure 9: Venice Variations Design transformations enable the generation of new variations from a small set of exemplars. The four original
Venice buildings are highlighted in green. Random design transformations combine and blend elements from the different exemplars to generate
arbitrary new building variations to populate the rest of a virtual Venice.

5.1. Variety Generation with Multiple Grammars

To compute a co-derivation of multiple input grammars, we extend
our framework. When working with n grammars, a semantic match
tuple can have a maximum size n. To derive shapes with tuple labels,
we randomly pick two of the participating grammars that define a
rule for that symbol and apply the co-derivation step described in
Sec. 4.2. To generate a random variety of shapes, we can randomly
sample parameters for the semantic matches and their thresholds
during the derivation.

We explore the concept of generating a variety of designs in the
context of urban modeling. The idea behind our approach is that it is
much easier to write deterministic grammars depicting a few designs
(for example by recreating designs from photographs) rather than
writing a stochastic grammar describing a larger shape space. Design
transformations can then be used to generate a city consisting of
new unique models of the same architectural style. The input to our
example are four deterministic exemplar grammars depicting Venice
style buildings. The output is a city consisting of about 400 buildings
(Fig. 9). The buildings are the result of randomly combining and
transforming parts of the different Venice grammars.

To compute the design transformations we use the shape blending
algorithm from Sec. 4.3 for the block and roof rules and the split
rule merging algorithm from Sec. 4.4 for the façade rules.

global timeline

semantic match 1

semantic match 2

0 t 1

ts1 tth1

ts2 tth2 te2

Figure 10: User Interface A sketch of the user interface for making
transformation sequences. The transformation of the first semantic
match is gradually executed over the time range [ts1 ,1] and has not
started at t. The transformation for the second semantic match is
active at t since t ∈ [ts2 , te2 ]. tth1 and tth2 represent the thresholds that
control discrete decisions. For semantic match 2, asset geometry
and textures are taken from the second grammar since t > tth2 .

5.2. Transformation Sequences

One application of our work is to compute a transformation sequence
between the design of one grammar and the design of another. There
are two conflicting goals for designing transformation sequences.
First, all intermediate designs should be valid. Second, the transi-
tions between intermediate designs should be as smooth as possible.
For example, a valid building design needs to have windows of a
certain minimum size, which requires discontinuities in the trans-
formation sequence. However, these should be limited as much as
possible to favor smoothness. Similar animations are often used as
special effects in the entertainment and movie industry. We control
transformation sequences by a global timeline parameter t ∈ [0,1].
All individual transformation parameters for each semantic match
are derived from the global timeline. The user has the possibility
to change the default mapping by adjusting start and end times and
thresholds. By default all parameters span the full range and all
thresholds are set to 0.5. Fig. 10 illustrates the user interface.

We show transformation sequences for building and plant models.
All sequences can have alternative interpolations paths. See Fig. 3
and the Sternwarte example described in the following.

Farm→ Castle In Fig. 11 a farm transforms into a castle. Both
consist of several mass models that are matched as follows: Shed and
MainBuilding symbols match MainHall, CastleWall, and Gate
symbols, and Silo corresponds to Tower.

Residential Houses→ High-Rise Fig. 12 shows the transition of
a group of several small residential houses into fewer but larger
apartment blocks. From there the scene transforms into a high-
rise building. Merging the buildings together in such a fashion is
facilitated by one-to-many matches.

Chain of Transformations We use four procedural buildings to
create transformations between them: the Sternwarte building de-
signed by Semper, two modern residential buildings, and a Hausman-
nian building from Paris. Transforming the buildings in the given
order leads to three transformation sequences that can be concate-
nated together as shown in Fig. 13. An alternative transformation of
the first part, in which all façade elements change before the mass
models, is shown in Fig. 14.
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Tree L-Systems The first plant transformation sequence (Fig. 1)
is based on two procedural models presented by Honda [Hon71]
and by Aono and Kunii [AK84]. The example illustrates how a
monopodial branching pattern smoothly changes into a sympodial
one. In both cases, an apex will always create exactly two offspring
branches.

Flower L-Systems A more complex plant example (Fig. 15) is in-
spired by the L-systems in Figs. 1.26 and 3.14 in Prusinkiewicz and
Lindenmayer’s book [PL90]. Not only does this example feature
leaves and blossoms whose colors, shapes, and sizes are interpo-
lated, but the branching structure is also more complicated. In each
iteration, the first grammar grows each apex into two subsequent
internodes and three new apexes, one between the internodes and
two at the end of the outer internode. The other grammar grows
an apex into an internode followed by one younger and one older
apex. At the next iteration the older apex recursively repeats the
branching, while the younger apex grows into an older one (which
will only expand later). The rules have to be carefully matched so
that the merge and blend steps happen after every iteration for the
first L-system but only after every other iteration for the second
L-system.

5.3. Quantitative Results

Our implementation of design transformations builds on a newly
designed procedural modeling system that combines elements of
CGA Shape, G2 [KPK10], and L-systems. We implemented the
framework in C++ and used a 2012 MacBookPro to measure the
running times. See Tab. 1 for the timings of our algorithm and other
quantitative information of the examples in the paper.

Name
Figs.

Time [s]

#Terminals×
10

3

#Rules
#Matches

%NT w. Match

#Params

#Edits

Tree L-Systems 1 0.11 0.5 23 6 39 10 0
Fine-grained Variations 2, 3 0.05 0.6 34 4 24 10 0/6
Façade Split 7 0.02 0.2 51 15 54 30 0
Venice Variations 9 0.06 0.8 108 15 46 25 0
Farm→ Castle 11 0.18 3.3 117 20 24 50 22
Houses→ High-rise 1 12 0.20 1.8 48 9 38 14 3
Houses→ High-rise 2 12 0.23 2.9 49 9 37 14 4
Sternwarte Chain 1 13, 14 0.15 1.0 107 21 36 39 17/23
Sternwarte Chain 2 13 0.06 0.7 60 12 40 22 4
Sternwarte Chain 3 13 0.10 1.5 85 13 27 23 7
Flower L-Systems 15 0.04 0.3 42 8 39 18 4

Table 1: Results We list the following results (and their correspond-
ing figures): the average computation time per transformed model
(mean over 200 frames or variations), the average number of ter-
minals shapes in the design, the number of rules of all involved
grammars, the number of semantic matches, the average percentage
of rules with matches (%NT w. Match), the number of parameters,
and the number of parameters adjusted by the user (#Edits). If a
result has two different interpolation paths, we show two different
numbers of user edits. The percentage of rules with matches is an
indicator of the sparsity of the correspondences. It cannot simply
be inferred from the number of rules and semantic matches since
certain rules are part of more than one match. The number of pa-
rameters hints at the large size of the shape spaces. Comparatively
few user edits are usually sufficient to get a reasonable result.

6. Discussion

Our two applications clearly show how design transformations facili-
tate the creative process of combining and merging parts of different
grammars. It is important to note that our framework does not need
stochastic grammars as input but works directly with deterministic
grammars. While we can also apply our method to stochastic gram-
mars, modeling deterministic grammars is much easier for the user.
Therefore, our framework can help a user to accelerate modeling
larger environments because the time-consuming modeling step of
extending deterministic grammars to stochastic ones can be omitted.

Difference to L-Systems Our design transformations are not di-
rectly applied to L-systems. Instead we recreate the procedural plant
descriptions using our grammar. The main reason is because tradi-
tional L-systems derive a complete model as a string in a first pass
and then interpret the string as a geometric model in a second pass.
In contrast, our grammar interpreter provides a geometric interpre-
tation at every intermediate step, as required by our transformation
framework. Plant models also require two minor changes in the
derivation. First, rotations are not interpolated around shape centers,
but are interpolated around the attachment points at the scope ori-
gins. Second, the output of a merging operation needs to be a valid
branching structure. This can be achieved by enforcing connectivity
as a constraint in the merging step.

Limitations & Future Work Our work has several limitations and
possibilities for improvements. First, it would be better if semantic
matches could be found fully automatically without any manual
annotations. This is a very hard problem since one single mismatch
can impair the result. Some initial results for a related problem were
presented by Alhashim et al. [ALX∗14, AXZ∗15]. However, this
problem becomes significantly more difficult for our inputs since
semantic matches might exist between parts of the design that are
geometrically and structurally different. Second, we aim for trans-
formation sequences that are as smooth as possible, but there are
still noticeable discrete changes when transforming one model into
another. The reason is that many objects, such as windows, cannot
realistically grow from zero size, but they need to start appearing
with a realistic minimum size. This leads to some discontinuities in
the transformation.

7. Conclusions

We present design transformations as a modeling tool for rule-based
procedural modeling. On the application side, we show two improve-
ments of the state of the art. First, we show how design transforma-
tions can create a larger set of variations from a set of input designs
than previous work. Second, we show how to compute fine-grained
transformation sequences between two input designs that cannot be
generated with previous work. We describe two main components
that enable design transformations: grammar co-derivation and rule
merging. The results show example design transformations for a
variety of building and plant models.
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Figure 11: Farm→ Castle A farm gradually transforms into a castle. The farm consists of six mass model components (house parts, sheds,
and silos) and the castle of eight (towers, walls, and main halls).

Figure 12: Houses→ High-rise A transformation from several small residential houses into apartment blocks that eventually converge into a
high-rise office building. For this scene we allow one-to-many shape matches, and we decide to collapse intersecting mass model shapes.

Figure 13: Sternwarte Chain An animation sequence that consists of several sequential transformations. Semper’s Sternwarte design is first
changed into a white modern building, then into a red modern building, and finally into a Hausmannian building.

Figure 14: Sternwarte Chain 1 Alternative An alternative interpolation path for the same transformation as shown in the first row of Fig. 13.
This time all façade rules are transformed before any of the mass model rules.

Figure 15: Flower L-Systems A more complicated transformation sequence that gradually changes the output of one flower L-system into
another. Design transformations do not only blend the overall tree structure but also the smaller leaf and blossom shapes. What further
complicates the transformation is that the growing rules for both flowers are structurally very different.
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P.: Inverse Procedural Modeling by Automatic Generation of L-systems.
Comp. Graph. Forum (2010). 2

[SM15] SCHWARZ M., MÜLLER P.: Advanced Procedural Modeling of
Architecture. ACM Trans. Graph. (2015). 2

[SMR04] SEMPER G., MALLGRAVE H., ROBINSON M.: Style: Style in
the Technical and Tectonic Arts; or, Practical Aesthetics. Getty Research
Institute, 2004. 1

[Sti75] STINY G. N.: Pictorial and Formal Aspects of Shape and Shape
Grammars and Aesthetic Systems. PhD thesis, University of California,
Los Angeles, 1975. 2

[Sti82] STINY G. N.: Spatial Relations and Grammars. Environment and
Planning B (1982). 2

[STKP11] SIMON L., TEBOUL O., KOUTSOURAKIS P., PARAGIOS N.:
Random Exploration of the Procedural Space for Single-View 3D Model-
ing of Buildings. IJCV (2011). 2

[TGY∗09] TALTON J. O., GIBSON D., YANG L., HANRAHAN P.,
KOLTUN V.: Exploratory Modeling with Collaborative Design Spaces.
ACM Trans. Graph. (2009). 3

[TKZ∗13] THALLER W., KRISPEL U., ZMUGG R., HAVEMANN S.,
FELLNER D. W.: Shape Grammars on Convex Polyhedra. Comput-
ers & Graphics (2013). 2

[TLL∗11] TALTON J. O., LOU Y., LESSER S., DUKE J., MĚCH R.,
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