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Non-obtuse Remeshing with Centroidal
Voronoi Tessellation

Dong-Ming Yan, Peter Wonka

Abstract—We present a novel remeshing algorithm that avoids triangles with small (acute) angles and those with large (obtuse)
angles. Our solution is based on an extension of Centroidal Voronoi Tesselation (CVT). We augment the original CVT formulation
with a penalty term that penalizes short Voronoi edges, while the CVT term helps to avoid small angles. Our results show
significant improvements in remeshing quality over the state of the art.

F

1 INTRODUCTION

Polygonal geometry processing has contributed many
useful techniques to the generation, manipulation,
and manufacture of three-dimensional (3D) models.
Examples are mesh smoothing, mesh deformation,
parameterization, surface approximation, and mesh
segmentation [1]. A significant number of these tech-
niques is based on solving PDEs with the Laplacian
matrix involved in the computation. Many recent
remeshing techniques therefore focus on eliminating
triangles with small angles. The condition number
of the Laplacian matrix is directly affected by such
small angles and even a single bad triangle can
have a big impact on the computation [2]. Somewhat
surprisingly, there is very little work on triangular
remeshing that avoids large (obtuse) angles, even
though obtuse angles have a similar bad impact on the
computation. For example, the correctness of the fast-
marching method depends on the quality of the mesh.
Obtuse angles in the mesh might violate the order of
processing the nodes. The defacto standard to set up
the Laplacian matrix is to use the cotan Laplacian [3].
The cotan Laplacian is guaranteed to yield positive
values if no obtuse triangles are present. Otherwise,
negative values might occur, requiring special treat-
ment in many common algorithms, e.g., [4].

In this paper, we present a novel remeshing tech-
nique that avoids both small (acute) angles (< 30◦)
and large (obtuse) angles (≥ 90◦). Our main idea is
to add an additional penalty term to improve state-
of-the-art Centroidal Voronoi Tesselation (CVT)-based
remeshing. To prevent obtuse angles, we penalize
short edges in the dual mesh, the Voronoi diagram.
Our results show that we can produce very good
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remeshing results on a wide range of models and
significantly improve upon the state of the art.

2 RELATED WORK

There are many techniques to remesh a surface, e.g.,
mesh simplification [5], mesh optimization with lo-
cal operations [6], the active-front based method [7],
Delaunay insertion algorithms [8] and variational
approaches. The remeshing techniques can also be
classified as isotropic or anisotropic [9], [10]. In this
paper, we focus on isotropic remeshing. A complete
survey of all remeshing techniques is beyond the
scope of this paper. We concentrate on approaches
to isotropic remeshing that are based on CVT. We
refer the reader to a survey paper [11] for more
details about remeshing and a text book [12] for the
fundamentals of the Delaunay triangulation and the
Voronoi diagram.

Centroidal Voronoi tessellation [13] has been used
as starting point for many remeshing techniques.
The difference between the available methods is in
how the Voronoi diagram on surfaces is approximat-
ed. Parameterization-based approaches [14], [15], [16],
[17] first parameterize the 3D mesh locally or globally,
and then perform Lloyd iterations [18] in the two-
dimensional (2D) parameter domain and finally map
the 2D samples back to the original 3D surface. Rong
et al. [19] propose the use of hyperbolic space as the
parameter domain. Parametrization-based approaches
are fast and efficient, but they suffer from the dis-
tortion introduced by the parameterization. Instead
of parametrizing the 3D surface, Valette et al. [20]
directly cluster triangles of a 3D mesh and compute
an approximated CVT on the mesh surface.

Another way of computing CVT on surfaces
is to use the centroidal Geodesic Voronoi Diagram
(GVD) [21], [22], [23]. Although the centroidal GVD
can sometimes generate good-quality meshes, there
is no direct link between the meshing quality and
the centroidal GVD, since the quality of the remeshed
surfaces is measured with the Euclidean metric. While
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Fig. 1. Non-obtuse remeshing of the Botijo model with 5K vertices and 10K triangles. The pink triangles are
obtuse and the blue triangles have small angles, i.e., less than 30 degrees. (a) Input mesh with 6K triangles; (b)
result of CVT after 300 iterations (8 obtuse triangles); (c) result of feature-sensitive CVT after 200 iterations (231
obtuse triangles and 6 triangles with small angles); and (d) our non-obtuse remeshing result with 100 iterations.
Our result has no obtuse and no small angles.

future work might generate good remeshing results
using geodesic distances, currently the methods based
on Euclidean distances create superior results. More-
over, we are not aware of any existing work that uses
a geodesic metric to generate non-obtuse remeshings
on surfaces.

To build a state-of-the-art remeshing technique, we
believe that it is best to compute the exact Restricted
Voronoi Diagram (RVD) [24] and not to rely on approx-
imations. For efficient optimization of CVT energy,
Liu et al. [25] propose to use a Newton-like solver,
e.g., L-BFGS. Based on these two techniques, an ef-
ficient remeshing framework, which overcomes the
drawbacks of previous parameterization-based and
discrete clustering-based methods, can be developed.
Lévy and Bonneel [26] propose the Voronoi paral-
lel linear enumeration that uses Approximate Nearest
Neighbor (ANN) search instead of Delaunay triangu-
lation to improve the efficiency of the RVD compu-
tation. Lévy [27] further improves the robustness of
RVD computation using a combination of arithmetic
filters, expansion arithmetics and symbolic perturba-
tion. More recently, Yan et al. [28] propose the local-
ized RVD that enables remeshing with a low number
of polygons. The RVD framework is also used for
blue-noise sampling and remeshing on surfaces [29],
[30], [31], [32], polynomial surface fitting [33] and the
modeling of minimal surfaces [34].

A related concept is “well-centered” triangulation
in which circumscribed centers have to be located
inside the corresponding triangles. Note that “well-
centered” and “non-obtuse” triangle meshes are e-

quivalent if vertex weights are not considered. Sieger
et al. [35] propose to remove the short Voronoi edges
by minimizing the summed squared distances be-
tween inscribed and circumscribed centers of each
triangle to improve the condition number of the
Laplacian matrix. Vanderzee et al. [36] study the
theoretical aspect of well-centered triangulations in
Euclidean space. Sun et al. [37] propose to reduce the
number of obtuse triangles in anisotropic remeshing
by replacing the Euclidean metric with a hexagonal
Minkowski metric. In the context of weighted trian-
gulation optimization, Mullen et al. [38] propose to
use the power diagram and the regular triangula-
tion to compute well-centered primal/dual meshes.
More recently, de Goes et al. [4] improve primal/dual
meshes using weighted triangulation. However, both
methods cannot guarantee the non-obtuse property of
the optimized meshes.

However, none of the methods discussed above
is able to generate a mesh without obtuse triangles,
which is very important in mesh processing, e.g.,
FEM simulation [39]. Non-obtuse meshing has been
investigated in the 2D plane [40], [41], [42], [43],
but this work does not directly apply to our 3D
remeshing problem. The only approach for isotropic
surface remeshing we are aware of is [44], which
uses the quadric-based mesh decimation algorithm
to generate non-obtuse meshes. Unfortunately, this
method cannot prevent small angles. Here, we ad-
dress the problem of generating high-quality meshes,
while avoiding both small angles and large angles.
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3 REMESHING FRAMEWORK
Considering the huge amount of literature on remesh-
ing, it is a daunting task to determine the state of
the art. In this section, we propose a combination
of multiple published techniques that we believe
gives the best results among the currently published
methods and we explain why obtuse triangles cannot
be avoided. The building blocks we propose to use
are: 1) CVT 2) The exact Restricted Voronoi Diagram
(RVD) 3) The Feature-Sensitive CVT extension and 4)
Optimization based on L-BFGS.

The input is a mesh surface, M = {F, V}, and a
set of samples, X = {xi}n

i=1, generated on M. M is
a two-manifold triangular mesh consisting of a set of
vertices, V, and faces, F. The goal is to compute the
CVT of the samples on the surface and to extract a
primal mesh from the optimized samples that satisfies
certain properties.

3.1 Centroidal Voronoi tessellation
Centroidal Voronoi tessellation of n distinct points (or
seeds), X = {xi}n

i=1 in R3, is a special kind of Voronoi
tessellation that minimizes the following energy func-
tion [13]:

FCVT(X) =
n

∑
i=1

∫
Ωi

ρ(x)‖x− xi‖2 dσ, (1)

where Ωi = {x ∈ R3 | ‖x− xi‖ ≤ ‖x− xj‖, ∀j 6= i} is
the Voronoi cell of point xi, and ρ(x) ≥ 0 is a density
function defined over the domain.

3.2 Restricted Voronoi diagram
To compute the CVT on mesh surfaces, we have to
restrict the Voronoi diagram on surfaces, called a
restricted Voronoi diagram (RVD) [45]. It is defined as
the intersection of the 3D Voronoi diagram, Ω = {Ωi},
and the mesh surface, i.e., Ω|M = Ω∩M = {Ωi |M}.
Each triangle in the input surface is split and assigned
to the incident Voronoi cells. Fig. 2 shows an example
of RVD. The dual of RVD is the primal triangulation,
called the restricted Delaunay triangulation (RDT).
RDT is the actual output of the remeshing framework.

3.3 Feature-sensitive CVT extension
Feature-sensitive CVT is proposed by [10] to inject
normal anisotropy into the original CVT energy func-
tion as follows:

FCVTf s(X) =
n

∑
i=1

∑
f∈Ωi |M

∫
f

ρ(x)‖As(N f )(x− xi)‖2 dσ,

(2)
where N f is the normal of a triangle, f , used for inte-
gration (see Fig. 2) and As(N) = (s− 1)NNt + I3× 3.
The parameter s ≥ 1 controls the weight of normal
anisotropy. We set s = 5 in all our experimental results
as suggested in [10].

Fig. 2. Illustration of the RVD computation. All input
triangles are assigned to their incident Voronoi cell(s).
Some triangles are split in the process (middle). Split-
ting such a triangle produces multiple smaller triangles
used for computing the integral of the energy function
(dashed white triangles in the right).

3.4 L-BFGS optimization
A straightforward CVT implementation using Lloyd
iterations moves vertices to the centroids of their
corresponding Voronoi cells. This is a gradient-decent
algorithm with linear convergence [13]. Liu et al. [25]
prove that the energy term has C2 smoothness and
can therefore be optimized using a quasi-Newton-
like solver, such as L-BFGS [46]. Since the newly
introduced primal penalty term in Eqn. 3 is also
quadratic, our objective function can be minimized
efficiently by quasi-Newton solvers.

4 METHODOLOGY

In this section, we first describe our novel penalty
term and give further implementation details on how
the penalty term is embedded into the remeshing
framework.

4.1 Penalty term
As discussed in the previous section, the minimization
of CVT energy is not sufficient to remove obtuse
triangles, especially when using non-uniform density
functions. By analyzing the configurations of CVT,
we can observe that the longest edge of an obtuse
triangle is always dual to a short Voronoi edge. An
example is shown in Fig. 3. Inspired by this simple
observation, we propose to add a penalty term in
the CVT energy function for the primal triangulation
RDT. This term penalizes the short Voronoi edges. The
modified CVT energy function for eliminating obtuse
triangles is defined as follows:

F(X) = FCVTf s(X) + λ R(X), (3)

where R(X) is the penalty term designed for prevent-
ing short Voronoi edges. It is defined as

R(X) =
n

∑
i=1
‖ ∑
(xi ,xj)∈ RDT

wi,j(xi − xj)‖2, (4)

where wi,j =
‖(xi ,xj)‖

‖dual(xi ,xj)‖+ε
. Here, a small value, ε, is

used to avoid the denominator becoming zero. Also,
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Fig. 3. Illustration of the relationship between a short
Voronoi edge and an obtuse triangle. The obtuse trian-
gle is shown in red, and the Voronoi edge that is dual
to the longest edge is shown in white.

(xi, xj) is an edge in the triangulation and dual(xi, xj)
is its dual edge.

In this formulation, the short Voronoi edges will
contribute more energy and tend to shrink the corre-
sponding primal edges to make the triangle more uni-
form. Note that a restricted Voronoi edge, dual(xi, xj),
might not be a single segment. It might consist of a
sequence of segments of the neighboring restricted
Voronoi cells over the mesh surface. We found that
the weight, λ ∈ [0.1, 1], in Eqn. 3 gives satisfying
results in all experiments. Fig. 4 shows the effect of
varying parameter λ. Note that in a recent paper [47],
Renka proposed a simple method that minimizes the
variance in the triangle area, which has a similar effect
with the CVT formulation. However, as shown in
that paper, the obtuse triangles cannot be completely
eliminated.

Fig. 4. Illustration of the effectiveness of the weight, λ.
Left: λ = 0 is identical to CVT; middle: an appropriate
value of λ = 1 eliminates obtuse triangles while ap-
proximating the input mesh well; right: a larger value of
λ = 10 smoothes out the details.

4.2 Implementation details
We use feature-sensitive CVT introduced in Sec. 3.3
together with our newly introduced penalty term (see
Sec 4.1), which improves both the mesh quality and
the approximation fidelity. In general, the feature-
sensitive CVT extension results in better Hausdorff
distance, but sacrifices some of the angle quality of

CVT. This can also be observed in our results de-
scribed in Sec. 5. For the RVD computation, we use
the latest improved version presented in [28], which
is able to handle surfaces containing thin sheets and
self-intersections. There are four main steps in our
framework.
Initial sampling. In this step, we randomly generate
n initial points on the mesh surface, with respect to
a given density function, ρ(x), defined on the mesh
vertices and piecewise-linearly interpolated over the
mesh triangles. For non-uniform remeshing, we use
the local feature size (lfs) [48], which is a popular
choice in the literature.
CVT optimization. We optimize the initial point set
with the CVT optimizer without the penalty term
and the feature-sensitive constraint, typically for 30-50
iterations.
Valence optimization. The CVT energy function is
nonconvex and has many local minima. Empirally,
we can observe that vertices with valences smaller
than 5 or larger than 7, which are called bad-valence
vertices in this paper, almost always correpsond to
undesirable local minima. It has been proven that
the global minimum of the CVT energy function is
a regular hexagonal pattern [49] in the plane. While
no similar proof exists for surfaces, other authors
observed that removing bad-valence vertices by per-
turbation reduces the CVT energy [50]. We solve
this problem by perturbing the bad-valence vertices
locally. For each bad-valence vertex, we randomly
sample a new vertex inside the triangles in the one-
ring neighborhood. The newly sampled vertex is pro-
jected onto the input mesh and inserted into the
Delaunay triangulation. The old bad-valence vertex
is removed. Then Lloyd optimization is performed
locally around these vertices (e.g., 3-ring neighbor-
hood), while the others are fixed. Fig. 5 illustrates
this process. This simple method works well since
neither high valences (> 7) nor low valences (< 5) are
stable configurations. In all our tests, this simple per-
turbation can remove the bad-valence vertices without
adding/removing/teleporting other vertices, which
helps the global convergence of the optimization.

Fig. 5. Localized random optimization of bad-valence
vertices. Green: valence 6; Orange: valence 7 and
Blue: valence 5. The dark color stands for high/low va-
lences. Left: current configuration. Middle: a valence-8
vertex is perturbed. Right: after 3 steps of local Lloyd
optimization, the high-valence vertex is removed.
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Obtuse triangle removal. Once we have a well-
distributed point set, we add the penalty term in the
CVT energy function and start the second stage of
the optimization. This removes the obtuse triangles
while keeping the good global distribution of the
vertices. Finally, we optimize the points again with
the feature-sensitive CVT (Eq. 3) and the penalty term
for improving the approximation quality.

5 EXPERIMENTAL RESULTS

In this section, we first analyze the remeshing quality
of the state-of-the-art CVT framework. Next, we e-
valuate our algorithm and compare our method with
other remeshing techniques. The proposed approach
is implemented in C++. The results shown in this
section are generated on an Intel X5680 Dual-Core
3.33GHz CPU with 4GB memory and a 64-bit Win-
dows 7 operating system.
Problem analysis. We analyze the remeshing quality
of the proposed state-of-the-art remeshing framework
with and without the feature-sensitive extension. We
observe that the feature-sensitive extension always
has significantly more obtuse triangles, so we show
only the results without the feature-sensitive exten-
sion here. We let the optimizer run until convergence.
Fig. 6 shows the number of obtuse triangles in relation
to the number of iterations. We can see that CVT
cannot eliminate obtuse triangles even after hundreds
of iterations, especially in non-uniform remeshing.

Fig. 6. The number of obtuse triangles in relation to
the number of iterations in CVT optimization. We can
see that CVT is able to get rid of obtuse triangles in
a smooth domain with a small number of points, e.g.,
the sphere with 1K points. However, if we increase
the complexity of the domain, as well as the number
of points, CVT is not able to generate non-obtuse
remeshing even with thousands of iterations.

Evaluation. We use the names CVT and CVT f s
to denote the methods described in Sec. 3 and
CVTnob to refer to our new method. We also com-
pare our results with results from Approximate Cen-
troidal Voronoi Diagram (ACVD) [20], Capacity Con-
strained CVT (CVTcap) [29], Maximal Poisson-disk Sam-
pling (MPS) [30], [53] and Farthest Point Optimization

(FPO) [31]. In the first comparison, we choose two
example models for both uniform remeshing and
adaptive remeshing. The comparison is summarized
in Table 1. We can see that our algorithm is almost as
good as CVT f s in approximating the original mesh,
while having significantly better angle quality than
any other method, assuming that both small and
large angles are considered undesirable. In the second
comparison, we only compare our method with CVT
and CVT f s (See Table 2). Selected meshing results are
visualized in Fig. 7 and more results are shown in the
additional materials.
Parameter analysis. There are two main parameters
used in our approach. One is the coefficient λ of
the penalty term (Eq. 2) and the other is the pa-
rameter s that controls the scale of feature-sensitive
CVT. Assume that in the asymptotical setting, each
restricted Voronoi cell becomes a regular hexagon, and
the density function is a constant inside each cell.
Denote r as the edge length of a Voronoi edge. Then,
CVT energy is proportional to r4, while the penalty
term is proportional to r2. Since r2 ∝ |M|

n (|M| is the
area of the mesh surface), we multiply the penalty
term by |M|n for normalization.

Another important parameter is the feature-
sensitive parameter, s, in Eq. 2. Fig. 8 shows the
influence of this parameter. In this example, we set
λ = 1 and increase the value of s. As shown in the
figure, a larger s will introduce more badly shaped
triangles, but with smaller approximation errors, i.e.,
smaller Hausdorff distances.
Sharp feature handling. We provide an alternative
way to handle the sharp features of CAD models or
boundaries. We assume that the sharp features are
tagged by the user or given as input. We restrict
the vertices whose restricted Voronoi cells intersect
with feature curves strictly on the feature, similar to
previous approaches [24], [28]. The vertices of the
input mesh that are incident to (more than) three fea-
ture edges are identified as corners and are sampled
and kept unchanged during the optimization process.
Fig. 9 shows an example of boundary handling of
curved surfaces, and Fig. 11 shows another example of
handling CAD models with structured feature skele-
tons.
Comparison. We first compare our results with
decimation-based, non-obtuse remeshing [44] in Ta-
ble 3. Our results always have minimal angles larger
than 30◦ while the results of [44] do not have this
property. Further, our approximation quality is better.

Model Method |X| |4| θmin θ<30o % dH(×10−2)

Horse
[44] 9944 19880 15.03 0.18 1.31

Ours 9944 19884 38.4 0 0.46

TABLE 3
A comparison with non-obtuse mesh decimation [44].
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Fig. 7. Comparison of remeshing with CVT, CVT f s and our method: (top to bottom) uniform remeshing of the
Elk model (1K vertices); and adaptive remeshing of Kitten (9.8K vertices); Homer (7.5K vertices), and Bunny (8K
vertices). The obtuse triangles are shown in pink, and triangles with θmin ≤ 30◦ are shown in blue. From left to
right: input meshes, results of CVT, CVT f s and CVTnob (ours).
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Model Method |X| |4| |4obt| Qmin Qavg θmin θ̄min θmax θ<30o % θ>90o % V567% dRMS(× 10−3) dH(×10−2)

Venus

ACVD 3.0K 6.0K 466 0.25 0.84 14.4 47.6 146.3 0.36 7.77 98.4 0.76 0.74
MPS 3.0K 6.0K 0 0.67 0.85 32.7 48.6 90.0 0 0 100 0.67 0.68
FPO 3.0K 6.0K 377 0.57 0.85 34.2 50.8 107.1 0 6.29 99.7 0.64 0.71

CVTcap 3.0K 6.0K 1.0K 0.39 0.78 20.5 43.3 128.9 4.41 17.7 98.8 0.68 0.61
CVT 3.0K 6.0K 15 0.65 0.93 39.5 54.5 97.3 0 0.25 100 0.76 0.59

CVT f s 3.0K 6.0K 49 0.61 0.91 27.2 53.0 102.7 0.03 0.82 99.8 0.32 0.31
CVTnob 3.0K 6.0K 0 0.73 0.96 37.4 55.9 86.1 0 0 100 0.62 0.56

Genus

ACVD 6.5K 13K 913 0.47 0.85 29.0 48.1 118.6 0.06 7.02 98.1 0.45 0.44
MPS 6.5K 13K 0 0.66 0.85 31.3 48.5 90.0 0 0 100 0.41 0.65
FPO 6.5K 13K 737 0.55 0.86 33.1 50.9 109.3 0 6.14 99.6 0.42 0.59

CVTcap 6.5K 13K 2.3K 0.38 0.78 16.8 42.6 130.0 5.91 18.3 98.6 0.44 0.45
CVT 6.5K 13K 27 0.66 0.94 38.7 54.6 96.8 0 0.21 100 0.47 0.52

CVT f s 6.5K 13K 50 0.62 0.93 34.1 54.5 100.3 0 0.38 100 0.21 0.22
CVTnob 6.5K 13K 0 0.72 0.95 36.0 55.6 88.9 0 0 100 0.23 0.31

Homer

ACVD 7.5K 15K 2.7K 0.04 0.80 2.11 44.4 174.1 6.18 17.7 94.4 0.69 0.33
MPS 7.5K 15K 1.6K 0.56 0.82 30.1 46.4 105.8 0 10.8 100 0.52 0.30
FPO 7.5K 15K 1.2K 0.50 0.85 28.2 49.9 116.0 0.01 7.52 98.9 0.43 0.30

CVTcap 7,5K 15K 1.6K 0.37 0.83 21.3 46.2 131.1 0.98 10.66 95.8 0.37 0.20
CVT 7.5K 15K 56 0.65 0.93 38.1 54.0 98.2 0 0.37 100 0.49 0.20

CVT f s 7.5K 15K 108 0.50 0.91 27.4 52.5 113.1 0.01 7.21 99.9 0.24 0.16
CVTnob 7.5K 15K 0 0.69 0.94 33.7 54.5 85.4 0 0 100 0.31 0.17

Bunny

ACVD 8.0K 16K 3.3K 0.10 0.77 4.76 42.4 165.9 9.96 20.5 92.2 0.61 0.59
MPS 8.3K 16.6K 1.3K 0.400 0.83 33.9 53.9 103.0 0 0.29 99.8 0.47 0.34
FPO 8.0K 16K 1.6K 0.39 0.84 22.6 48.7 128.5 0.56 0.29 98.0 0.45 0.34

CVTcap 8.0K 16K 1.4K 0.39 0.84 15.6 47.3 125.1 1.04 8.46 98.7 0.43 0.24
CVT 8.0K 16K 10 0.64 0.93 34.8 54.2 98.8 0 0.06 99.9 0.53 0.37

CVT f s 8.0K 16K 492 0.32 0.89 12.5 50.6 128.8 0.43 3.06 99.5 0.43 0.26
CVTnob 8.0K 16K 0 0.75 0.94 35.5 55.0 84.2 0 0 100 0.44 0.49

TABLE 1
Comparison of remeshing quality with previous techniques. The best result of each measurement is marked in
bold font. |X| is the number of vertices; |4| is the number of triangles; |4obt| is the number of obtuse triangles;
Qmin is the minimal triangle quality, where the quality of a triangle is Q(t) = 6√

3
St

ptht
, where St is the area of t, pt

is the half-perimeter of t and ht the the longest edge length of t [51]; Qavg is the average of the triangle qualities;
θmin is the minimal angle; θ̄min is the average of minimal angle of each triangle; θmax is the maximal angle,

θ<30o % is the percentage of triangles with angles smaller than 30o; θ>90o % is the percentage of obtuse triangles;
V567% is the percentage of the valence 5, 6, and 7 vertices; dRMS is the root mean square distance, and dH is

the Hausdorff distance between the remesh and the input surface, which is measured by Metro [52].

Model Method |X| |4| |4obt| Qmin Qavg θmin θ̄min θmax θ<30o % θ>90o % V567% dRMS(× 10−3) dH(×10−2)

Elk
CVT 1.0K 2.0K 8 0.66 0.92 36.9 53.7 95.0 0 0.40 97.3 3.64 1.48

CVT f s 1.0K 2.0K 29 0.50 0.90 22.6 51.6 104.0 0.70 1.45 97.5 1.58 0.75
CVTnob 1.0K 2.0K 0 0.70 0.93 36.2 53.9 88.2 0 0 97.8 1.93 1.14

Botijo
CVT 5.0K 10K 8 0.67 0.93 38.2 54.2 94.9 0 0.08 100 0.74 0.33

CVT f s 5.0K 10K 231 0.51 0.89 26.5 51.1 114.8 0.06 2.31 99.7 0.36 0.33
CVTnob 5.0K 10K 0 0.70 0.94 31.1 54.2 88.4 0 0 100 0.48 0.32

Rockerarm
CVT 5.8K 11.6K 5 0.67 0.94 37.9 54.7 94.7 0 0.04 100 0.79 0.46

CVT f s 5.8K 11.6K 391 0.28 0.88 10.5 50.5 117.5 0.49 3.37 99.3 0.28 0.31
CVTnob 5.8K 11.6K 0 0.74 0.94 31.7 54.9 89.9 0 0 100 0.53 0.36

Kitten
CVT 9.8K 19.6K 6 0.67 0.94 39.2 54.8 95.6 0 0.03 99.9 0.32 0.22

CVT f s 9.8K 19.6K 119 0.52 0.93 26.4 53.9 112.6 0.03 0.61 99.9 0.17 0.14
CVTnob 9.8K 19.6K 0 0.71 0.95 33.6 55.3 87.1 0 0 100 0.23 0.21

TABLE 2
Comparison of remeshing quality with other CVT-based approaches. Definitions of all symbols are given in the

legend to Table 1.

While the results of MPS [30], [53] do not show
an optimization for non-obtuse triangles, the method

can be configured to eliminate non-obtuse triangles by
random resampling. We can observe that MPS is able
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Fig. 8. Illustration of the remeshing results with different parameters for feature-sensitive CVT. (a) result of CVT:
s = 1, λ = 0, |4obt| = 79, dH = 0.41%; (b) result with CVT + penalty term: s = 1, λ = 1, |4obt| = 0, dH = 0.36%,
(c, d, e) result of CVT f s + penalty term: s = 5, λ = 1, |4obt| = 0, dH = 0.33%; s = 8, λ = 1, |4obt| = 113, dH =
0.20%; s = 10, λ = 1, |4obt| = 210, dH = 0.18%.

Fig. 9. Boundary and feature handling. Left: input
mesh (the boundary curve is shown in green); middle:
result of CVT with 14 obtuse triangles; right: our non-
obtuse remeshing.

to generate non-obtuse meshes for uniform remeshing
problems. However, it never converges for adaptive
remeshing.

Finally, we compare our results with the results of
recent work using weighted triangulations that aims
at generating well-centered meshes [4], which is an
improvement over primal/dual Hodge-Optimized Tri-
angulation (HOT) [38]. As shown in Fig. 10, although
the weighted triangulation approach creates meshes
with elegant primal/dual structures, it is not able to
eliminate all the obtuse triangles. Since the weighted
center of each triangle is not the circumcenter any-
more, the well-centered mesh is typically not a non-
obtuse mesh in the context of weighted triangulations.
Limitations. Our algorithm might not be successful
in the presence of noise or when the density function
changes dramatically (see Fig. 11 (top)). Our algo-
rithm cannot eliminate all obtuse triangles along the
sharp features. One example is the uniform remeshing
of the Joint model as shown in Fig. 11 (bottom left).
This model contains sharp features and planar regions

Fig. 10. Comparison with well-centered meshes gen-
erated by weighted triangulation [4]. The same number
of vertices are used in the remeshing. Left: input mesh
with 687 obtuse triangles (16.0%); middle: result of the
weighted triangulation [4] with 17 triangles with small
angles (< 30o) and 93 obtuse triangles (2.17%); right:
result of our non-obtuse remeshing.

on each side of the features. In this case, once the
valence of a vertex on a sharp feature is less than
six, there will be an obtuse angle on the side where
the vertex has only one neighbor. Another failure of
adaptive remeshing of the Sculpt models is shown in
the bottom right of Fig. 11. Some of these limitations
could be dealt with in future work, but certain con-
figurations of sharp features inherently lead to small
undesirable angles (e.g., two feature curves joining
with a small angle). Another limitation is that we do
not provide a theoretical proof of the convergence
analysis of the proposed primal penalty term that
could guarantee the max/min angle bounds of the
resulting meshes. We hope to address these limitations
in future work.
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Fig. 11. Unsatisfactory examples. Top row: our al-
gorithm fails to eliminate all the obtuse triangles of
the Gargoyle model, which has dramatically changed
density functions (left to right: input, result of CVT
with 591 bad triangles and final result with 143 bad
triangles). As shown in the top right, an obtuse angle
appears in the transitional region where the size of the
triangles changes quickly. Bottom row: Uniform and
adaptive remeshing of the Joint and Sculpt models
with 4K vertices, respectively. Our algorithm cannot
eliminate all the obtuse triangles that are adjacent to
sharp features. The angle bounds are [35.4o, 105.0o]
and [31.5o, 101.1o] for the Joint and Sculpt models,
respectively.

6 CONCLUSION AND FUTURE WORK

We present a novel remeshing algorithm that reduces
the number of triangles with small angles (less than
30 degrees) and triangles with large (obtuse) angles.
We augment the original CVT formulation by a primal
penalty term preventing short Voronoi edges. In this
formulation, the dual term helps us to avoid small
angles and the primal term helps us to avoid large
angles. In future work, we plan to look for new
applications of our non-obtuse remeshing technique
and extend our concept of primal/dual optimization
to volumetric tetrahedral mesh generation, which is
preferred in applications such as fluid simulation.
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[27] B. Lévy, “Restricted voronoi diagrams for (re)-meshing sur-
faces and volumes,” in Curves and Surfaces, 2014, code down-
load: http://gforge.inria.fr/projects/geogram/.

[28] D.-M. Yan, G. Bao, X. Zhang, and P. Wonka, “Low-resolution
remeshing using the localized restricted Voronoi diagram,”
IEEE Trans. on Vis. and Comp. Graphics, vol. 20, no. 10, pp.
418–1427, 2014.

[29] Z. Chen, Z. Yuan, Y.-K. Choi, L. Liu, and W. Wang, “Variational
blue noise sampling,” IEEE Trans. on Vis. and Comp. Graphics,
vol. 18, no. 10, pp. 1784–1796, 2012.

[30] D.-M. Yan and P. Wonka, “Gap processing for adaptive maxi-
mal Poisson-disk sampling,” ACM Trans. on Graphics, vol. 32,
no. 5, pp. 148:1–148:15, 2013.

[31] D.-M. Yan, J. Guo, X. Jia, X. Zhang, and P. Wonka, “Blue-
noise remeshing with farthest point optimization,” Computer
Graphics Forum (Proc. SGP), vol. 33, no. 5, pp. 167–176, 2014.

[32] S. Zhang, J. Guo, H. Zhang, X. Jia, D.-M. Yan, J.-H. Yong,
and P. Wonka, “Capacity constrained blue-noise sampling on
surfaces,” Computers & Graphics, 2015, accepted.

[33] V. Nivoliers, D.-M. Yan, and B. Lévy, “Fitting polynomial
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