
Additional Material for

Inverse Procedural Modeling of Facade Layouts
Fuzhang Wu1,2 ∗ Dong-Ming Yan2,1 † Weiming Dong1 ‡ Xiaopeng Zhang1 § Peter Wonka2,3 ¶

1LIAMA-NLPR, CAS Institute of Automation, China 2KAUST, KSA 3Arizona State Univ., USA

1 The Facade Model of Mueller et al.

Mueller et al. [Müller et al. 2007] assume that the facade can be
split into a single irregular grid of rectangles, called tiles. In each
tile, there is preferably a single element, e.g., window or door. This
works well for a large set of facades, but it does not work as well
for more complex facades or facades modeled in greater detail (as
is the case in our test dataset). If a facade does not conform to the
assumed facade model, facade elements have to be split. We do not
consider this as valid solution in our paper. Here are some examples
of layouts that cannot be represented well:

• facades with more than one grid of elements where the grids
are not aligned

• facades with interleaved grids

• signs that span multiple floors or columns of elements

• facades with ornaments, e.g., pilasters, between windows

• facades with columns that span multiple floors

• facades with high doors that span multiple floors

• ornaments that go across the whole facade

• ornaments that have a higher repetition frequency than the
base grid of tiles, e.g., triglyphs

In Fig. 1 we show examples that fit well into the model of Mueller
et al. In Fig. 2 we show examples that do not work well.

2 Generating a single deterministic grammar
vs. combining multiple deterministic gram-
mars

There are two problems that can be distinguished in our context.
The first problem is the following: Given a single layout as input,
how can we automatically extract a deterministic split grammar to
represent the input layout? The second problem is the following:
Given a set of deterministic split grammars that each describe a
facade layout, how can we combine the deterministic split gram-
mars to generate a stochastic split grammar? The stochastic split

∗Fuzhang.Wu@nlpr.ia.ac.cn
†yandongming@gmail.com
‡Weiming.Dong@nlpr.ia.ac.cn
§Xiaopeng.Zhang@nlpr.ia.ac.cn
¶pwonka@gmail.com

(a) (b)

Figure 1: Facade examples that conform to the model of Mueller
et al. These two facades can be split into a grid of tiles. However,
if the letters on the first floor of the example to the right is modeled
as separate element, the grid structure would also no longer work.

grammar should be able to generate all input layouts as well as new
plausible layouts. Our paper tackles the first problem. By contrast,
Talton et al. [Talton et al. 2012] and Martinovic et al. [Martinovic
and Van Gool 2013] tackle the second problem. However, the sec-
ond problem requires a solution to the first problem as input. There-
fore, Martinovic et al. also propose a solution to the first question.
We compare our results to this solution in our paper. For the second
question, our paper has a different philosophy. While Martinovic
(and also Talton) show very nice initial results, the methods only
work when certain assumptions about the input data are met. We
were not able to get high-quality results by automatically merging
grammars. The facade layouts need to be simple, have few details,
and few variations. This is not the case for our test dataset. We
therefore opted for a semi-automatic approach as our main model-
ing tool to generate variations.

3 Structure learning vs. parameter learning

We consider the question of determining the sizing parameters of a
splitting rule as parameter learning. Structure learning is concerned
with questions such as:

• What rule types do we choose from a set of possible rules?
We have multiple different types, including the split rule and
the repeat rule

• In what direction (x or y) do we split next?

• How many elements should a split rule split?

Since we have to address all the aforementioned problems, our ap-
proach has to determine the structure of the grammar. This is not a
facade parsing approach.

4 Comparison to Teboul et al.

We cite Teboul et al. [Teboul et al. 2011] and recognize this paper as
important previous work. Still, Teboul et al. and our paper actually
deal with different problemes. In Teboul et al.’s paper, an image is
labeled via parsing a given shape grammar. The structure of this

(a) (b)

(c) (d)

Figure 2: Facade examples that show instances where the model
of Mueller et al. would lead to the splitting of facade elements. (a)
has large elements in the first floor and smaller windows in the top
floors. There is no meaningful grid structure. (b) The door spans
two floors and the columns on the top span two floors. The columns
themselves also create an interleaved grid of elements that cannot
be modeled. e) The irregular arrangements of the windows makes it
impossible to find vertical splits that do not cut through a window.
e) The structure around the door and the fine glass paneling make
splitting into tiles impossible.

grammar is almost completely pre-determined. In contrast, we at-
tempt to solve an inverse problem. Our algorithm takes a labeled
facade image (layout) as input and tries to automatically extract the
smallest grammar. When finding the solution for our problem, we
tried a Q-learning method to optimize our objective function. But
since we extract an N-split grammar, the state always has too many
actions to choose during the exploration. This leads to the algo-
rithm taking a long time to converge or being unable to search for
the smallest grammar. To avoid this drawback, we propose an ap-
proximate DP algorithm to solve our optimization problem and the
results show that this algorithm works well.

5 Comparison to Zhang et al.

Here, we compare our work to the recent work of Zhang et
al. [Zhang et al. 2013]. The goal of both papers is similar. They both
take a two-dimensional box abstraction of a facade layout. Both pa-
pers attempt to infer a facade model that is useful for modeling and
analysis.

• Representation: One main idea of Zhang et al. is the use of
grids to structure a facade image. Particularly clever is the
idea of using grids with irregular spacing as a design primi-
tive. This way to structure the data has a lot of potential. By
contrast, our paper does not propose a new representation for
facade layouts; we simply rely on an existing one.

• Analysis: To derive the hierarchical structure, Zhang et al.
introduce a new symmetry score. This is also a novel con-
tribution of their paper, but it is controversial. It is unclear
why mirror symmetry should be a driving force behind fa-
cade analysis. We would argue that our choice of translational
symmetry is much more in line with how architecture is con-
structed and analyzed.

• Methodology: Zhang et al. propose to use greedy search and
genetic algorithms. Our approach is based on approximate
dynamic programming. We believe that genetic algorithms
are much simpler to design than approximate dynamic pro-
gramming algorithms, but they also have many drawbacks
documented in the literature. A direct comparison of the al-
gorithms is not possible however.

• Procedural Modeling: Zhang et al. have some nice initial ex-
amples on how to resize facade layouts. However, the neces-
sary technical framework on how to resize / retarget / reshuf-
fle layouts is not fully developed yet. This technical con-
tent might be beyond the scope of a single paper, but until
it is developed, the challenging aspects of alignment, resiz-
ing, and overlap avoidance might be obstacles in adopting the
proposed representation for procedural modeling.

• Test Datasets: Zhang et al. built a very nice test dataset that is
one order of magnitude larger than ours. However, the amount
of detail in the data is lower. Zhang et al. only extract win-
dows, so that some of the simpler facades are constructed out
of fewer than 10 boxes. By contrast, we consider ornaments,
ledges, and pillars in the design. That makes the problem
more challenging, because a lot of layout questions arise from
the relative positioning of windows with respect to ornaments
and pillars. It is not clear from the description in Zhang et
al. how and if the method would actually be able to handle
facade designs where there is not a 1:1 relationship between
windows, pillars, and ornaments. Such a non-trivial relation-
ship exists in at least half of our test dataset and we typically
have an order of magnitude more details (boxes) in each fa-
cade that we consider to be part of the design.

6 More Extensive Parameter Evaluation

We present a more extensive parameter evaluation in Table 1.

7 Challenges

We would like to illustrate some challenges using example configu-
rations. A very powerful idea for automatically generating compact
string grammars is a simple greedy heuristic. Long subsequences
that occur multiple times are replaced by a new non-terminal and
a new rule is added for this non-terminal. The classical example is
shown below:

Start→ abcd abcd abce abef

The heuristic replacement considers the lengths of subsequences
and the number of occurrences. In this example, ab occurs four
times, abc occurs three times, and abcd occurs two times. One
popular heuristic would suggest to replace abc as the best tradeoff
between sequence length and number of occurrences:

Start→ Ad Ad Ae abef
A→ abc

There are many variations of this fundamental idea, but most algo-
rithms use the idea of identifying and replacing long repeated sub-
strings. When applying this idea to facade layouts, we encounter
multiple problems. 1. Iteratively replacing substrings in 1d string
grammars transforms one valid grammar to another valid grammar.
This is not the case for facade layouts. A general region cannot be
explained by a single rule (See Fig. 3). 2. The process of region re-
placement by itself does not directly lead to valid grammars. Most
importantly, it is not clear how different rule types will emerge from
a region replacement process. Additionally, region replacement can

param
Expert Users Non − expert Users

User1 User2 User3 User4 User5 User6 User7
P R F P R F P R F P R F P R F P R F P R F

|α|=0 0.45 0.53 0.48 0.47 0.66 0.53 0.37 0.45 0.4 0.38 0.37 0.36 0.28 0.37 0.29 0.33 0.27 0.28 0.24 0.16 0.18
costop = 0 0.53 0.5 0.51 0.49 0.56 0.51 0.46 0.47 0.46 0.45 0.35 0.38 0.32 0.31 0.29 0.39 0.28 0.32 0.33 0.18 0.22

split = 0.1, repeat = 0.1 0.59 0.55 0.56 0.58 0.66 0.61 0.52 0.54 0.52 0.48 0.38 0.41 0.37 0.37 0.35 0.41 0.29 0.33 0.33 0.18 0.23
split = 0.1, repeat = 0.5 0.73 0.72 0.71 0.73 0.85 0.77 0.54 0.57 0.55 0.57 0.46 0.49 0.42 0.44 0.4 0.45 0.32 0.37 0.35 0.19 0.24
split = 0.1, repeat = 1 0.62 0.58 0.59 0.56 0.65 0.59 0.52 0.54 0.52 0.48 0.36 0.40 0.37 0.37 0.35 0.43 0.29 0.34 0.34 0.18 0.22

split = 0.1, repeat = 10 0.31 0.46 0.36 0.29 0.51 0.36 0.27 0.43 0.32 0.27 0.34 0.29 0.17 0.31 0.21 0.25 0.26 0.24 0.17 0.15 0.15
split = 1, repeat = 0.1 0.67 0.62 0.64 0.66 0.76 0.69 0.54 0.55 0.53 0.53 0.41 0.45 0.41 0.41 0.38 0.46 0.31 0.36 0.33 0.18 0.23
split = 1, repeat = 1 0.67 0.63 0.64 0.67 0.76 0.70 0.55 0.56 0.55 0.54 0.43 0.46 0.41 0.42 0.38 0.47 0.32 0.37 0.34 0.19 0.23

split = 1, repeat = 10 0.34 0.49 0.39 0.34 0.58 0.41 0.28 0.42 0.32 0.30 0.36 0.31 0.20 0.34 0.24 0.28 0.26 0.26 0.18 0.15 0.16
split = 10, repeat = 0.1 0.67 0.63 0.64 0.71 0.81 0.74 0.55 0.56 0.55 0.54 0.43 0.46 0.41 0.43 0.39 0.46 0.31 0.36 0.34 0.18 0.23
split = 10, repeat = 1 0.67 0.64 0.64 0.71 0.81 0.74 0.55 0.57 0.55 0.56 0.44 0.48 0.41 0.42 0.39 0.45 0.31 0.35 0.35 0.19 0.24
split = 10, repeat = 10 0.69 0.63 0.65 0.72 0.80 0.74 0.54 0.55 0.54 0.56 0.44 0.48 0.42 0.43 0.4 0.43 0.29 0.34 0.34 0.18 0.23

Table 1: We use the precision-recall test to evaluate different parameters for our grammars. From the table, we can notice that the grammars
become worse when we omit either the first term (cost of the rule) or the second term (cost per symbol in the rule) of the proposed cost
function. Overall, the grammars tend to be more similar with the expert user grammars when the repeat rule is cheaper than the split rule.

cost(repeat) = 0.5 cost(split) = 0.1
split #rule #split #repeat repeat #rule #split #repeat
0.2 23 18 5 0.2 25 20 5
1 20 15 5 2 22 19 3
2 19 14 5 5 22 21 1

Table 2: Statistics for different parameter values. We use the seventh layout from the 10 selected facades in the main paper as input to
generate the grammars.

e

a b c d

f
a b c

a b c

e

f
A

A

e

e

dA

(a) (b)

Figure 3: Iteratively replacing substrings in one-dimensional
string grammars transforms one valid grammar to another valid
grammar. For two-dimensional facade layouts, this is no longer the
case. Neither the region (a) nor the region after replacement (b)
can be explained by a single rule.

generate configurations that are locked and cannot be split in ver-
tical or horizontal directions (See Fig. 4). 3. String length is a
useful and straightforward measure to derive cost heuristics. In fa-
cade layouts, the analogue would be the number of terminal regions
in a compound region. However, depending on the arrangement of
the regions, the cost of processing a compound region differs. See
Fig. 4. 4. While we ultimately solve the two-dimensional problem
with rules that split in only one direction, the problem is inherently
two-dimensional and cannot be solved by breaking it down into
one-dimensional problems in a straightforward manner. In Fig. 5,
we show an example layout together with its abstraction as col-
umn and floor sequence. Processing the design as either columns
or floors does not lead to a meaningful solution. 5) Facade layouts
are not regular grids but more general box layouts.

8 Performance on automatically generated
facade segmentations

Since our algorithm only considers the labeled terminal regions as
the input, any facade layout with correct labels can be used as the
input, no matter what kinds of tools (automatic or semi-automatic
tools) they are generated with. However, we pass all automatically
generated input layouts to our QP algorithm to regularize the fa-

a

a b

b c

d

B2

A1

B1 A1 A2

B1

A2 B2

C C
B

A

A

B

c d

(a) (b)

Figure 4: a) An example of two regions that have the same number
of terminal regions (4), but that require grammars of different cost
due to the different two-dimensional arrangements. b) After replac-
ing regions A1, A2, B1, and B2 the design becomes locked, i.e., no
splitting rules can explain the layout.

c f c f c f

b f b f b f

c c b b a a

C1 C2 C3 C4 C5 C6

c f

b f

a a

C5 C6

c f

b f

c c

A A

c f

b f

b b

F3

F2

F1

(a) (b)

Figure 5: We show a layout (left) with three floors and eight
columns. Additionally, we show the abstraction of the layout as
a sequence of columns C1,C2,C3,C4,C5,C6,C5,C6 and a se-
quence of floors F1, F2, F3. Analyzing the floors would result in
a split into three separate floors. Analyzing the columns would de-
tect a repetition of C5C6 and group these columns together (right).
Treating the facade as two one-dimensional problems gives no hint
at the correct solution, i.e., that the floors F2 and F3 have to be pro-
cessed together to extract a repeat pattern that spans both floors.

cade (improve alignment, spacing, and sizing of elements) in a pre-
process. The regularization of the input layout is not a part of the
core algorithm presented in the paper. In the following examples,

(a) (b) (c)

Figure 6: Three facades that were segmented by an automatic seg-
mentation algorithm [Teboul et al. 2010]. We use these three fa-
cades to automatically extract grammars.

F #T
PL BGL S M Ours

cost #rule cost #rule cost #rule cost #rule
(a) 147 149.4 24 152 20 172.3 33 131.2 36
(b) 71 77.5 15 76.9 9 77.3 13 61.1 11
(c) 98 115.9 19 105 10 143.6 36 87.1 19

Table 3: We compare the compactness of the extracted grammars
to other methods (PL [Weissenberg et al. 2013], BGL [Martinovic
and Van Gool 2013], and SM [Zhang et al. 2013]). From the table,
we can observe that our algorithm generates good results even with
an automatic segmentation as input.

we use the automatic facade segmentation generated by Teboul et
al. [Teboul et al. 2010] as the input layout. We randomly choose
three facades, see Fig. 6. Using our cost function, our algorithm still
performs best compared with alternative methods, see Table 3). We
believe that our algorithm is completely independent of the nature
of the input layout, but it is not independent from the regularization
done in a pre-process. The other algorithms also perform better
with our regularization. We therefore use the regularized layout as
input for all the different methods in our tests.

9 Note on Carrascosa et al.

A challenge of our formulation is that even though we structure the
facade as nested one-dimensional structures, the problem is funda-
mentally two-dimensional and two of the dominant heuristics used
in the one-dimensional case do not work directly [Carrascosa et al.
2010]. First, greedy grouping of repeated sub-regions does not
usually lead to a valid grammar. Second, the nice dynamic pro-
gramming solution to the word occurrence problem of Carrascosa
et al. [2012] is NP-complete in our two-dimensional setting and
cannot be solved in closed form.

Automatic method Expert Non − expert
PL BGL S M IPM Ours U1 U2 U3 U4 U5 U6 U7

S 5.11 6.31 4.03 7.03 8.23 7.69 8.86 7.2 6.8 6.4 5.31 3.57
E 0.2 0.34 0.11 0.49 0.77 0.51 0.83 0.43 0.43 0.29 0.23 0.06
C 136.3 123.5 173.1 109.1 77.4 86 79.4 98.8 103.4 126.8 126.1 154.2

Table 7: We invited seven expert users to evaluate both the au-
tomatically and manually extracted grammars from five facades.
Each user was asked to score each grammar on a scale from 1 to
10. We report the average score for all facades and all users in the
row S. To calibrate the scores, we also asked each user if the result
can be considered to be expert work / high quality (reported in row
E).

10 Robustness evaluation

In this section, we present more additional results to evaluate the
robustness of our method. We first show a series of examples in
which more and more noise is added into an initially good auto-
matic parsing result of a facade (see Fig. 13). This will illustrate
the point where the automatic regularization fails. We can do that
for different imperfections (e.g. position and size).

Next, we show how the grammar size increases as the facade gets
more complex and when the algorithm fails in case the input is not
splitable (see Fig. 14). This is a global property of the input layout.
If at least one splitting solution exists, the algorithm will produce
some output.

References
Carrascosa, R., Coste, F., Gallé, M., and Infante-Lopez, G. 2010.

Choosing word occurrences for the smallest grammar problem.
In Proceedings of the 4th international conference on Language
and Automata Theory and Applications, 154–165.

Carrascosa, R., Coste, F., Gallé, M., and Infante-Lopez, G. 2012.
Searching for smallest grammars on large sequences and appli-
cation to DNA. Journal of Discrete Algorithms 11, 62 – 72.

Martinovic, A., and Van Gool, L. 2013. Bayesian grammar learn-
ing for inverse procedural modeling. In Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on, 201–
208.

Müller, P., Zeng, G., Wonka, P., and Gool, L. V. 2007. Image-
based procedural modeling of facades. ACM TOG (SIGGRAPH)
26, 3, 85:1–85:9.

Talton, J. O., Yang, L., Kumar, R., Lim, M., Goodman, N. D., and
Mech, R. 2012. Learning design patterns with bayesian grammar
induction. In UIST, 63–74.

Teboul, O., Simon, L., Koutsourakis, P., and Paragios, N. 2010.
Segmentation of building facades using procedural shape priors.
In CVPR, 3105 –3112.

Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., and Para-
gios, N. 2011. Shape grammar parsing via reinforcement learn-
ing. In CVPR, 2273–2280.

Weissenberg, J., Riemenschneider, H., Prasad, M., and Van Gool,
L. 2013. Is there a procedural logic to architecture? In CVPR,
185–192.

Zhang, H., Xu, K., Jiang, W., Lin, J., Cohen-Or, D., and Chen,
B. 2013. Layered analysis of irregular facades via symmetry
maximization. ACM TOG (SIGGRAPH) 32, 4, 121:1–121:10.

(a) Input layout (b) Variation 1 (c) Variation 2 (d) Variation 3

(e) Input layout (f) Variation 1 (g) Variation 2 (h) Variation 3

Figure 7: An example of resizing variations generated from the input layout. (e)-(h) show the corresponding rendered results.

(a) Input layout (b) Variation 1 (c) Variation 2 (d) Variation 3

(e) Input layout (f) Variation 1 (g) Variation 2 (h) Variation 3

Figure 8: An example of resizing variations generated from the input layout. (e)-(h) show the corresponding rendered results.

(a) Input layout (b) Variation 1 (c) Variation 2 (d) Variation 3

(e) Input layout (f) Variation 1 (g) Variation 2 (h) Variation 3

Figure 9: An example of resizing variations generated from the input layout. (e)-(h) show the corresponding rendered results.

(a) Input layout (b) Variation after grammar editing (c) Rendered result

Figure 10: An example of grammar editing.

(a) Input layout (b) Variation after grammar editing (c) Rendered result

Figure 11: An example of grammar editing.

F #T
ADP(2K) ADP(10K) Importance Sampling (2K) Importance Sampling (10K) Greedy

cost #rule time(s) cost #rule time(s) cost #rule time(s) cost #rule time(s) cost #rule time(s)
(a) 357 105.5/105.5 33/33 1.7/1.8 105.5/105.5 33/33 8.1/8.9 105.5/113 33/37 1.9/2.0 105.6/113.1 34/37 9.5/10.1 113.8 36 0.03
(b) 409 33.7/33.7 11/11 0.8/0.8 33.7/33.7 11/11 3.6/3.7 33.7/33.7 11/11 0.8/0.8 33.7/33.7 11/11 3.8/3.9 33.7 11 0.02
(c) 313 72.2/81.3 20/24 1.7/1.8 72.0/81.7 18/23 8.3/8.6 80.9/86.4 23/26 2.0/2.0 78.2/83.8 20/24 9.6/9.9 83.8 20 0.02
(d) 636 138.3/139.8 47/48 3.5/3.6 134.6/138.4 44/47 17.0/17.6 144.6/151.6 50/54 4.0/4.3 143.3/152.0 47/52 20.5/20.9 151.4 48 0.05
(e) 950 45.1/45.5 17/17 0.7/0.7 45.1/45.1 17/17 3.7/3.7 45.1/51.1 17/21 0.8/0.8 47.2/50.0 18/20 3.9/4.0 55.5 21 0.02
(f) 294 51.9/52.6 15/16 0.8/0.9 51.3/52.5 15/16 4.0/4.3 51.4/59.6 16/20 0.8/0.9 54.1/67.7 19/24 4.8/4.9 58.6 20 0.01
(g) 348 67/71.1 23/24 1.1/1.1 67/71 23/24 5.3/5.6 70.4/75.1 24/26 1.2/1.2 69.3/73.4 23/25 5.9/6.1 83.3 27 0.05
(h) 823 40.1/40.9 13/13 0.8/0.8 40.1/41.4 13/13 3.8/4.0 44/46.8 14/16 0.8/0.9 44/46.4 13/15 3.7/4.2 40.8 12 0.04
(i) 1296 61.9/61.9 19/19 1.0/1.1 61.9/61.9 19/19 4.9/5.5 61.9/65.6 19/20 1.1/1.2 61.9/66.2 19/21 5.4/5.9 65.9 19 0.03
(j) 618 50.0/50.0 14/14 1.2/1.2 50.0/50.0 14/14 5.6/5.9 50/50 14/14 1.4/1.5 50.0/50.0 14/14 6.5/6.7 50 14 0.03
(k) 495 30.6/33.4 10/12 1.1/1.2 30.6/32.9 10/11 4.5/5.0 30.6/38.0 10/14 1.4/1.4 30.6/37.1 10/12 5.9/6.2 31.2 10 0.02
(l) 497 50.8/53.3 11/12 1.3/1.3 50.8/51.67 11/11 5.6/6.1 50.8/53.8 11/12 1.3/1.4 50.8/53.1 11/12 6.0/6.4 55.9 13 0.07
(m) 2040 16.8/16.8 8/8 1.2/1.2 16.8/16.8 8/8 3.5/4.1 21.6/22.5 10/10 0.9/0.9 21.6/22.8 10/10 3.2/3.5 25.7 11 0.2
(n) 185 111.3/125.5 34/41 5.2/5.5 107.3/123.3 30/40 23.7/25.1 110.7/132.2 33/43 7.0/7.2 110.3/127.3 29/40 32.8/34.3 112.3 29 0.08
(o) 634 68.7/68.7 17/17 1.1/1.2 68.7/68.7 17/17 5.4/5.9 76.9/85.0 19/24 1.3/1.4 71.8/86.6 18/24 6.2/6.8 74.8 18 0.04
(p) 816 56.9/63.5 19/19 0.8/0.9 56.9/62.7 19/19 3.9/4.3 61.6/65.2 20/21 0.9/0.9 61.5/64 19/20 4.3/4.7 79.8 22 0.01
(q) 655 48/51.7 13/14 0.9/0.9 48/51.2 13/14 4.2/4.4 50.2/55.6 14/16 0.9/1.0 50.2/55.52 14/15 5.0/5.1 48.9 11 0.02
(r) 514 74.3/79.8 15/18 2.3/2.3 74.3/77.1 15/16 10.8/11.3 74.3/84.2 15/20 2.6/2.8 74.3/85.4 15/20 13.3/13.9 119.8 30 0.02
(s) 312 67.2/67.9 16/17 1.0/1.1 67.2/69.2 16/18 5.3/5.7 72.5/81.0 19/23 1.2/1.3 74.7/82.8 21/24 6.3/6.4 69.2 16 0.02
(t) 60 58/58.6 18/18 2.8/3 58/60.2 18/19 13.6/15.9 58/63.4 18/21 4.6/4.8 58/61.6 18/20 22.6/23.5 96 28 0.03
(u) 68 59.1/65.9 13/16 2.5/2.6 57.4/65 13/15 12.8/13.2 59.4/85.4 16/26 3.3/3.3 65.3/87.4 15/25 15.7/16.2 61 12 0.02
(v) 57 60/68.82 10/16 1.6/1.7 60/65.8 10/14 7.9/8.1 63.1/75.9 11/20 2.0/2.1 64.4/80.39 14/23 9.9/10.3 101.5 25 0.01
(w) 267 78.6/82.8 17/19 1.1/1.2 77.5/81.5 17/19 5.6/5.9 77.7/86.2 17/21 1.2/1.3 78.6/92.5 18/24 6.1/6.3 80.8 20 0.01
(x) 1266 112.8/114.9 38/39 3.5/3.7 112.8/115.1 38/40 16.8/17.5 116/121.4 40/42 4.4/4.6 112.8/119.12 38/41 20.4/21.0 134.6 40 0.1
avg 579 64.9/68.1 18/20 1.6/1.7 64.4/67.5 18/19 7.8/8.3 67.1/74.2 19/23 1.9/2.08 67.1/74.6 19/23 9.6/10 76.1 21 0.03

Table 4: Comparison details for different methods for the facades not evaluated in the paper. See Fig. 15 for the input layouts. Best values
are highlighted. We report values for ten different runs. If a cell has two values, the first value is the optimum from among the ten runs.
The second value is the average. The compared methods are the following. ADP(2K): approximate dynamic programming with 2K runs.
ADP(10K): approximate dynamic programming with 10K runs. Importance Sampling(2K) and Importance Sampling(10K) and Greedy are
described in the paper.

F Automatic grammar Manual grammar
PL BGL S M IPM Ours User1 User2 User3 User4 User5 User6 User7

(a) 125.5 130.9 141.9 163.2 105.5 110.8 105.5 141.3 140.4 167.7 149 169.7
(b) 65.5 49.6 127.9 55 33.7 37.9 33.7 63.8 44.4 52.2 128.1 64.5
(c) 122.9 124.2 137.7 95.1 72 78 76.2 77.1 105.8 145 113.6 157.3
(d) 183.2 174.6 328.9 171.6 134.6 168.8 120.4 148.7 156.4 209.5 197.3 225.3
(e) 76.4 70.8 84.5 60.8 45.1 49.2 48 59.8 52.4 64.6 55.6 68.4
(f) 65.2 73.1 71.7 63.2 51.3 52.3 52.3 53.4 55.6 60.7 65.5 71.2
(g) 106.2 93.5 147.9 97.5 67 66.5 69.6 78.6 75.9 105.7 116.6 130.9
(h) 68.9 59.6 77 58.2 40.1 42.3 40.9 41.3 43.5 53.7 43.5 76.8
(i) 105.3 97.1 127.5 77.3 61.9 78.6 67.2 83.9 70.3 83.7 69.2 90.5
(j) 116 125.1 141.4 74.6 50 53 56 50 51.1 176.3 73.3 66.9
(k) 52.4 49.8 74.2 48.2 30.6 30.6 32.2 32.2 75.5 45.1 123.2 140.9
(l) 139.4 148.6 134.4 65.1 50.8 55.7 59.8 57.8 62.2 90.6 76.1 84.8

(m) 61.7 60.4 98.1 31.8 16.8 18 18 20 20 27.8 25.6 24.9
(n) 166.3 153.2 219.1 116.1 107.3 126.8 107.3 119.6 122.8 126.7 154.2 145.1
(o) 105.4 97.7 104.7 83.7 68.7 75.4 68.7 74.7 84.2 84.3 91.2 95.5
(p) 82.4 81.7 110.9 83 56.9 57.2 69.7 74 86.4 86.5 81.8 101.8
(q) 83.5 61.7 84.9 87.6 48 54.2 55.6 77.7 82.9 59.1 80.7 84.1
(r) 92.3 86.1 141 100.6 74.3 74.6 78.3 77.2 89 119.4 93.4 159.1
(s) 86 73.9 83.8 73.3 67.2 71.1 68.7 72.2 75.8 73.3 73.6 101.4
(t) 88.8 75.1 93 101.7 58 61.2 59 58 61.2 61.6 107.2 102.3
(u) 75.4 62.6 113.2 66 57.4 58.3 60.9 59.1 62.4 64.2 119.1 73.2
(v) 69.2 63.7 86.7 64.8 60 63.7 63.7 97.7 101 63.7 70.4 129.9
(w) 93.4 90.2 133.5 88.4 77.5 80.8 85.3 84.7 94.5 100.4 93.9 104.3
(x) 255.7 227.9 336.1 293.1 112.8 140.5 114.2 121.4 202.6 203 211 390.3

(avg) 103.6 97.1 133.3 92.5 64.5 71.1 67.1 76 84 96.9 100.5 119.1

Table 5: We compare the compactness of the grammar to manually generated grammars by seven users and other automatic algorithms:
PL [Weissenberg et al. 2013], BGL [Martinovic and Van Gool 2013], SM [Zhang et al. 2013], and IPM [Müller et al. 2007]. We report the
cost in each cell of the table. The best values are highlighted in bold.

F #N − terminal #Common Precision Recall
Ours PL BGL S M Expert Ours PL BGL S M Ours PL BGL S M Ours PL BGL S M

(a) 59 89 45 57 58 43 23 23 21 0.73 0.26 0.51 0.37 0.74 0.4 0.4 0.36
(b) 21 31 20 47 20 12 2 1 1 0.57 0.06 0.05 0.02 0.6 0.1 0.05 0.05
(c) 53 48 23 36 53 30 3 3 8 0.57 0.06 0.13 0.22 0.57 0.06 0.06 0.15
(d) 79 95 48 181 89 45 43 41 29 0.57 0.45 0.85 0.16 0.51 0.48 0.46 0.33
(e) 29 23 20 80 30 27 15 15 5 0.93 0.65 0.75 0.06 0.9 0.5 0.5 0.17
(f) 33 22 19 34 31 31 9 19 9 0.94 0.41 1 0.26 1 0.29 0.61 0.29
(g) 41 31 24 44 39 39 13 9 11 0.95 0.42 0.38 0.25 1 0.33 0.23 0.28
(h) 19 14 14 71 23 17 8 3 1 0.89 0.57 0.21 0.01 0.74 0.35 0.13 0.04
(i) 34 59 20 91 48 27 5 13 8 0.79 0.08 0.65 0.09 0.56 0.1 0.27 0.17
(j) 48 63 35 37 56 45 1 11 8 0.94 0.02 0.31 0.22 0.8 0.02 0.2 0.14
(k) 22 47 43 50 22 22 1 2 6 1 0.02 0.05 0.12 1 0.05 0.09 0.27
(l) 24 59 14 114 26 24 13 14 3 1 0.22 1 0.03 0.92 0.5 0.54 0.12
(m) 136 21 18 62 155 124 19 18 44 0.91 0.9 1 0.71 0.8 0.12 0.12 0.28
(n) 99 140 37 96 98 32 7 1 11 0.32 0.05 0.03 0.11 0.33 0.07 0.01 0.11
(o) 32 20 18 41 54 25 11 18 13 0.78 0.55 1 0.32 0.46 0.2 0.33 0.24
(p) 39 20 10 38 27 17 3 6 4 0.44 0.15 0.6 0.11 0.63 0.11 0.22 0.15
(q) 29 24 11 40 25 19 6 6 4 0.66 0.25 0.55 0.1 0.76 0.24 0.24 0.16
(r) 27 40 24 55 45 11 10 13 1 0.41 0.25 0.54 0.02 0.24 0.22 0.29 0.02
(s) 24 27 16 35 30 16 3 16 13 0.67 0.11 1 0.37 0.53 0.1 0.53 0.43
(t) 23 37 23 38 25 23 4 4 1 1 0.11 0.17 0.03 0.92 0.16 0.16 0.04
(u) 18 30 10 33 20 14 1 10 6 0.78 0.03 1 0.18 0.7 0.05 0.5 0.3
(v) 21 32 7 35 19 16 1 7 1 0.76 0.03 1 0.03 0.84 0.05 0.37 0.05
(w) 38 60 16 35 37 24 8 16 15 0.63 0.13 1 0.43 0.65 0.22 0.43 0.41
(x) 70 173 124 142 67 52 1 6 9 0.74 0.01 0.05 0.06 0.78 0.01 0.09 0.13
avg 42 50 27 62 46 31 9 11 10 0.74 0.18 0.41 0.16 0.67 0.2 0.24 0.22

Table 6: We ran a precision-recall experiment to calculate the similarity between our grammar and the expert grammar. For an input facade
layout, we calculate the number of non-terminal regions that were extracted by both expert grammar and our automatic grammar, separately.
For a comparison, the precision-recall results generated by three other kinds of grammar (procedural logic (PL)[Weissenberg et al. 2013],
Bayesian grammar learning (BGL)[Martinovic et al. 2013], symmetry maximization (SM)[Zhang et al. 2013]) are also shown in the table.
These precision-recall results imply that our grammars are truly consistent with the expert grammars (ground truth).

(a) (b) (c)

Figure 12: Alignment Examples. (a) The input layout. (b) The variation result without alignment. (c) The variation result with the alignment
post-process.

(a) cost = 32 (b) cost = 43.3 (c) cost = 51.9

(d) cost = 75.7 (e) cost = 88.6 (f) cost = 82.1

(g) cost = 120.8 (h) cost = 125.1 (i) cost = 155.5

Figure 13: The grammar sizes of a facade layout with different types of random noise. (a) Input facade layout. (b) One rectangle is randomly
moved horizontally (marked as the green rectangle). (c) Two rectangles are randomly moved horizontally. (d) More rectangles are randomly
moved vertically and horizontally. (e) Both the rectangles’ positions and sizes are randomly changed. (f) Rectangles are randomly deleted
(see the blue rectangles). (g) Half of the rectangles are randomly moved. (h) All of the rectangles are randomly moved. (i) All of the
rectangles’ positions and sizes ares changed.

(a) cost = 18.3 (b) cost = 48.2 (c) cost = null

Figure 14: The grammar size increases if the input layout (a) has too much noise (b). In extreme cases, the facade layout cannot even be
split any more (c).

(a)

(b) (c) (d) (e) (f)

(h)(g) (i) (j) (k) (l)

(n) (o) (p) (q) (r)

(m) (t)(s) (u) (v) (w) (x)

Figure 15: The facade layouts used in Table 4.

