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Abstract We propose a new method for interactive image
color replacement that creates smooth and naturally lgpki
results with minimal user interaction. Our system expests a&
input a source image and rawly scribbled target color val
ues and generates high quality results in interactive .réites
achieve this goal we introduce an algorithm that preserve
pairwise distances of the signatures in the original imag@
and simultaneously maps the color to the user defined targg
values. We propose efficient sub-sampling in order to reduce
the computational load and adapt semi-supervised locallfig. 1 We show two results of the image color replacement method
linear embedding to optimize the constraints in one objecPresented in this paper. The firstimage is the original (dgpyed by
tive function. We show the application of the algorithm OnNOI’maI"I Korenhttp://www.normankoren. c?m/). In the second im-

. age we adjust the color of the sky. In the third, we also adhestolor
typical photographs and compare the results to other colgjf the grass.
replacement methods.

Keywords image processingcomputational photography This development brought about a demand for advanced im-

color manipulation interactive image editingrecoloring age processing algorithms that are powerful on the one hand,

but easy to use on the other. This includes also the manipula-

tion of the color in pictures — perhaps the most fundamental
1 Introduction image processing task ever.

Currently available commercial software, as for instance

In recent years, digital photography has become very poptAdobe Photoshof], provide manual color processing tools
lar in both the consumer as well as the professional domain#hat are relatively convenient to use, although, sill regjai
considerable amount of precise user inf(@][ They rely
on local image characteristics and do not incorporate any
global color information into the editing process. Further
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drawn on an image, which is efficiently incorporated intolows interactive editing. We also show that it delivers fesu
the editing process. The main difference of our approach tof the same or better quality as others.

the already existing work is that we propose a novel for- In the reminder of the paper we provide an overview of
mulation of the optimization problem, where we draw fromthe related work in Sectio. In Section3 we present the
the non-linear manifold learning methodology. We formu-details of our approach and discuss its further aspects. In
late the problem as a global optimization task, and we showectiond4 we present the results and compare them to other
that this task can be solved as a sparse linear system. Thisrks, and finally in Sectiob we conclude the work.
combines global editing as in An and Pellaci@i,[who

use a dense solver, and a sparse optimization as utilized |

Lischinski et al. L5, who do (E)nly Ioc:l pixel propagation. gwRelated Work

A sparse approach to global propagation has been pr&everal papers aim at automatic color transfer between im-
posed in the work of Pellacini and Lawren@]in the con-  ages, where usually one image serves as color mood source
text of measured material appearance editing. Their workvhich is transferred to the others. Reinhard et 24] pro-
was also inspired by the manifold-learning methodol®§},[ posed a simple yet effective method for this purpose based
however, their solution was not suitable for high-qualityyi  on linear adjustment of color distribution parameters.sThi
age appearance propagation as shown later in the paper ltds been improved by Xiao et ag] and Pitie and Kokaram
An and Pellacini 2]. Instead, An and Pellacini proposed [22] who applied more sophisticated probabilistic models.
a formulation which uses a dense least-squares solver thbit Pitie et al. R3] they extend their method in order to per-
allows them to propagate the affinities of all pairs of pix-form non-linear adjustment of color probability distrilmr
els to each other in order to maintain the quality. Howeverbetween images. Also Chang et &, ] presented global
their dense linear system generally does not fit into the coneolor transfer by perceptual color categorization for iesg
puter memory for common images. Their remedy is to solvend video. Yang and Peng proposed a method for color-
it approximately using the Nystrom-methotil], which is  mood transfer which preserves spatial coherence based on
not accurate at small-scale edits and does not scale well ftistogram matching39]. This idea has been extended by
large input. In contrast, the method of Lischinski et 46][  Xiao et al. B7] who solve the problem of global transfer
provides high-quality results and uses a sparse solveit butand local fidelity in two steps: histogram matching and a
propagates the edits only to spatially coherent nearbypixegradient-preserving optimization. Wang et al. proposetigl
and requires more accurate user inputs in order to performolor-mood exchange driven by predefined and labeled color
well. palettes 1] and example images8g]. Cohen-Or et al.§]
introduced a framework which uses color-harmony rules in

In this paper we provide a formulation of the optimiza- -
: . . . order to optimize the overall appearance after the user has
tion which strives for both a sparse solution as well as dloba,

o : . . : . altered some of the colors. Shapira et a¥] [proposed a so-
pixel interaction. To achieve this we interpret the imagleco . . o
. : o . lution which is based on navigation through the appearance
as a manifold in 3d space by utilizing the locally linear em-

. . . of the image in order to obtain desired results. Also auto-
bedding algorithm 26]. We show how the color-manifold : g ) .
. . . . matic methods to colorize grayscale images based on exam-
can be warped globally in order to achieve recoloring while

. . . . LS les from internetimaged4 f], and semantic annotatio

its local relationships are preserved in order to maintaén t b . ged) . B[
L have been introduced. In general, methods which transfer

appearance of the original image.

colors globally are not suitable for precise (re-)colorafg

In addition, we introduce an efficient sub-sampling strat-small objects or humans.
egy in order to achieve interactive performance. Xu et al. Other approaches try to introduce at least rough control
[38] proposed a speed-up approach to the formulation of Arover the results. Welsh et aB4] proposed a global color-
and Pellacini 2] which exploits the fact that often pixels in mood transfer aiming at colorization of grayscale imagery.
the image can be approximated by a much smaller set dfis based on texture and luminance matching across the im-
clusters. Driven by similar observations we sub-sample thages and it allows simple user interaction in the form of-rect
image in order to greatly reduce the number of color pointangular swatches, but it also fails in cases of detailedstran
to be processed. We then approximate the manifold witlfiers. Tai et al. 29,30] attempted to solve these problems by
the sub-sampled points and interpolate the remaining vaproviding a method for soft color segmentation based on a
ues. Unlike the method of Xu et al., we do not need to buildmixture of Gaussian approximation (GMM) which allow in-
piece-wise linear functions each time user provides new indirect user control. Further improvements of automatic but
put strokes. Instead, we maintain the same sub-sampling faontrollable color-mood transform based on Reinhard et al.
different user inputs, where we only update the user prois presented in13].
vided target color values. Our method has a small memory In contrast to methods mentioned above, locally control-
footprint, it scales linearly in the number of pixels, andlit  lable systems provide the user very accurate influence over
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Fig. 2 The pipeline of our algorithm - refer to Secti@for details. From left to right: input imag¥ and target color ma@. From both input
images landmarks; andc; are sampled. For all remaining pixels linear interpolatoefficients are computed. The sub-sampled input points
Xj (in L*a*b* color space) are warped towards target poigtsinder the constraint of mutual distance preservation. Neihtsy = f(x;,c;)
indicate new positions of the landmark points, here showth wld colors. Than we show the final positions and colors @fte mapping as points
y;. Finally, the output image is reconstructed from yheoint set by the previously stored linear coefficients, estad to RGB, and displayed.

Target C

the results. In general, these methods allow the user to-scri Recently, Carroll et al.4] proposed an interactive ap-
ble over the image in order to alter the appearance of similgoroach in order to decompose the input image into its Lam-
regions in some parts of the image. A simple example obertian illumination components. Since their actual coder
such an approach is the color transfer brush {vhich ap-  placement method is independent of their model, our method
plies locally the equations of Reinhard et &4, albeitits  can be seen as complementary.

modeling capacity is very limited. Wen et aBY and An
and Pellacini 8] also propose strokes driven methods for
transfer of color from local parts across images. A scribble
driven method was presented by Yatziv and Sagi\vho

introduced colorization based on chrominance blending an : bi I dictori| ls. That fi
geodesic distance. It requires quite accurate user inputs fhat combines two apparently contradictorily goals. N

order to perform well. Similar user interaction has been suc’® distance preservatiothat ensures that two color-samples

cessfully applied for grayscale colorizatid®], local image from the source imageare mapped in such a way that the

adjustment 15 and edit propagation?]. Also a bilateral _cli_ftance b((ajtweeln.thlem n thfe nﬁw image remains S|mf|lar.
filter based framework, e.g. Chen et al],[can be used to e second goal isolor transferthat aims at mapping o

recolor particular image parts. Recently, Farbman etl. [ the sampl_zs ;rom the solurce_ m;gre as near ashposguble to the
utilized diffusion distances in the framework of Lischinek user-p;or\:! ?d tar_gethvafues ;]n therget |mag(;jeT|e advan- I
al. [15] which partially allows for more global editing with tage of this idea Is the fact that re-mapped colors generally

their solver. On the other hand, they show that the us(,:lgreetaintheir local variations on_the one hand but change thei
of diffusion distance does not generally address the Iycali global appearance t-o the desired values on the othgr. All to-
problem and can be seen as a complementary approachqgthefr’ this results in very naturally looking output imsge
Euclidian distance optimization. (cf. Figures,14).
The methods of Lischinski et al. and An and Pellacini
are based on least-squares optimization and are similar 91 User Interaction
our approach. Though, we present a different formulation of
the problem by drawing from the locally linear embeddingAs observed in previous wori 2,15,40,21, 2], user edits in
approach 25,26]. The main difference of our system is the form of rough strokes have proven to be an easy and effi-
way how pixel neighborhood weights as well as how targetient way of interaction. Pellacini et a1,2] defined user
colors are incorporated into the solution. edits more generally as edit parameters that should be prop-
Further work are speed-up methods, like Xu et a8][ agated over the output image. In our system the user indi-
who proposed an acceleration to the approact2pbfsed cates the desired output appearance (color, hue, satucatio
on kd-tree-subdivision of the image, but they still utiltbe  lightness) in the form of rough strokes over the inputimage.
dense solver. Li et al14] formulate the problem as Radial- The result is a sparsely scribbled image which we hence-
Basis-Function kernels interpolation. We also utilizeesint  forth call thetarget image The expected strokes do not have
polation in the first step, but still perform global optimiza to be precise and do not have to match the boundaries of
tion in the second, since our observations have shown th#fhe underlying objects very well; only a clear assignment
pure local interpolation can provide artifacts. of the new color to an object is important. Our edits can be

3 Controllable Optimization Algorithm

H‘I this paper we introduce a strategy for color replacement
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sparse or dense, which is more similar to the way interactiomeasure and compute the distance between points in a per-
is applied in the work ofZ], while the interaction in other ceptually Euclidian color space CIELAB (L*a*b*pg] and
methods 12,15,40] has to be more precise. In general, weall norms ard_, vector norms denoted ds|.

want the user to specify the color for all image parts, even

those which should remain unchanged. Figlishows a tar-

get image on the left and an alpha mask on the right. In thé.3 Optimization Formulation

left image, the storks indicate the user input, where bagh th

changed colors of the background as well as the kept colVe want to define the mappirfgof vectorsx; to vectorsy;,
ors of the face have been scribbled. The mask indicates th@t/ch that it preserves pairwise Euclidean distances a$
only the white regions contribute target values. This kifid o Well as forcesy; to be as close as possible do This task
interaction is rather easy and intuitive, even for untrdine ¢an be formulated as minimizing the following equation:

users.
E=Y S (=l - Iv-viD*+A S I -al’, @
T ] T

3.2 Definitions whereA is a parameter that determines the relative impor-
tance of the two goals. Unfortunately, the function in Equa-

We define the source image ¥sthe targetimage @& and  tion 2 is non-smooth and thus hard to solve effectively. To

the outputimage as. The images have the sike=widthx  relaxit to a solvable problem, we replace the first terr& jn

height pixels and can also be seen as sets of poits  such that:

X1,X2, . XN Y = {Y1,¥2, ... VN ,andC = C1,C2,...CNy, ~

\gvhere aIIxi,}yi,ci e{?&Dyresii;e}in the sar{né)—dimens}ional E=S1lvi— > wjy 12+ A Dlyi— cil®. 3)

space. Note that all points, y; andc; with the same index ' ' '

correspond to each other. We want to compute a non-linedrhis equation is quadratic in terms of the unknown§ote

mappingf : RP — RY that transforms the given inputimage that with Equatior8 we do not provide a strict mathematical

X with respect to the user defined target im&y® a new reformulation of Eq2 but rather than an approximation in

imageY, such that: the locality of eachx;.
The main idea of this reformulation is to encode the ge-
fr(X,C)=Y. (1) ometric invariance in such a way that it can be expressed as

ide h finition for th , ional a quadratic term of the unknown. We do so by utilizing
we prqwde erea d? mm_on 0”_ e_genemld|mer_1§|ona the locally linear embedding algorithm (LLE%]), which
case since our algorithm is not limited to a specified num-

ber of d di ionalitv. The | ) Eenerates a manifold in the underlying space which is lin-
erot mput_an outputdimensionality. The '”Wt SPace IS Ok ar at each sample point with respect to its local neighbor-
the dimensiorD and the output space of the dimensihn

I h thad . di h hood. This is achieved by “encoding” the pairwise relations
usually suc t < D.1n Sect|0n3.6we_ Iscuss the pos- Ixi — ;|| of the original samples and their neighbors (cf. Eq.
sibility to use local image patches as poixtas well as the 2

h lor | b q defi ). into the weightswi; (cf. Eq. 3). Saul and RoweisZg]
;?asjs\c/:valzre a color image can be mapped to a user de mﬁgve shown that properly chosen weighig are invariant

. I K with | h under rotation, translation and scale. This means that each
In practice, we usually work with 3d color spaces, t usparticular output color samplg is placed in the new image
for the rest of the paper we assue- d = 3 w.l.0.g. Fur-

: X in such a way, that the distances to its neighbors reassemble
ther, we follow the argumentation which suggests that th‘?he distances of the original color sampiein the original

Euclidian norm _in RGB color space is not a good MeasUleyage as best as possible in the least squares sensd)(Fig.
for perceptual distance. Therefore, throughout the pager w

Fig. 3 Example of a source and target image. Left: we ask the user

to specify the target colors by simply drawing rough strokesr the  Fig. 4 Left: the weightswj; are computed in the original image using
original. Right: values from the selected regions (whiteye as target  the original sampleg; and their neighbors;. Right: the same weights
points. Note that also target values of non-changed poiais been  are used to best reconstruct all output samplésom their respective
specified. neighborsy; in one large linear system.
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Fig. 5 A series of results of our algorithm. The first image is thgiol (copyrighted by Norman Koretittp: //www.normankoren. com/). The
following results are obtained with optimization of the @fma-channels a* and b* only, while the L* channel is kept fribra original.

The weights can be computed for eachs a linear com- are in general edge-aware and smooth, they do not represent
bination of its nearby points; by minimizing the following  the particular point as a linear combination of its neigisbor

energy for eacly; independently: as the LLE weights do.
N Having well-defined weights, Equatidcan be mini-
F— Z\HXi _ Winsz, (4) mized. Since for each data point in the original spage
i= jeN are invariant to rotation, scaling and translation of tragp

w.r.t. its local neighbors, minimizing has locally the same
effect as of minimizinge. Globally, the manifold is bend
and in generaE is not enforced for distant points, but this
solution is even more desirable, since it allows to fulfikk th
color transfer more easily: the manifold is warped towards
the target valueg (cf. Figure2). One mightimagine this op-
eration as pulling the entire manifold on the selected fgoint
x— ZWJ' X; Hz =l ZWi (x— Xj)HZ — Z ZWjWkgjka x; towards new valueg. Since each of the selected points is
] ] ] connected to its local neighbors and each such a local vicin-
ity can be transformed linearly, the pulling process affect
the entire manifold and results in new positignahich ide-
ally respect our both goalpreservation of local distances
as well agylobal color transfer

with respect to the invariance constraiitwi; = 1 and to
the sparseness constrainf; = 0 if j ¢ N;. Here\ denotes
a (small) set of local neighbors of the poiqtin X. The
optimal weightsw;; can be computed in closed form. Due
to the mentioned constraints, we can rewrite Equadifor
one data point as:

wheregjy is an entry of a local Gram matr{® = {gj } with
elementsgj, = (X — X;j) (X—Xk) , with x; andx, as neighbors
of x. This matrix is symmetric positive semi-definite and the
weights ofx can be computed by its inversion. A more effi-
cient way is to solve a linear system of the form:

Zgjkwk =1, 3.4 Acceleration

and rescale the weights ;w; = 1. This system can be The presented algorithm is designed to work with theoret-
solved for allN D-dimensional points withk neighbors in ically all pixels in the image. Unfortunately, it would re-
togetherO(DN K3) time. In practice this system is over- quire target values for all pixels and providing such tasget
determined in the case when the number of neighbors is tedious and not desirable. Further, the computation time
bigger then the dimensionality of the space. In our appliwould be very high. In order to address both problems our
cation this is usually always the case, since we work wittapproach is a sub-sampling strategy which deals with sparse
only 3d points and we have empirically figured out that thetarget values and reduces the computational load signifjcan
number of neighbors should be about 11 in order to prottis based on the observation that all color-points can be ex
vide good results. Thus, to solve for unique weights we utipressed by linear combinations of other points. Thus, our
lize Tikhonov-regularization by adding a small multiple of idea is to determine a number of significant sample points
the identity to the coefficient matrix as proposed 2¢)[  which we calllandmark pointsand to run the optimization
This provides weights which distribute the contribution ofonly on these. The remaining points are reconstructed-as lin
the nearest points to eaghmore uniformly. ear combinations of the landmarks.

In fact, the described weighting is the main difference of ~ We determine the landmarks using the original point set
our approach to the others, e.g, Lischinski etH#][Chenet  X:we draw a random index sgt of the siz¢ 7| =M << N
al. [7], or An and Pellacini ). In those systems the weight- from the fullindex sef = {1...N} of all points. In order to
ing of the neighbors is usually accomplished by the expoget significant points intg/, we require the chosen points
nential fall-off function of their (Euclidian) distanakto the  x; to be (1) unique and (2) linearly independent such that
particular pointwij = exp(||x — X;||). While those weights they form a (generalized) Delaunay triangulatiof®i?. For
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Output
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Fig. 6 Comparison of the influence of the paramgtenn the results with respect to a reference image which we ¢t@vputed with3 = 1. The
middle row shows the normalized RMS-error image, invertedi amplified by factor 100 for visualization propose. Thé fes/ shows the actual
landmarks sampled with respectffoWe used the original shown in in Figubeleft.

O - N

each of the remaining poinksin the set{i|i e 7\ J } we de-  posed an approach to further reduce the number involved

termine the(D + 1)—dimensional simplexS in which itis  points. In this section we propose an efficient solution.

contained and compute its linear coefficiefitsvith respect The minimization problem of EquatioB is quadratic

to S. Now, all pointsx; can be reconstructed as linear com-and can be formulated in matrix form as:

binations of the vertices of their Delaunay-simplices,sthu

Lj are in fact barycentric coordinates. Note that they have t& — |my||2+ A ||y — ¢||2, (5)

be computed only once in the preprocessing stage.
Now we solve the problem of Equatid®only for the

: ! ) ) wherec are the sampled target points arranged in a vec-
landmark pointgyj|j € J } and all other point$y;|i € 7\ J }

| A . tor andy are respective points in the output imageThe
are computed as linear combinations of the known points 1, a4iy M is the sparse coefficient matrix of the pairwise

using the previously computed linear coefficiedis Also weights given by = [I — W], whereW contains all respec-

the target valqes Can_ be assigned in a user Interaction@assq wij as entries. Notice that henceforth we operate only on
landmarks pomt:{c,: i€ 7} only. o the sub-sampled points. In addition, the system is sparse be
The sub-sampling rate of the points is controlled by the.5se for each point the weights are zero except for a small

ratio 3, such thaM = f3-N. This value has influence on the eighhorhood of the siZé. The total number of elements is
computation speed but also on the quality of the resulting, ,smk .

images. Increasing this value provides more accuratetgesul In the terms of LLE, thel-smallest eigenvalues b M

since the_reconstrucUon error of the Images 15 lower. Th?)rovidealowerdimensional manifold of the underlying data
rationale is that the more landmark points are sampled th&efer to 6] for details about LLE). In our case we strive

underlying manifold is better approximated. The drawbacl?or another solution since we have prior information pro-

is the longer computational time. In empirical experimentglideol by the user in the target image Even if this infor-
we have found that the va_lue ﬁ_f: 0.01 ISa gopd trad_eoff mation is incomplete because the target values are not given
beMeen speed and quality. Figiedepicts this relation- to all pixelsc;, we can still resort to constrained least squares
ship. and solve Equatioh by incorporating only partial prior into
the solution — for instance using the method of weighting.
Without loss of the generality we can assume that the points
3.5 Constrained Sparse Least-Squares Solution which correspond to user-assigned target values are stored
the vectoly;, and the respective target points are in the vec-
In Section3.3 we have formulated the problem of color- tor c;. Points with unknown target are storedyin Finally,
mapping as sparse optimization and in Sec8ohwe pro-  rearranging the rows &fl such that thg; points correspond
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K =4, tw =193 ms K =6, tw =211 ms K = 8, tw = 221 ms K =11, tw = 251 ms K =99, tw = 2,201 ms

Output

RMS =0.63% RMS = 0.30% RMS =0.11%

Error x 1000

Fig. 7 Comparison of the influence of the number of neighlboif the LLE embedding with fixe@ = 0.01. The error is measured with respect
to the original image (Figurg, left). The error-image is inverted and multiplied by thetéa of 1000 and for visualization purposes. The tipe
is the computation time of LLE weights with respectdo

to theM 17 rows in: see that a higher number of neighbors does not result in sig-
nificantly better approximation. This is not surprisingcgn
M — {M%l MlZ] : also Saul and Rowei2§] have reported that LLE performs
Mi> M2z best in a certain range of chosen neighbors. For this reason

. . . we have fixed the parameteriat= 11.
we can rewrite Equatiof as:

= [ TMTM Vil [yi-o T y1—C1 ©) User Input. A Iimi_tati_on of our method is_; the fact that_we
Ty Yo 0 0 ‘ have to provide prior information to all objects presentia t
image. This means that the user has to provide input strokes
The problem can now be solved as an augmented system glfso for those regions of the original image that should re-

linear equations of the form: main unchanged. Figu@depicts this issue. The reason of
this limitation lies in the nature of the computed manifold —
{Mlli)‘l Ml?} [yl} - [)‘Cl] ) (7)  the weights which encode the geometric invariance are rel-
M, M2z | Y2 0 ative to the chosen neighborhood. Thus, color-points rela-

g’ons in a neighborhood are kept with respect to each other,
but the global position of a particular neighborhood is un-
defined. In order to handle this, we provide target values for
chosen points, and since these are connected to others, forc
ing them towards the target affects their neighbors as Vfell.
we do not provide target values to some particular regions,
it is not ensured that they will keep their original position
as shown in Figur8, right.

We observed that we obtain smooth results by setting th
value ofA = 0.001 using the direct sparse MATLAB solver.

3.6 Discussion

Choice of the ParametersThe presented method has two
free parameters: the first one is the sub-sampling fgétor
and the second one is the number of nearest neighbors
the optimization part. In general both influence how well the
color-manifold will be approximated. Furthermore, thelqua ypcomplete Target
ity of the generated manifold also depends on the input pr
vided by the user which we discus in the next paragraph. |
empirical experiments we have determined that usually 19
of the pixels of the image{ = 0.01) is enough to approx-
imate the color manifold for the color exchange purpos
Figure6 depicts this issue. The number of nearest neighbo
for the locally linear embedding approximation is in all our

examples (except stated otherwige} 11. In Figure7 we Fig. 8 Left: target is only provided to the background. Right: &irg

show the RMS-error of the result depending on the choicgqitionally provided to the unchanged parts. In order taiotzorrect
of K, which we measure on the reconstruction of an imageesults the user has to provide target values to all imagecthjeven

with B = 0.01 with respect to the original image. Here we those which remain unchanged.

Complete Target
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Chroma Distance. In the L*a*b* space the color is ex- obtain 75-dimensional input points. Weights can be com-

pressed by the a*b* chromatic components whereas L* holdsuted on this input in exactly the same manner as in the 3d

the lightness28]. Thus, we can change the goal to preservecase.

the chromatic distances only by computing the distance as We have experimented with this approach, but similar

= Va2 +b*2 and the outpuy; will be calculated only like Farbman et al.J0] we could not achieve any signifi-

in the 2d a*b* plane. Since the lightness channel is not takenant improvements in the appearance changes. Note that a

into account, we are now free to assign it to any value withbigger neighborhood results in more computational effort.

out affecting the metric. The obvious choice is to set it ® th Furthermore, high-dimensional input introduces a problem

values as in the lightness channel of the original image. Io the sub-sampling and interpolation stage. Thus, it ramai

praxis it has turned out that if the desired changes do not afuture work to investigate the possibilities of the dimemsi

fect the lightness, like contrast corrections, best restdh  ality reduction properties of our solver.

be achieved by only using the a*b* components, as shown Another issue is the fact that in our approach the desired

in Figurebs. output dimensionality is also free to be chosen. Usually thi
will be either a 3d-color or a 1d-grayscale. In the latterecas

Spatial Components.One interesting issue not mentioned the user is free to assign custom grayscale values to particu
sofar is the incorporation of the spatial distance of the pixar colors or to partially map color to grayscale. In Figtife

els into the computation. This allows to modify colors only We show an example where the output is partially mapped
locally. We facilitate it by adding two spatial dimensions t t0 & black-and-white image.

the input data points; and normalize them into the range ~ Finally, one might consider using the method for lifting
[0..1]. We also add an additional spatial scaling parameteihe dimensionality of grayscale imagery by providing color
a such that we can weight the spatial components. Thed@riors. We have experimented with this idea and approached
two dimensions encode the spatial relationship for the in& number of difficulties due to the ambiguity of the one-
put pixels and the nearest neighbor search algorithm wildlimensional signal. While our method does work in cases
consider both color similarity and spatial distances. Tae r Where each region of the grayscale image can be mapped
tionale behind this modification is that, for the task of im- uniquely to a color, this remains an exception from the gen-
age re-colorization, we do not need the mapping to be gral case. Colorization requires a more involved integrati
globally consistent. A similar approach has also been use@f gradients in the spatial domaiihZ], which is not directly

in the method of Pellacini and Lawrenc2l]. Using such  part of our framework. We consider to explore this issue in
a formulation constrains the propagation of colors to spa@ future project.

tially nearby points forr > 0, which makes our system to

act more similar as the approach presented in Lischinski et o

al. [15] (cf. Figure 9). Without the spatial component, the 4 Resultsand Applications

color is exchanged globally over the entire image. Note tha\tN ol ted the alaorithm in MATLAB 2010a. Wi
higher-input dimensionality introduces more computadion € Impiementead the aigorithm In a. Ve use

effort to the interpolation stage, since we have to computéhe éTTlFEOIkn [é8] 0 dfttermlrje neare;slt neltghbtc_)rs_, W;]:CCh
5d barycentric coordinates. isa ibrary. Our prototype is currently not optimized fo

speed, but for easy distribution and maintenance. For user
interaction we used Adobe Photoshop CS5 to draw target
strokes, which we imported directly in MATLAB using the
r}\/IATLAB-Photoshop interface.

Varying Dimensionality. As mentioned in SectioB.2 our
method is derived from the LLE approach which is also a
unsupervised dimensionality reduction tool. This is sithee
weights computed on the original inpXt are not subject
to any specific dimensionality, but rather contain local-geo4 1 performance
metric properties. These are than propagated to the térget
which can be in general of any other dimensionality. By us4f run on the whole image our optimization algorithm would
ing local image patches of the size, e.gx 5 pixel we can  take a few minutes on an average desktop PC (we use Intel-
I7@3.6GHz, 8GB RAM and Windows 7-64bit). However,
o - with the acceleration presented in Sect®#dthe computa-
S—— Al ¥ tion can be speed-up considerably. Tablshows the run-
0o B ning times of examples presented in Figd#with sam-
pling rates of8 = 0.01 andK = 11, where we distinguish
between preprocessing time for computation of the linear
Fig. 9 Mapping the one of the red flowers in the left image to a differ- coefficients and interactive editing time, where the optami
ent hue by incorporating spatial coordinates. tion is solved. The bottleneck is currently the quite slow
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Table1l Running times for the examples shown in Figlidevith sam-  Table 2 Comparison of total running time (in seconds) with respect
pling ratio3 = 0.01. Time given in milliseconds and is the number  to image size in mega pixels (MP) and the number of sampletgoin
of used samples. The reported timestgrior L*a*b* conversion and  (M). The respective timings, tw, te, andt; as described in Tablg, t
barycentric coordinates computatidyfor weights computatiorte for denoted the total time. Refer to Figur@for a graphical interpretation.
computation of the mapping, for reconstruction and the conversion
from L*a*b* to RGB. Note that only the last two operations kaw be

MP M ty tw te tr t

performed after user interaction. 04| 3333| 1.379 0246 0025 0260 1.911
0.8| 5820| 2427 0518 0.050 0.459 3.455

11| 7778 | 3335 0.804 0.073 0.62] 4.840

5 T — 1.9 | 12846 | 6.638 1.800 0.168 1.100 9.704

_ _ reproc. neractive || Tota 26| 17267 | 9.365 2793 0267 1.530 13.955

Fig. Size M g | btwil te tr t 42 | 25564 | 15.391 5.653 0.517 2.395 23.956
141 | 820x 547 | 3797 || 1,073 | 481 | 23 | 145 | 1,722 7.5 | 41342 | 28.332 13.885 1.245 4.243 47.706

142 | 820x 546 | 4271 || 1,153 | 276 || 41 | 222 | 1,692
143 | 820 x 546 | 3646 964 | 397 || 24 | 204 || 1,589
144 | 820x 547 | 3690 || 1,055 | 491 || 33 | 191 | 1,770

(D + 1)N indices, whereN is the number of pixels. Our
method is also generalizable to video input, similar as pro-
posed by Levin et al. or Xu et allp,38]. We relegate the

implementation of the barycentric coordinates computatio jmplementation of video-processing to future work, but we
step as well as the step of weights computation are highly

parallelizable since each point is processed independentl

Further, both steps are preprocessing done after loadéng t o

image; during the interaction only the optimization and in-I2L2 Applications
terpolation steps have to be performed. Here we can see ,i&]ppearance Propagationin Figure11we compare our re-
the table that the optimization is very fast, even withouteco

T " . . sul h f th ion (AppP -
optimization. This is due to the quite small and sparse lin>! ts to these of the appearance propagation (AppProp) me

. . . thod [2]. The first two images are taken from their webpage.
ear system. The interpolation and color conversion steps a
: . n general the results are comparable, but note that we use a
again state-of-the-art routines.

. . sparse solver with additional sub-sampling, while AppPro
Moreover, all particular operations of our method scale P Pling PpFTop

. . . T uses a dense approximation. The last example is generated
linearly with the number of pixels, which is visible in Figur : . )
. . by our implementation of the AppProp algorithm (we have
10 and Table2. For this test we have used the same image L
. . . ) > implemented itin MATLAB). Here we perform a very dras-
at 7 different resolutions, using the same user input. Kotic

. . tic color swap usually not shown in the examples of App-

that we double the number of pixels in each measuremerlg P y Not Snow! P P
. ) rop. In the close-up view in FigurE2 we show that our

depicted in the chart.

; . method provides much smoother transitions on the bound-
Finally, the memory of the solver is bounded by the num- b

. ; aries of distinct parts within an image.
ber of samplesd, where the sparse mati containskM Figurel13(f) sphows the result of ?he ropagation method
entries and the target vector at mdét For the interpola- 9 propag

tion we have to maintaifD 4+ 1)N linear coefficients and of Pellacini a_nd Lawrence2(l] generated with an appear-
ance graph with 10 nearest neighbors. Our result is also gen-

erated withK = 10 and our solution does not provide arti-
- 60 facts. There are two major differences between these two
methods: (1) our formulation uses different weights for the

N
(&)

N

o
o
o

'§‘35 __neighbors which are computed in a linear system, such that

%% “ £ they reconstruct the input. The weights in AppWa2dl fre

=2 30 g defined by an exponential fall-off function of the Euclidian

Efz 0 ® distance between the neighbors to the actual (BRDF) sam-

2 £ ples. While these weights reflect the distance of the points

g 10 . . .

g 5 . 10 in the BRDF-space, they to not reproduce the point from its
o B 2 . " 3 " S neighbors in the least-squares sense as our weights do (cf.

00 01 01 02 03 04 08 Section3.3). The second difference (2) is that our nearest-

Mega-Pixels

neighbor graph s fully connected since we determine a fixed

Fig. 10 Comparison of total running time (in seconds) with respect t number of neighbors for every point. This ensures that our

image size in mega pixels and the number of sample pointsThB.  ¢o|or-manifold is a single connected component.
total time curve (t) represents the sum the respective gmitg, ty, te,

andt; as described in Table Note that the image size in mega-pixels ~ F1gure13(c) shows a comparison to the results of Farb-
is doubled in each step, thus the running time is linear imtimber ~ mMan et al. 10 where we can see that our method propagates

of pixels. Refer to Tabl@ for details. the color more exact than the other. We can see itin the lower
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Original User Input An & Pellacini 2008 Our Result

Fig. 11 Comparison to the results presented Bl YWe can observe that we can reproduce the results. Theskast is done on our input and we
perform very drastic color swap (red is swaped with greenthedshirt is recolored). Here we can see (cf. Figl@gthat our method provides
smoother transitions between the image objects. Last imaggighted by Tom Anghttp://www. tomang. com/).

Our Result

left corner of the fruits-container which is not fully coeer Original An & Pellacini 2008

by the diffusion distancé.

In Figure13 (d) we compare our results to those of the
bilateral-grid frameworkT]. Here we see that our method
exchanges only the selected colors and does not bleed o
to neighboring objects as it partially happens in the bikdte
grid example. Again, the main difference here is that th
grid-framework is much more dependent on the local neig
borhoods in the spatial domain, unlike our system which es
tablishes neighborhood links across the entire image. Fig. 12 Close-up of the comparison shown in Figde We can see

that our method provides smoother transitions betweercth dif-
ferent color, like wall and skin.

F

lllumination Color Transfer.Recently Carroll et al.4] in-
troduced a method which decomposes the input image ac-

cording to an illumination model. Their method producesGlobal Color Transfer. Color transfer is usually established
very naturally looking results, but the cost is a more so-by probability distribution adjustment, which is in genlera
phisticated model. Furthermore, their work aims mainly atmore or less sophisticated histogram adjustment. In Figure
the decomposition of the image, the actual color adjustmerit3 (e) we show the results of our method in comparison to

is performed using Photoshop and Robust MattBg].[In

the global method of Pitie and Kokara22. While we do

contrast, our image color model is not physically driversthu not transfer the structure of the background, our method pro
we are not able to accurately reconstruct their resultseNev vides a result which brings the colors of the example over the
theless, we try to create a similar output as shown in Figureriginal structure. Moreover, small detail, like the blo®m
13 (a). In fact, the final appearance depends on the strokese well preserved.

provided and thus on the user.

1 Note that there is another high-level relationship betwdiffusion
distance and locally linear embedding since both methaalbased on
spectral graph analysis. However this issue does not aff@calgo-
rithm and is beyond the scope of this paper (cf. Nadler et q]).[

Color Replacement Tool.Figure13 (b) shows the reverse
of the color replacement tutorial for Photosh@gj[ In this
tutorial the author shows particular steps how to manually
replace a color in an image with Photoshop. We have re-
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versed the results of the tutorial and replaced the violetrco 4.

of the horse back to brown. We did so due to the lack of the
original, brown horse image, but the workflow of the process
is essentially the same. The pure editing time to re-coler th

image with Photoshop as described in the tutorial took us
over one minute. Additionally, in Photoshop the user has to
adjust several parameters, like brush-size, tolerancdemo

etc. On the other hand, scribbling 3 or 4 rough strokes and

the solving time took all together about 10 seconds. This”-

difference would become even more evident if the task were

to recolor many different objects in an image, which would g

require a lot of precise interaction in Photoshop.

5 Conclusions

In this paper we proposed a framework for editing of the1o.

color in images and photographs. It allows to replace the
color appearance in a smooth and seamless manner Wi}H
simple user input which has proven to be convenient. Our
method shows to perform well for wide range of motives,
like landscapes, humans, animals, plants and fuzzy objects
In general the algorithm proves to be convincing and de-
livers results which appear highly natural. We compare our

results to these of related work and we show that we cahs3.

achieve the same or better quality. On the technical side, we
propose a sparse solution to the global least squares prob-

lem, while we still maintain global propagation of the color 14.

appearance. To achieve it, we draw from the non-linear un-
supervised manifold learning methodology and show ho
to utilize it for image processing. This has not been done
in the previous works. In addition, we propose a simple ac-
celeration technique based on sub-sampling and muliaine 1
interpolation.

One of our goals for future work is to extend the ap-17.

proach in order to process video. Further, we want to inves-
tigate more involved ways to incorporate spatial control.
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Original Reference Result User Input Our Result
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(c) Farbman et al. 2010 (b) Photoshop (a) Carroll et al. 2011

(d) Chen et al. 2007

(e) Pitie & Kokaram 2007

Our Resu
10 neighbo

(f) Pellacini & Lawrance 2007
(10 neighbors)

Fig. 13 Comparison to our results with those of other systems. Ref&ection4.2 for the discussion of the particular results. Best seen in
electronic version in close-up.
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Original User Input Our Result

Fig. 14 Result of our re-coloring method. In each row, from left @ghti: original, user input in form of strokes, our output. Atiginal images in
this figure are copyrighted by Tom Angt(tp://www.tomang.com/). Best seen in the electronic version in close-up.

Fig. 15 Our method can also be used to custom black-white conveasidrit also allows selective conversion of spatial regi®@est seen in the
electronic version in close-up.


http://www.tomang.com/

14

Przemyslaw Musialski et al.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

S T Roweis and L K Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. Science (New York, N.Y.)
290(5500):2323-6, December 2000.

Lawrence K. Saul and Sam T. Roweis. Think Globally, Fit Lo
cally: Unsupervised Learning of Low Dimensional Manifalds
Journal of Machine Learning Research(2):119-155, February

2004.

L. Shapira, Ariel Shamir, and Daniel Cohen-Or. Image égrp
ance Exploration by Model-Based Navigatid@omputer Graph-
ics Forum 28(2):629-638, April 2009.

Maureen StonéA Field Guide to Digital Color A K Peters/CRC

Press, 2003.

Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local Colmans-

fer via Probabilistic Segmentation by Expectation-Maxation.

In 2005 IEEE Computer Society Conference on Computer Visiol
and Pattern Recognition (CVPR'QF)ages 747-754. |EEE, 2005.
Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Soft colgmsen-
tation and its applicationdEEE transactions on pattern analysis
and machine intelligen¢®9(9):1520-37, September 2007.
Baoyuan Wang, Yizhou Yu, Tien-Tsin Wong, Chun Chen, anc
Data-driven image color theme enhancement.
ACM Transactions on Graphic29(6):1, December 2010.
Baoyuan Wang, Yizhou Yu, and Ying-Qing Xu. Example-lbase
image color and tone style enhancemeACM Transactions on
Graphics 30(4):1, July 2011.

Ying-Qing Xu.

Jue Wang and Michael F. Cohen. Optimized Color Sampbng f

Robust Matting.

2008.

Xuezhong Xiao and Lizhuang Ma. Color transfer in cotszla
color spaceVirtual Reality Continuum And Its Applicationsage

305, 2006.

Xuezhong Xiao and Lizhuang Ma. Gradient-PreservingoCol
Transfer. Computer Graphics Forun8(7):1879-1886, October

20009.

In2007 IEEE Conference on Computer Vision
and Pattern Recognitigrpages 1-8. IEEE, June 2007.

Tomihisa Welsh, Michael Ashikhmin, and Klaus Muellerafis-
ferring color to greyscale imageACM Transactions on Graphics
21(3):277, July 2002.

Chung-Lin Wen, Chang-Hsi Hsieh, Bing-Yu Chen, and Ming
Ouhyoung. Example-based Multiple Local Color Transfer by
Strokes. Computer Graphics Forun7(7):1765-1772, October

Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, and Tian-Qiang Liu.fiEf

cient affinity-based edit propagation using K-D tré&CM Trans-
actions on Graphics28(5):1, December 2009.

Chuan-Kai Yang and Li-Kai Peng. Automatic mood-tramgig
between color image$EEE computer graphics and applicatigns
28(2):52—-61, March 2008. -y
L. Yatzivand G. Sapiro. Fast image and video colorizatising

chrominance blendinglEEE Transactions on Image Processing mt «‘
15(5):1120-1129, May 2006.

Przemydaw Musialski received the PhD de- #
gree in computer science in 2010 from the
Vienna University of Technology and the MSc
degree in media systems in 2007 from the
Bauhaus University Weimar. From 2007 to

2011 he was with VRVis Research Center
in Vienna. From 2011 to 2012 he was post-

doc at the Arizona State University. Since

2012 he is postdoc at Vienna University of

Technology conducting research in interac-
tive modeling and image processing.

Ming Cui received a Ph.D. form the Arizona
State University (ASU) in 2010, a M.Sc. in
Computer Science and a B.E. in Civil En-
gineering from Zhejiang University, Hang-
zhou, China in 2005 and 2002, respectively.
Currently he is with Google, prior to that he
worked at the ASU in Partnership for Re-
search in Spatial Modeling lab (PRISM) from
2005. His research interests include computer
graphics and image processing.

Jieping Yereceived the Ph.D. degree in com-
puter science from the University of Min-
nesota Twin Cities in 2005. He is associate
professor in the Department of Computer Sci-
ence and Engineering, Arizona State Univer-
sity. He has been a core faculty member of
the Center for Evolutionary Medicine and
Informatics, The Bio-design Institute, Ari-
zona State University, since August 2005. His
research interests include machine learning,
data mining, and biomedical informatics. He

received the NSF CAREER award in 2010.

Anshuman Razdan received a Ph.D. degree
in Computer Science and a M.Sc. and B.S.
degrees in Mechanical Engineering. He is As-
sociate Professor in the Division of Com-
puting Studies and the Director of Advanced
Technology Innovation Collaboratory and the
I3DEA Laboratory at Arizona State Univer-
sity, Polytechnic campus. His research in-
terests include geometric design, computer
graphics, document exploitation, and geospa-
tial visualization and analysis. He is the prin-

cipal investigator and a collaborator on several fedemahig; including
NSF, NGA, and NIH.

Peter Wonka received his Ph.D. and M.S.
from the Vienna University of Technology
in Computer Science and an M.S. in Urban
Planning from the same institution. He is as-
sociate professor at the King Abdullah Uni-
versity of Science and Technology (KAUST)
and Arizona State University. His research
interests include various topics in computer
graphics, visualization, and image process-
ing.



	Introduction
	Related Work
	Controllable Optimization Algorithm
	Results and Applications
	Conclusions
	Acknowledgment

