
The Visual Computer manuscript No.
(will be inserted by the editor)

A Framework for Interactive Image Color Editing

Przemyslaw Musialski · Ming Cui · Jieping Ye · Anshuman Razdan · Peter Wonka

Received: date / Accepted: date

Abstract We propose a new method for interactive image
color replacement that creates smooth and naturally looking
results with minimal user interaction. Our system expects as
input a source image and rawly scribbled target color val-
ues and generates high quality results in interactive rates. To
achieve this goal we introduce an algorithm that preserves
pairwise distances of the signatures in the original image
and simultaneously maps the color to the user defined target
values. We propose efficient sub-sampling in order to reduce
the computational load and adapt semi-supervised locally
linear embedding to optimize the constraints in one objec-
tive function. We show the application of the algorithm on
typical photographs and compare the results to other color
replacement methods.

Keywords image processing· computational photography·
color manipulation· interactive image editing· recoloring

1 Introduction

In recent years, digital photography has become very popu-
lar in both the consumer as well as the professional domains.

P. Musialski
Arizona State University, Tempe, AZ, USA
Vienna University of Technology, Vienna, Austria
E-mail: pm@cg.tuwien.ac.at

M. Cui · J. Ye· A. Razdan
Arizona State University, Tempe, AZ, USA
E-mail: {ming.cui | arazdan | jieping.ye }@asu.edu

P. Wonka
Arizona State University, Tempe, AZ, USA
King Abdullah University of Science and Technology, Saudi Arabia
E-mail: pwonka@gmail.com

Fig. 1 We show two results of the image color replacement method
presented in this paper. The first image is the original (copyrighted by
Norman Korenhttp://www.normankoren.
om/). In the second im-
age we adjust the color of the sky. In the third, we also adjustthe color
of the grass.

This development brought about a demand for advanced im-
age processing algorithms that are powerful on the one hand,
but easy to use on the other. This includes also the manipula-
tion of the color in pictures – perhaps the most fundamental
image processing task ever.

Currently available commercial software, as for instance
Adobe Photoshop [1], provide manual color processing tools
that are relatively convenient to use, although, sill require a
considerable amount of precise user input [20]. They rely
on local image characteristics and do not incorporate any
global color information into the editing process. Further-
more, there exist a number of approaches which process the
image’s colors as probability distributions [24,22,31,3], or
approaches that provide user controllable adjustment of the
colors. The latter ones are either constrained to local editing
[15], or incorporate global edit propagation [2]. These meth-
ods have proven to provide most satisfying results, but their
common disadvantage is usually quite a large computational
load due to global optimization.

The approach we present in this paper can be classi-
fied as a user controllable one. We rely on rough strokes

http://www.normankoren.com/

2 Przemyslaw Musialski et al.

drawn on an image, which is efficiently incorporated into
the editing process. The main difference of our approach to
the already existing work is that we propose a novel for-
mulation of the optimization problem, where we draw from
the non-linear manifold learning methodology. We formu-
late the problem as a global optimization task, and we show
that this task can be solved as a sparse linear system. This
combines global editing as in An and Pellacini [2], who
use a dense solver, and a sparse optimization as utilized in
Lischinski et al. [15], who do only local pixel propagation.

A sparse approach to global propagation has been pro-
posed in the work of Pellacini and Lawrence [21] in the con-
text of measured material appearance editing. Their work
was also inspired by the manifold-learningmethodology [25],
however, their solution was not suitable for high-quality im-
age appearance propagation as shown later in the paper of
An and Pellacini [2]. Instead, An and Pellacini proposed
a formulation which uses a dense least-squares solver that
allows them to propagate the affinities of all pairs of pix-
els to each other in order to maintain the quality. However,
their dense linear system generally does not fit into the com-
puter memory for common images. Their remedy is to solve
it approximately using the Nystrom-method [11], which is
not accurate at small-scale edits and does not scale well for
large input. In contrast, the method of Lischinski et al. [15]
provides high-quality results and uses a sparse solver, butit
propagates the edits only to spatially coherent nearby pixels
and requires more accurate user inputs in order to perform
well.

In this paper we provide a formulation of the optimiza-
tion which strives for both a sparse solution as well as global
pixel interaction. To achieve this we interpret the image color
as a manifold in 3d space by utilizing the locally linear em-
bedding algorithm [26]. We show how the color-manifold
can be warped globally in order to achieve recoloring while
its local relationships are preserved in order to maintain the
appearance of the original image.

In addition, we introduce an efficient sub-sampling strat-
egy in order to achieve interactive performance. Xu et al.
[38] proposed a speed-up approach to the formulation of An
and Pellacini [2] which exploits the fact that often pixels in
the image can be approximated by a much smaller set of
clusters. Driven by similar observations we sub-sample the
image in order to greatly reduce the number of color points
to be processed. We then approximate the manifold with
the sub-sampled points and interpolate the remaining val-
ues. Unlike the method of Xu et al., we do not need to build
piece-wise linear functions each time user provides new in-
put strokes. Instead, we maintain the same sub-sampling for
different user inputs, where we only update the user pro-
vided target color values. Our method has a small memory
footprint, it scales linearly in the number of pixels, and ital-

lows interactive editing. We also show that it delivers results
of the same or better quality as others.

In the reminder of the paper we provide an overview of
the related work in Section2. In Section3 we present the
details of our approach and discuss its further aspects. In
Section4 we present the results and compare them to other
works, and finally in Section5 we conclude the work.

2 Related Work

Several papers aim at automatic color transfer between im-
ages, where usually one image serves as color mood source
which is transferred to the others. Reinhard et al. [24] pro-
posed a simple yet effective method for this purpose based
on linear adjustment of color distribution parameters. This
has been improved by Xiao et al. [36] and Pitie and Kokaram
[22] who applied more sophisticated probabilistic models.
In Pitie et al. [23] they extend their method in order to per-
form non-linear adjustment of color probability distribution
between images. Also Chang et al. [6,5] presented global
color transfer by perceptual color categorization for images
and video. Yang and Peng proposed a method for color-
mood transfer which preserves spatial coherence based on
histogram matching [39]. This idea has been extended by
Xiao et al. [37] who solve the problem of global transfer
and local fidelity in two steps: histogram matching and a
gradient-preservingoptimization. Wang et al. proposed global
color-mood exchange driven by predefined and labeled color
palettes [31] and example images [32]. Cohen-Or et al. [9]
introduced a framework which uses color-harmony rules in
order to optimize the overall appearance after the user has
altered some of the colors. Shapira et al. [27] proposed a so-
lution which is based on navigation through the appearance
of the image in order to obtain desired results. Also auto-
matic methods to colorize grayscale images based on exam-
ples from internet images [16], and semantic annotations [8]
have been introduced. In general, methods which transfer
colors globally are not suitable for precise (re-)coloringof
small objects or humans.

Other approaches try to introduce at least rough control
over the results. Welsh et al. [34] proposed a global color-
mood transfer aiming at colorization of grayscale imagery.
It is based on texture and luminance matching across the im-
ages and it allows simple user interaction in the form of rect-
angular swatches, but it also fails in cases of detailed trans-
fers. Tai et al. [29,30] attempted to solve these problems by
providing a method for soft color segmentation based on a
mixture of Gaussian approximation (GMM) which allow in-
direct user control. Further improvements of automatic but
controllable color-mood transform based on Reinhard et al.
is presented in [13].

In contrast to methods mentioned above, locally control-
lable systems provide the user very accurate influence over

A Framework for Interactive Image Color Editing 3

SamplingSampling

ci

xiSource

Input

TargetC

X

SamplesSamples

yi

OutputOutput Y

Constrained Mapping in Color SpaceConstrained Mappinng in Color Spacepin

xi ci yif(x)i

Fig. 2 The pipeline of our algorithm - refer to Section3 for details. From left to right: input imageX and target color mapC. From both input
images landmarksx j andc j are sampled. For all remaining pixels linear interpolationcoefficients are computed. The sub-sampled input points
x j (in L*a*b* color space) are warped towards target pointsc j under the constraint of mutual distance preservation. Next, pointsy = f (x j ,c j)
indicate new positions of the landmark points, here shown with old colors. Than we show the final positions and colors after the mapping as points
y j . Finally, the output image is reconstructed from they j point set by the previously stored linear coefficients, converted to RGB, and displayed.

the results. In general, these methods allow the user to scrib-
ble over the image in order to alter the appearance of similar
regions in some parts of the image. A simple example of
such an approach is the color transfer brush [17] which ap-
plies locally the equations of Reinhard et al. [24], albeit its
modeling capacity is very limited. Wen et al. [35] and An
and Pellacini [3] also propose strokes driven methods for
transfer of color from local parts across images. A scribble-
driven method was presented by Yatziv and Sapiro [40] who
introduced colorization based on chrominance blending and
geodesic distance. It requires quite accurate user inputs in
order to perform well. Similar user interaction has been suc-
cessfully applied for grayscale colorization [12], local image
adjustment [15] and edit propagation [2]. Also a bilateral
filter based framework, e.g. Chen et al. [7], can be used to
recolor particular image parts. Recently, Farbman et al. [10]
utilized diffusion distances in the framework of Lischinski et
al. [15] which partially allows for more global editing with
their solver. On the other hand, they show that the usage
of diffusion distance does not generally address the locality
problem and can be seen as a complementary approach to
Euclidian distance optimization.

The methods of Lischinski et al. and An and Pellacini
are based on least-squares optimization and are similar to
our approach. Though, we present a different formulation of
the problem by drawing from the locally linear embedding
approach [25,26]. The main difference of our system is the
way how pixel neighborhood weights as well as how target
colors are incorporated into the solution.

Further work are speed-up methods, like Xu et al. [38]
who proposed an acceleration to the approach of [2] based
on kd-tree-subdivision of the image, but they still utilizethe
dense solver. Li et al. [14] formulate the problem as Radial-
Basis-Function kernels interpolation. We also utilize inter-
polation in the first step, but still perform global optimiza-
tion in the second, since our observations have shown that
pure local interpolation can provide artifacts.

Recently, Carroll et al. [4] proposed an interactive ap-
proach in order to decompose the input image into its Lam-
bertian illumination components. Since their actual colorre-
placement method is independent of their model, our method
can be seen as complementary.

3 Controllable Optimization Algorithm

In this paper we introduce a strategy for color replacement
that combines two apparently contradictorily goals. The first
is distance preservationthat ensures that two color-samples
from thesource imageare mapped in such a way that the
distance between them in the new image remains similar.
The second goal iscolor transferthat aims at mapping of
the samples from the source image as near as possible to the
user-provided target values in thetarget image. The advan-
tage of this idea is the fact that re-mapped colors generally
retain their local variations on the one hand but change their
global appearance to the desired values on the other. All to-
gether, this results in very naturally looking output images
(cf. Figures1,14).

3.1 User Interaction

As observed in previous work [12,15,40,21,2], user edits in
form of rough strokes have proven to be an easy and effi-
cient way of interaction. Pellacini et al. [21,2] defined user
edits more generally as edit parameters that should be prop-
agated over the output image. In our system the user indi-
cates the desired output appearance (color, hue, saturation or
lightness) in the form of rough strokes over the input image.
The result is a sparsely scribbled image which we hence-
forth call thetarget image. The expected strokes do not have
to be precise and do not have to match the boundaries of
the underlying objects very well; only a clear assignment
of the new color to an object is important. Our edits can be

4 Przemyslaw Musialski et al.

sparse or dense, which is more similar to the way interaction
is applied in the work of [2], while the interaction in other
methods [12,15,40] has to be more precise. In general, we
want the user to specify the color for all image parts, even
those which should remain unchanged. Figure3 shows a tar-
get image on the left and an alpha mask on the right. In the
left image, the storks indicate the user input, where both the
changed colors of the background as well as the kept col-
ors of the face have been scribbled. The mask indicates that
only the white regions contribute target values. This kind of
interaction is rather easy and intuitive, even for untrained
users.

3.2 Definitions

We define the source image asX, the target image asC and
the output image asY. The images have the sizeN=width×
height pixels and can also be seen as sets of pointsX =

{x1,x2, ...xN}, Y = {y1,y2, ...yN}, andC= {c1,c2, ...cN},
where allxi ,yi ,ci ∈ R

D reside in the sameD-dimensional
space. Note that all pointsxi , yi andci with the same index
correspond to each other. We want to compute a non-linear
mappingf : RD →R

d that transforms the given input image
X with respect to the user defined target imageC to a new
imageY, such that:

f : (X,C)→Y . (1)

We provide here a definition for the generalD-dimensional
case since our algorithm is not limited to a specified num-
ber of input and output dimensionality. The input space is of
the dimensionD and the output space of the dimensiond,
usually such thatd < D. In Section3.6we discuss the pos-
sibility to use local image patches as pointsxi as well as the
case where a color image can be mapped to a user defined
grayscale.

In practice, we usually work with 3d color spaces, thus
for the rest of the paper we assumeD = d = 3 w.l.o.g. Fur-
ther, we follow the argumentation which suggests that the
Euclidian norm in RGB color space is not a good measure
for perceptual distance. Therefore, throughout the paper we

Fig. 3 Example of a source and target image. Left: we ask the user
to specify the target colors by simply drawing rough strokesover the
original. Right: values from the selected regions (white) serve as target
points. Note that also target values of non-changed points have been
specified.

measure and compute the distance between points in a per-
ceptually Euclidian color space CIELAB (L*a*b*) [28] and
all norms areL2 vector norms denoted as‖·‖.

3.3 Optimization Formulation

We want to define the mappingf of vectorsxi to vectorsyi ,
such that it preserves pairwise Euclidean distances ofxi as
well as forcesyi to be as close as possible toci . This task
can be formulated as minimizing the following equation:

E = ∑
i

∑
j

(‖xi − x j‖−‖yi − y j‖)2+λ ∑
i

‖yi − ci‖2 , (2)

whereλ is a parameter that determines the relative impor-
tance of the two goals. Unfortunately, the function in Equa-
tion 2 is non-smooth and thus hard to solve effectively. To
relax it to a solvable problem, we replace the first term inE,
such that:

Ẽ = ∑
i
‖yi −∑

j
wi j y j‖2+λ ∑

i
‖yi − ci‖2 . (3)

This equation is quadratic in terms of the unknownsyi . Note
that with Equation3 we do not provide a strict mathematical
reformulation of Eq.2 but rather than an approximation in
the locality of eachxi .

The main idea of this reformulation is to encode the ge-
ometric invariance in such a way that it can be expressed as
a quadratic term of the unknownyi . We do so by utilizing
the locally linear embedding algorithm (LLE [25]), which
generates a manifold in the underlying space which is lin-
ear at each sample point with respect to its local neighbor-
hood. This is achieved by “encoding” the pairwise relations
‖xi −x j‖ of the original samples and their neighbors (cf. Eq.
2) into the weightswi j (cf. Eq. 3). Saul and Roweis [26]
have shown that properly chosen weightswi j are invariant
under rotation, translation and scale. This means that each
particular output color sampleyi is placed in the new image
in such a way, that the distances to its neighbors reassemble
the distances of the original color samplexi in the original
image as best as possible in the least squares sense (Fig.4).

xi

xj

wij

wij+2

wij+1

xj+1

xj+2

yi

yj

wij

wij+2

wij+1

yj+1

yj+2

f

Fig. 4 Left: the weightswi j are computed in the original image using
the original samplesxi and their neighborsx j . Right: the same weights
are used to best reconstruct all output samplesyi from their respective
neighborsy j in one large linear system.

A Framework for Interactive Image Color Editing 5

Fig. 5 A series of results of our algorithm. The first image is the original (copyrighted by Norman Korenhttp://www.normankoren.
om/). The
following results are obtained with optimization of the chroma-channels a* and b* only, while the L* channel is kept fromthe original.

The weights can be computed for eachxi as a linear com-
bination of its nearby pointsx j by minimizing the following
energy for eachxi independently:

F =
N

∑
i=1

‖xi − ∑
j∈Ni

wi j x j‖2 , (4)

with respect to the invariance constraint:∑ j wi j = 1 and to
the sparseness constraint:wi j = 0 if j /∈Ni . HereNi denotes
a (small) set of local neighbors of the pointxi in X. The
optimal weightswi j can be computed in closed form. Due
to the mentioned constraints, we can rewrite Equation4 for
one data pointx as:

‖x−∑
j

wjx j‖2 = ‖∑
j

wj (x− x j)‖2 = ∑
j
∑
k

wjwkg jk ,

whereg jk is an entry of a local Gram matrixG =
{

g jk
}

with
elements:g jk =(x− x j)(x− xk) , with x j andxk as neighbors
of x. This matrix is symmetric positive semi-definite and the
weights ofx can be computed by its inversion. A more effi-
cient way is to solve a linear system of the form:

∑
k

g jkwk = 1,

and rescale the weights to∑ j wj = 1. This system can be
solved for allN D-dimensional points withK neighbors in
togetherO

(

DNK3
)

time. In practice this system is over-
determined in the case when the number of neighbors is
bigger then the dimensionality of the space. In our appli-
cation this is usually always the case, since we work with
only 3d points and we have empirically figured out that the
number of neighbors should be about 11 in order to pro-
vide good results. Thus, to solve for unique weights we uti-
lize Tikhonov-regularization by adding a small multiple of
the identity to the coefficient matrix as proposed in [26].
This provides weights which distribute the contribution of
the nearest points to eachxi more uniformly.

In fact, the described weighting is the main difference of
our approach to the others, e.g, Lischinski et al. [15], Chen et
al. [7], or An and Pellacini [2]. In those systems the weight-
ing of the neighbors is usually accomplished by the expo-
nential fall-off function of their (Euclidian) distanced to the
particular point:wi j = exp(‖xi − x j‖). While those weights

are in general edge-aware and smooth, they do not represent
the particular point as a linear combination of its neighbors
as the LLE weights do.

Having well-defined weights, Equation3 can be mini-
mized. Since for each data point in the original spacewi j

are invariant to rotation, scaling and translation of this point
w.r.t. its local neighbors, minimizing̃E has locally the same
effect as of minimizingE. Globally, the manifold is bend
and in generalE is not enforced for distant points, but this
solution is even more desirable, since it allows to fulfill the
color transfer more easily: the manifold is warped towards
the target valuesci (cf. Figure2). One might imagine this op-
eration as pulling the entire manifold on the selected points
xi towards new valuesci . Since each of the selected points is
connected to its local neighbors and each such a local vicin-
ity can be transformed linearly, the pulling process affects
the entire manifold and results in new positionsyi which ide-
ally respect our both goals:preservation of local distances
as well asglobal color transfer.

3.4 Acceleration

The presented algorithm is designed to work with theoret-
ically all pixels in the image. Unfortunately, it would re-
quire target values for all pixels and providing such targets
is tedious and not desirable. Further, the computation time
would be very high. In order to address both problems our
approach is a sub-sampling strategy which deals with sparse
target values and reduces the computational load significantly.
It is based on the observation that all color-points can be ex-
pressed by linear combinations of other points. Thus, our
idea is to determine a number of significant sample points
which we calllandmark pointsand to run the optimization
only on these. The remaining points are reconstructed as lin-
ear combinations of the landmarks.

We determine the landmarks using the original point set
X: we draw a random index setJ of the size|J |=M <<N
from the full index setI = {1. . .N} of all points. In order to
get significant points intoJ , we require the chosen points
x j to be (1) unique and (2) linearly independent such that
they form a (generalized) Delaunay triangulation inR

D. For

http://www.normankoren.com/

6 Przemyslaw Musialski et al.

Beta = 0.1 Beta = 0.05 Beta = 0.01 Beta = 0.005 Beta = 0.001

M = 21064

RMS = 0.82% RMS = 1.08% RMS = 1.33% RMS = 3.69% RMS = 5.78%

M = 6016 M = 3395 M = 783 M = 410

S
a
m

p
li
n

g
E

rr
o

r
x
 1

0
0

O
u

tp
u

t

Fig. 6 Comparison of the influence of the parameterβ on the results with respect to a reference image which we havecomputed withβ = 1. The
middle row shows the normalized RMS-error image, inverted and amplified by factor 100 for visualization propose. The last row shows the actual
landmarks sampled with respect toβ . We used the original shown in in Figure5, left.

each of the remaining pointsxi in the set{i|i ∈ I\J } we de-
termine the(D+ 1)−dimensional simplexS in which it is
contained and compute its linear coefficientsLi with respect
to S. Now, all pointsxi can be reconstructed as linear com-
binations of the vertices of their Delaunay-simplices, thus,
Li are in fact barycentric coordinates. Note that they have to
be computed only once in the preprocessing stage.

Now we solve the problem of Equation3 only for the
landmark points{y j | j ∈J } and all other points{yi |i ∈I\J }
are computed as linear combinations of the known pointsy j

using the previously computed linear coefficientsLi . Also
the target values can be assigned in a user interaction pass to
landmarks points{c j | j ∈ J } only.

The sub-sampling rate of the points is controlled by the
ratioβ , such thatM = β ·N. This value has influence on the
computation speed but also on the quality of the resulting
images. Increasing this value provides more accurate results
since the reconstruction error of the images is lower. The
rationale is that the more landmark points are sampled the
underlying manifold is better approximated. The drawback
is the longer computational time. In empirical experiments
we have found that the value ofβ = 0.01 is a good tradeoff
between speed and quality. Figure6 depicts this relation-
ship.

3.5 Constrained Sparse Least-Squares Solution

In Section3.3 we have formulated the problem of color-
mapping as sparse optimization and in Section3.4 we pro-

posed an approach to further reduce the number involved
points. In this section we propose an efficient solution.

The minimization problem of Equation3 is quadratic
and can be formulated in matrix form as:

Ẽ = ‖My‖2+λ‖y− c‖2, (5)

wherec are the sampled target points arranged in a vec-
tor andy are respective points in the output imageY. The
matrix M is the sparse coefficient matrix of the pairwise
weights given byM = [I−W], whereW contains all respec-
tivewi j as entries. Notice that henceforth we operate only on
the sub-sampled points. In addition, the system is sparse be-
cause for each point the weights are zero except for a small
neighborhood of the sizeK. The total number of elements is
thusMK.

In the terms of LLE, thed-smallest eigenvalues ofMTM
provide a lower dimensional manifold of the underlying data
(refer to [26] for details about LLE). In our case we strive
for another solution since we have prior information pro-
vided by the user in the target imageC. Even if this infor-
mation is incomplete because the target values are not given
to all pixelsci , we can still resort to constrained least squares
and solve Equation5 by incorporating only partial prior into
the solution – for instance using the method of weighting.
Without loss of the generality we can assume that the points
which correspond to user-assigned target values are storedin
the vectory1, and the respective target points are in the vec-
tor c1. Points with unknown target are stored iny2. Finally,
rearranging the rows ofM such that they1 points correspond

A Framework for Interactive Image Color Editing 7

K = 4, tw = 193 ms K = 6, tw = 211 ms K = 11, tw = 251 ms K = 99, tw = 2,201 ms

RMS = 5.27% RMS = 1.01%

K = 8, tw = 221 ms

RMS = 0.63% RMS = 0.30% RMS = 0.11%

O
u

tp
u

t
E

rr
o

r
x
 1

0
0
0

Fig. 7 Comparison of the influence of the number of neighborsK of the LLE embedding with fixedβ = 0.01. The error is measured with respect
to the original image (Figure5, left). The error-image is inverted and multiplied by the factor of 1000 and for visualization purposes. The timetw
is the computation time of LLE weights with respect toK.

to theM11 rows in:

M =

[

M11 M12

MT
12 M22

]

,

we can rewrite Equation5 as:

Ẽ =

[

y1

y2

]T

MTM
[

y1

y2

]

+λ
[

y1− c1

0

]T [
y1− c1

0

]

. (6)

The problem can now be solved as an augmented system of
linear equations of the form:

[

M11+λ I M12

MT
12 M22

][

y1

y2

]

=

[

λ c1

0

]

. (7)

We observed that we obtain smooth results by setting the
value ofλ = 0.001 using the direct sparse MATLAB solver.

3.6 Discussion

Choice of the Parameters.The presented method has two
free parameters: the first one is the sub-sampling factorβ
and the second one is the number of nearest neighborsK in
the optimization part. In general both influence how well the
color-manifold will be approximated. Furthermore, the qual-
ity of the generated manifold also depends on the input pro-
vided by the user which we discus in the next paragraph. In
empirical experiments we have determined that usually 1%
of the pixels of the image (β = 0.01) is enough to approx-
imate the color manifold for the color exchange purpose.
Figure6 depicts this issue. The number of nearest neighbors
for the locally linear embedding approximation is in all our
examples (except stated otherwise)K = 11. In Figure7 we
show the RMS-error of the result depending on the choice
of K, which we measure on the reconstruction of an image
with β = 0.01 with respect to the original image. Here we

see that a higher number of neighbors does not result in sig-
nificantly better approximation. This is not surprising since
also Saul and Roweis [26] have reported that LLE performs
best in a certain range of chosen neighbors. For this reason
we have fixed the parameter atK = 11.

User Input. A limitation of our method is the fact that we
have to provide prior information to all objects present in the
image. This means that the user has to provide input strokes
also for those regions of the original image that should re-
main unchanged. Figure8 depicts this issue. The reason of
this limitation lies in the nature of the computed manifold –
the weights which encode the geometric invariance are rel-
ative to the chosen neighborhood. Thus, color-points rela-
tions in a neighborhood are kept with respect to each other,
but the global position of a particular neighborhood is un-
defined. In order to handle this, we provide target values for
chosen points, and since these are connected to others, forc-
ing them towards the target affects their neighbors as well.If
we do not provide target values to some particular regions,
it is not ensured that they will keep their original position,
as shown in Figure8, right.

Uncomplete Target Complete Target

Fig. 8 Left: target is only provided to the background. Right: target
additionally provided to the unchanged parts. In order to obtain correct
results the user has to provide target values to all image objects, even
those which remain unchanged.

8 Przemyslaw Musialski et al.

Chroma Distance. In the L*a*b* space the color is ex-
pressed by the a*b* chromatic components whereas L* holds
the lightness [28]. Thus, we can change the goal to preserve
the chromatic distances only by computing the distance as
C∗

ab =
√

a∗2+b∗2 and the outputyi will be calculated only
in the 2d a*b* plane. Since the lightness channel is not taken
into account, we are now free to assign it to any value with-
out affecting the metric. The obvious choice is to set it to the
values as in the lightness channel of the original image. In
praxis it has turned out that if the desired changes do not af-
fect the lightness, like contrast corrections, best results can
be achieved by only using the a*b* components, as shown
in Figure5.

Spatial Components.One interesting issue not mentioned
sofar is the incorporation of the spatial distance of the pix-
els into the computation. This allows to modify colors only
locally. We facilitate it by adding two spatial dimensions to
the input data pointsxi and normalize them into the range
[0..1]. We also add an additional spatial scaling parameter
α such that we can weight the spatial components. These
two dimensions encode the spatial relationship for the in-
put pixels and the nearest neighbor search algorithm will
consider both color similarity and spatial distances. The ra-
tionale behind this modification is that, for the task of im-
age re-colorization, we do not need the mapping to be a
globally consistent. A similar approach has also been used
in the method of Pellacini and Lawrence [21]. Using such
a formulation constrains the propagation of colors to spa-
tially nearby points forα > 0, which makes our system to
act more similar as the approach presented in Lischinski et
al. [15] (cf. Figure 9). Without the spatial component, the
color is exchanged globally over the entire image. Note that
higher-input dimensionality introduces more computational
effort to the interpolation stage, since we have to compute
5d barycentric coordinates.

Varying Dimensionality. As mentioned in Section3.2 our
method is derived from the LLE approach which is also an
unsupervised dimensionality reduction tool. This is sincethe
weights computed on the original inputX are not subject
to any specific dimensionality, but rather contain local geo-
metric properties. These are than propagated to the targetY
which can be in general of any other dimensionality. By us-
ing local image patches of the size, e.g., 5×5 pixel we can

Fig. 9 Mapping the one of the red flowers in the left image to a differ-
ent hue by incorporating spatial coordinates.

obtain 75-dimensional input points. Weights can be com-
puted on this input in exactly the same manner as in the 3d
case.

We have experimented with this approach, but similar
like Farbman et al. [10] we could not achieve any signifi-
cant improvements in the appearance changes. Note that a
bigger neighborhood results in more computational effort.
Furthermore, high-dimensional input introduces a problem
to the sub-sampling and interpolation stage. Thus, it remains
future work to investigate the possibilities of the dimension-
ality reduction properties of our solver.

Another issue is the fact that in our approach the desired
output dimensionality is also free to be chosen. Usually this
will be either a 3d-color or a 1d-grayscale. In the latter case
the user is free to assign custom grayscale values to particu-
lar colors or to partially map color to grayscale. In Figure15
we show an example where the output is partially mapped
to a black-and-white image.

Finally, one might consider using the method for lifting
the dimensionality of grayscale imagery by providing color
priors. We have experimented with this idea and approached
a number of difficulties due to the ambiguity of the one-
dimensional signal. While our method does work in cases
where each region of the grayscale image can be mapped
uniquely to a color, this remains an exception from the gen-
eral case. Colorization requires a more involved integration
of gradients in the spatial domain [12], which is not directly
part of our framework. We consider to explore this issue in
a future project.

4 Results and Applications

We implemented the algorithm in MATLAB 2010a. We use
the ANN toolkit [18] to determine nearest neighbors, which
is a C++ library. Our prototype is currently not optimized for
speed, but for easy distribution and maintenance. For user
interaction we used Adobe Photoshop CS5 to draw target
strokes, which we imported directly in MATLAB using the
MATLAB-Photoshop interface.

4.1 Performance

If run on the whole image our optimization algorithm would
take a few minutes on an average desktop PC (we use Intel-
I7@3.6GHz, 8GB RAM and Windows 7-64bit). However,
with the acceleration presented in Section3.4 the computa-
tion can be speed-up considerably. Table1 shows the run-
ning times of examples presented in Figure14 with sam-
pling rates ofβ = 0.01 andK = 11, where we distinguish
between preprocessing time for computation of the linear
coefficients and interactive editing time, where the optimiza-
tion is solved. The bottleneck is currently the quite slow

A Framework for Interactive Image Color Editing 9

Table 1 Running times for the examples shown in Figure14with sam-
pling ratioβ = 0.01. Time given in milliseconds andM is the number
of used samples. The reported times aretd for L*a*b* conversion and
barycentric coordinates computation,tw for weights computation,te for
computation of the mapping,tr for reconstruction and the conversion
from L*a*b* to RGB. Note that only the last two operations have to be
performed after user interaction.

Preproc. Interactive Total
Fig. Size M td tw te tr t
14.1 820× 547 3797 1,073 481 23 145 1,722
14.2 820× 546 4271 1,153 276 41 222 1,692
14.3 820× 546 3646 964 397 24 204 1,589
14.4 820× 547 3690 1,055 491 33 191 1,770

implementation of the barycentric coordinates computation,
where we are using the method of MATLAB. Note that this
step as well as the step of weights computation are highly
parallelizable since each point is processed independently.
Further, both steps are preprocessing done after loading the
image; during the interaction only the optimization and in-
terpolation steps have to be performed. Here we can see in
the table that the optimization is very fast, even without code
optimization. This is due to the quite small and sparse lin-
ear system. The interpolation and color conversion steps are
again state-of-the-art routines.

Moreover, all particular operations of our method scale
linearly with the number of pixels, which is visible in Figure
10 and Table2. For this test we have used the same image
at 7 different resolutions, using the same user input. Notice
that we double the number of pixels in each measurement
depicted in the chart.

Finally, the memory of the solver is bounded by the num-
ber of samplesM, where the sparse matrixW containsKM
entries and the target vector at mostM. For the interpola-
tion we have to maintain(D+ 1)N linear coefficients and

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

00 01 01 02 03 04 08

T
im

e
 t

(s

e
c
o

n
d

s
)

S
a

m
p

le
 P

o
in

ts
 M

(x

1
0

0
0

)

Mega-Pixels

M

t

t_d

t_w

t_r

t_e

Fig. 10 Comparison of total running time (in seconds) with respect to
image size in mega pixels and the number of sample points (M).The
total time curve (t) represents the sum the respective timings:td, tw, te,
andtr as described in Table1. Note that the image size in mega-pixels
is doubled in each step, thus the running time is linear in thenumber
of pixels. Refer to Table2 for details.

Table 2 Comparison of total running time (in seconds) with respect
to image size in mega pixels (MP) and the number of sample points
(M). The respective timingstd, tw, te, andtr as described in Table1, t
denoted the total time. Refer to Figure10for a graphical interpretation.

MP M td tw te tr t
0.4 3333 1.379 0.246 0.025 0.260 1.911
0.8 5820 2.427 0.518 0.050 0.459 3.455
1.1 7778 3.335 0.804 0.073 0.627 4.840
1.9 12846 6.638 1.800 0.168 1.100 9.704
2.6 17267 9.365 2.793 0.267 1.530 13.955
4.2 25564 15.391 5.653 0.517 2.395 23.956
7.5 41342 28.332 13.885 1.245 4.243 47.706

(D + 1)N indices, whereN is the number of pixels. Our
method is also generalizable to video input, similar as pro-
posed by Levin et al. or Xu et al. [12,38]. We relegate the
implementation of video-processing to future work, but we
do expect to retain the same performance.

4.2 Applications

Appearance Propagation.In Figure11we compare our re-
sults to these of the appearance propagation (AppProp) me-
thod [2]. The first two images are taken from their webpage.
In general the results are comparable, but note that we use a
sparse solver with additional sub-sampling, while AppProp
uses a dense approximation. The last example is generated
by our implementation of the AppProp algorithm (we have
implemented it in MATLAB). Here we perform a very dras-
tic color swap usually not shown in the examples of App-
Prop. In the close-up view in Figure12 we show that our
method provides much smoother transitions on the bound-
aries of distinct parts within an image.

Figure13(f) shows the result of the propagation method
of Pellacini and Lawrence [21] generated with an appear-
ance graph with 10 nearest neighbors. Our result is also gen-
erated withK = 10 and our solution does not provide arti-
facts. There are two major differences between these two
methods: (1) our formulation uses different weights for the
neighbors which are computed in a linear system, such that
they reconstruct the input. The weights in AppWand [21] are
defined by an exponential fall-off function of the Euclidian
distance between the neighbors to the actual (BRDF) sam-
ples. While these weights reflect the distance of the points
in the BRDF-space, they to not reproduce the point from its
neighbors in the least-squares sense as our weights do (cf.
Section3.3). The second difference (2) is that our nearest-
neighbor graph is fully connected since we determine a fixed
number of neighbors for every point. This ensures that our
color-manifold is a single connected component.

Figure13(c) shows a comparison to the results of Farb-
man et al. [10] where we can see that our method propagates
the color more exact than the other. We can see it in the lower

10 Przemyslaw Musialski et al.

Original User Input An & Pellacini 2008 Our Result

Fig. 11 Comparison to the results presented by [2]. We can observe that we can reproduce the results. The last result is done on our input and we
perform very drastic color swap (red is swaped with green andthe shirt is recolored). Here we can see (cf. Figure12) that our method provides
smoother transitions between the image objects. Last imagecopyrighted by Tom Ang (http://www.tomang.
om/).

left corner of the fruits-container which is not fully covered
by the diffusion distance.1

In Figure13 (d) we compare our results to those of the
bilateral-grid framework [7]. Here we see that our method
exchanges only the selected colors and does not bleed over
to neighboring objects as it partially happens in the bilateral-
grid example. Again, the main difference here is that the
grid-framework is much more dependent on the local neigh-
borhoods in the spatial domain, unlike our system which es-
tablishes neighborhood links across the entire image.

Illumination Color Transfer.Recently Carroll et al. [4] in-
troduced a method which decomposes the input image ac-
cording to an illumination model. Their method produces
very naturally looking results, but the cost is a more so-
phisticated model. Furthermore, their work aims mainly at
the decomposition of the image, the actual color adjustment
is performed using Photoshop and Robust Matting [33]. In
contrast, our image color model is not physically driven thus
we are not able to accurately reconstruct their results. Never-
theless, we try to create a similar output as shown in Figure
13 (a). In fact, the final appearance depends on the strokes
provided and thus on the user.

1 Note that there is another high-level relationship betweendiffusion
distance and locally linear embedding since both methods are based on
spectral graph analysis. However this issue does not affectour algo-
rithm and is beyond the scope of this paper (cf. Nadler et al. [19]).

Original An & Pellacini 2008 Our Result

Fig. 12 Close-up of the comparison shown in Figure11. We can see
that our method provides smoother transitions between objects of dif-
ferent color, like wall and skin.

Global Color Transfer. Color transfer is usually established
by probability distribution adjustment, which is in general
more or less sophisticated histogram adjustment. In Figure
13 (e) we show the results of our method in comparison to
the global method of Pitie and Kokaram [22]. While we do
not transfer the structure of the background, our method pro-
vides a result which brings the colors of the example over the
original structure. Moreover, small detail, like the blooms
are well preserved.

Color Replacement Tool.Figure13 (b) shows the reverse
of the color replacement tutorial for Photoshop [20]. In this
tutorial the author shows particular steps how to manually
replace a color in an image with Photoshop. We have re-

http://www.tomang.com/

A Framework for Interactive Image Color Editing 11

versed the results of the tutorial and replaced the violet color
of the horse back to brown. We did so due to the lack of the
original, brown horse image, but the workflow of the process
is essentially the same. The pure editing time to re-color the
image with Photoshop as described in the tutorial took us
over one minute. Additionally, in Photoshop the user has to
adjust several parameters, like brush-size, tolerance, mode,
etc. On the other hand, scribbling 3 or 4 rough strokes and
the solving time took all together about 10 seconds. This
difference would become even more evident if the task were
to recolor many different objects in an image, which would
require a lot of precise interaction in Photoshop.

5 Conclusions

In this paper we proposed a framework for editing of the
color in images and photographs. It allows to replace the
color appearance in a smooth and seamless manner with
simple user input which has proven to be convenient. Our
method shows to perform well for wide range of motives,
like landscapes, humans, animals, plants and fuzzy objects.
In general the algorithm proves to be convincing and de-
livers results which appear highly natural. We compare our
results to these of related work and we show that we can
achieve the same or better quality. On the technical side, we
propose a sparse solution to the global least squares prob-
lem, while we still maintain global propagation of the color
appearance. To achieve it, we draw from the non-linear un-
supervised manifold learning methodology and show how
to utilize it for image processing. This has not been done
in the previous works. In addition, we propose a simple ac-
celeration technique based on sub-sampling and multi-linear
interpolation.

One of our goals for future work is to extend the ap-
proach in order to process video. Further, we want to inves-
tigate more involved ways to incorporate spatial control.

Acknowledgements

This research was financially supported by Science Founda-
tion Arizona, US Navy, and NSF. We would like tom thank
Tom Ang (Fig.14) and Norman Koren (Fig.1, 5) for the
permission to use their outstanding photographs.

References

1. ADOBE Inc. Photoshop.http://www.adobe.
om/produ
ts/
photoshop.html, 2012.

2. Xiaobo An and Fabio Pellacini. AppProp: all-pairs appearance-
space edit propagation.ACM Transactions on Graphics, 27(3):1,
August 2008.

3. Xiaobo An and Fabio Pellacini. User-Controllable Color Transfer.
Computer Graphics Forum, 29(2):263–271, June 2010.

4. Robert Carroll, Ravi Ramamoorthi, and Maneesh Agrawala.Illu-
mination decomposition for material recoloring with consistent in-
terreflections.ACM Transactions on Graphics, 30(4):1, July 2011.

5. Youngha Chang, Suguru Saito, and Masayuki Nakajima.
Example-Based Color Transformation of Image and Video Using
Basic Color Categories.IEEE Transactions on Image Processing,
16(2):329–336, February 2007.

6. Youngha Chang, Suguru Saito, Keiji Uchikawa, and Masayuki
Nakajima. Example-Based Color Stylization of Images.ACM
Transactions on Applied Perception, 2(3):322–345, July 2005.

7. Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time edge-
aware image processing with the bilateral grid.ACM Transactions
on Graphics, 26(3):103, July 2007.

8. Alex Yong-Sang Chia, Shaojie Zhuo, Raj Kumar Gupta, Yu-Wing
Tai, Siu-Yeung Cho, Ping Tan, and Stephen Lin. Semantic col-
orization with internet images.ACM Transactions on Graphics,
30(6):1, December 2011.

9. Daniel Cohen-Or, Olga Sorkine, Ran Gal, Tommer Leyvand, and
Ying-Qing Xu. Color harmonization. ACM Transactions on
Graphics, 25(3):624, July 2006.

10. Zeev Farbman, Raanan Fattal, and Dani Lischinski. Diffusion
maps for edge-aware image editing.ACM Transactions on Graph-
ics, 29(6):1, December 2010.

11. Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Ma-
lik. Spectral grouping using the Nyström method.IEEE transac-
tions on pattern analysis and machine intelligence, 26(2):214–25,
February 2004.

12. Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using
optimization.ACM Transactions on Graphics, 23(3):689, August
2004.

13. Meng-Tsan Li, Ming-Long Huang, and Chung-Ming Wang.
Example-based color alternation for images. In2010 2nd Inter-
national Conference on Computer Engineering and Technology,
pages V7–316–V7–320. IEEE, April 2010.

14. Yong Li, Tao Ju, and Shi-Min Hu. Instant Propagation of
Sparse Edits on Images and Videos.Computer Graphics Forum,
29(7):2049–2054, September 2010.

15. Dani Lischinski, Zeev Farbman, Matt Uyttendaele, and Richard
Szeliski. Interactive local adjustment of tonal values.ACM Trans-
actions on Graphics, 25(3):646, July 2006.

16. Xiaopei Liu, Liang Wan, Yingge Qu, Tien-Tsin Wong, Stephen
Lin, Chi-Sing Leung, and Pheng-Ann Heng. Intrinsic colorization.
ACM Transactions on Graphics, 27(5):1, December 2008.

17. Qing Luan, Fang Wen, and Ying-Qing Xu. Color Transfer Brush.
In 15th Pacific Conference on Computer Graphics and Applica-
tions (PG’07), pages 465–468. IEEE, October 2007.

18. David M. Mount and Sunil Arya. ANN: A Library for Approx-
imate Nearest Neighbor Searching.http://www.
s.umd.edu/
~mount/ANN/, Jan 2010.

19. B Nadler, S Lafon, R R Coifman, and I G Kevrekidis. Diffusion
Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck
Operators. Advances in Neural Information Processing Systems
18, 18(1):955–962, 2005.

20. David Nagel. Color Replacement in Photoshop CS.http://

www.digitalmediadesigner.
om/2004/01_jan/tutorials/

ps
s-
r040129.htm, 9 2004.
21. Fabio Pellacini and Jason Lawrence. AppWand.ACM Transac-

tions on Graphics, 26(3):54, July 2007.
22. F. Pitie and A. Kokaram. The linear Monge-Kantorovitch linear

colour mapping for example-based colour transfer.Visual Media
Production, 2007. IETCVMP. 4th European Conference on, pages
1–9, 2007.

23. F. Pitie, A Kokaram, and R Dahyot. Automated colour grading
using colour distribution transfer.Computer Vision and Image
Understanding, 107(1-2):123–137, July 2007.

24. E Reinhard, M. Adhikhmin, B Gooch, and P Shirley. Color trans-
fer between images.IEEE Computer Graphics and Applications,
21(4):34–41, 2001.

http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop.html
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.digitalmediadesigner.com/2004/01_jan/tutorials/pscs-cr040129.htm
http://www.digitalmediadesigner.com/2004/01_jan/tutorials/pscs-cr040129.htm
http://www.digitalmediadesigner.com/2004/01_jan/tutorials/pscs-cr040129.htm

12 Przemyslaw Musialski et al.

Original User Input Our Result

Our Result

10 neighbors

(a
)

C
a

rr
o

ll
 e

t
a

l.
 2

0
1
1

Reference Result

(b
)

P
h

o
to

s
h

o
p

 (
e

)
P

it
ie

 &
 K

o
k

a
ra

m
 2

0
0

7
 (

c
)

F
a

rb
m

a
n

 e
t

a
l.

 2
0

1
0

 (
d

)
C

h
e

n
 e

t
a

l.
 2

0
0

7
 (

f)
 P

e
ll

a
c

in
i

&
 L

a
w

ra
n

c
e

 2
0

0
7

(1
0

 n
e

ig
h

b
o

rs
)

Fig. 13 Comparison to our results with those of other systems. Referto Section4.2 for the discussion of the particular results. Best seen in
electronic version in close-up.

A Framework for Interactive Image Color Editing 13

Original User Input Our Result

Fig. 14 Result of our re-coloring method. In each row, from left to right: original, user input in form of strokes, our output. Alloriginal images in
this figure are copyrighted by Tom Ang (http://www.tomang.
om/). Best seen in the electronic version in close-up.

Fig. 15 Our method can also be used to custom black-white conversionand it also allows selective conversion of spatial regions.Best seen in the
electronic version in close-up.

http://www.tomang.com/

14 Przemyslaw Musialski et al.

25. S T Roweis and L K Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. Science (New York, N.Y.),
290(5500):2323–6, December 2000.

26. Lawrence K. Saul and Sam T. Roweis. Think Globally, Fit Lo-
cally: Unsupervised Learning of Low Dimensional Manifolds.
Journal of Machine Learning Research, 4(2):119–155, February
2004.

27. L. Shapira, Ariel Shamir, and Daniel Cohen-Or. Image Appear-
ance Exploration by Model-Based Navigation.Computer Graph-
ics Forum, 28(2):629–638, April 2009.

28. Maureen Stone.A Field Guide to Digital Color. A K Peters/CRC
Press, 2003.

29. Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local Color Trans-
fer via Probabilistic Segmentation by Expectation-Maximization.
In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), pages 747–754. IEEE, 2005.

30. Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Soft color segmen-
tation and its applications.IEEE transactions on pattern analysis
and machine intelligence, 29(9):1520–37, September 2007.

31. Baoyuan Wang, Yizhou Yu, Tien-Tsin Wong, Chun Chen, and
Ying-Qing Xu. Data-driven image color theme enhancement.
ACM Transactions on Graphics, 29(6):1, December 2010.

32. Baoyuan Wang, Yizhou Yu, and Ying-Qing Xu. Example-based
image color and tone style enhancement.ACM Transactions on
Graphics, 30(4):1, July 2011.

33. Jue Wang and Michael F. Cohen. Optimized Color Sampling for
Robust Matting. In2007 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8. IEEE, June 2007.

34. Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. Trans-
ferring color to greyscale images.ACM Transactions on Graphics,
21(3):277, July 2002.

35. Chung-Lin Wen, Chang-Hsi Hsieh, Bing-Yu Chen, and Ming
Ouhyoung. Example-based Multiple Local Color Transfer by
Strokes. Computer Graphics Forum, 27(7):1765–1772, October
2008.

36. Xuezhong Xiao and Lizhuang Ma. Color transfer in correlated
color space.Virtual Reality Continuum And Its Applications, page
305, 2006.

37. Xuezhong Xiao and Lizhuang Ma. Gradient-Preserving Color
Transfer. Computer Graphics Forum, 28(7):1879–1886, October
2009.

38. Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, and Tian-Qiang Liu. Effi-
cient affinity-based edit propagation using K-D tree.ACM Trans-
actions on Graphics, 28(5):1, December 2009.

39. Chuan-Kai Yang and Li-Kai Peng. Automatic mood-transferring
between color images.IEEE computer graphics and applications,
28(2):52–61, March 2008.

40. L. Yatziv and G. Sapiro. Fast image and video colorization using
chrominance blending.IEEE Transactions on Image Processing,
15(5):1120–1129, May 2006.

Przemyslaw Musialski received the PhD de-
gree in computer science in 2010 from the
Vienna University of Technology and the MSc
degree in media systems in 2007 from the
Bauhaus University Weimar. From 2007 to
2011 he was with VRVis Research Center
in Vienna. From 2011 to 2012 he was post-
doc at the Arizona State University. Since
2012 he is postdoc at Vienna University of
Technology conducting research in interac-
tive modeling and image processing.

Ming Cui received a Ph.D. form the Arizona
State University (ASU) in 2010, a M.Sc. in
Computer Science and a B.E. in Civil En-
gineering from Zhejiang University, Hang-
zhou, China in 2005 and 2002, respectively.
Currently he is with Google, prior to that he
worked at the ASU in Partnership for Re-
search in Spatial Modeling lab (PRISM) from
2005. His research interests include computer
graphics and image processing.

Jieping Ye received the Ph.D. degree in com-
puter science from the University of Min-
nesota Twin Cities in 2005. He is associate
professor in the Department of Computer Sci-
ence and Engineering, Arizona State Univer-
sity. He has been a core faculty member of
the Center for Evolutionary Medicine and
Informatics, The Bio-design Institute, Ari-
zona State University, since August 2005. His
research interests include machine learning,
data mining, and biomedical informatics. He

received the NSF CAREER award in 2010.

Anshuman Razdan received a Ph.D. degree
in Computer Science and a M.Sc. and B.S.
degrees in Mechanical Engineering. He is As-
sociate Professor in the Division of Com-
puting Studies and the Director of Advanced
Technology Innovation Collaboratory and the
I3DEA Laboratory at Arizona State Univer-
sity, Polytechnic campus. His research in-
terests include geometric design, computer
graphics, document exploitation, and geospa-
tial visualization and analysis. He is the prin-

cipal investigator and a collaborator on several federal grants, including
NSF, NGA, and NIH.

Peter Wonka received his Ph.D. and M.S.
from the Vienna University of Technology
in Computer Science and an M.S. in Urban
Planning from the same institution. He is as-
sociate professor at the King Abdullah Uni-
versity of Science and Technology (KAUST)
and Arizona State University. His research
interests include various topics in computer
graphics, visualization, and image process-
ing.

	Introduction
	Related Work
	Controllable Optimization Algorithm
	Results and Applications
	Conclusions
	Acknowledgment

