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Tensor Completion for Estimating Missing
Values in Visual Data

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye

Abstract—In this paper we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing
due to problems in the acquisition process, or because the user manually identified unwanted outliers. Our algorithm works
even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built
on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix
case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm.
First, we propose a definition for the tensor trace norm, that generalizes the established definition of the matrix trace norm.
Second, similar to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the
straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple
constraints. To tackle this problem, we developed three algorithms: SiLRTC, FaLRTC, and HaLRTC. The SiLRTC algorithm is
simple to implement and employs a relaxation technique to separate the dependant relationships and uses the block coordinate
descent (BCD) method to achieve a globally optimal solution; The FaLRTC algorithm utilizes a smoothing scheme to transform
the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem;
The HaLRTC algorithm applies the alternating direction method of multipliers (ADMM) to our problem. Our experiments show
potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust
than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and
between FaLRTC and HaLRTC the former is more efficient to obtain a low accuracy solution and the latter is preferred if a high
accuracy solution is desired.

Index Terms—Tensor completion, trace norm, sparse learning.

✦

1 INTRODUCTION

In computer vision and graphics, many problems can be for-
mulated as a missing value estimation problem, e.g. image
in-painting [4], [22], video decoding, video in-painting [23],
scan completion, and appearance acquisition completion.
The core problem of the missing value estimation lies
on how to build up the relationship between the known
elements and the unknown ones. Some energy methods
broadly used in image in-painting, e.g. PDEs [4] and belief
propagation [22] mainly focus on the local relationship.
The basic (implicit) assumption is that the missing entries
mainly depend on their neighbors. The further apart two
points are, the smaller their dependance is. However, some-
times the value of the missing entry depends on the entries
which are far away. Thus, it is necessary to develop a tool
to directly capture the global information in the data.

In the two-dimensional case, i.e. the matrix case, the
“rank” is a powerful tool to capture some type of global
information. In Fig. 1, we show a texture with 80% of its
elements removed randomly on the left and its reconstruc-
tion using a low rank constraint on the right. This example
illustrates the power of low rank approximation for missing
data estimation. However, “rank(·)” is unfortunately not a
convex function. Some heuristic algorithms were proposed
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to estimate the missing values iteratively [13], [24]. How-
ever, they are not guaranteed to find a globally optimal
solution due to the non-convexity of the rank constraint.

Fig. 1: The left figure contains 80% missing entries shown
as white pixels and the right figure shows its reconstruction
using the low rank approximation.

Recently, the trace norm of matrices was used to approx-
imate the rank of matrices [30], [7], [37], which leads to
a convex optimization problem. The trace norm has been
shown to be the tightest convex approximation for the rank
of matrices [37], and efficient algorithms for the matrix
completion problem using the trace norm constraint were
proposed in [30], [7]. Recently, Candès and Recht [9],
Recht et al. [37], and Candès and Tao [10] showed that
under certain conditions, the minimum rank solution can
be recovered by solving a convex optimization problem,
namely the minimization of the trace norm over the given
affine space. Their work theoretically justified the validity
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of the trace norm to approximate the rank.
Although the low rank approximation problem has been

well studied for matrices, there is not much work on ten-
sors, which are a higher-dimensional extension of matrices.
One major challenge lies in an appropriate definition of
the trace norm for tensors. To the best of our knowledge,
this has been not addressed in the literature. In this paper,
we make two main contributions: 1) We lay the theoretical
foundation of low rank tensor completion and propose the
first definition of the trace norm for tensors. 2) We are the
first to propose a solution for the low rank completion of
tensors.

The challenge of the second part is to build a high
quality algorithm. Similar to matrix completion, the tensor
completion can be formulated as a convex optimization
problem. Unfortunately, the straightforward problem exten-
sion is significantly harder to solve than the matrix case
because of the dependency among multiple constraints.
To tackle this problem, we developed three algorithms:
SiLRTC, FaLRTC, and HaLRTC. The SiLRTC algorithm,
a pretty simple and intuitive method, employs a relaxation
technique to separate the dependant relationships and uses
the block coordinate descent (BCD) method to achieve a
globally optimal solution. It actually simplifies the LRTC
algorithm proposed in our conference paper [29]. The FaL-
RTC algorithm utilizes a smoothing scheme to transform
the original nonsmooth problem into a smooth problem.
We also present a theoretical analysis of the convergence
rate for the FaLRTC algorithm. The third method applies
the alternating direction method of multipliers (ADMM) al-
gorithm [5] to our problem. In addition, we present several
heuristic models, which involve non-convex optimization
problems. Our experiments show that our method is more
accurate and robust than these heuristic approaches. We also
give some potential applications in image in-painting, video
compression, and BRDF data estimation, using our tensor
completion technique. The efficiency comparison indicates
that FaLRTC and HaLRTC are more efficient than SiLRTC
and between FaLRTC and HaLRTC the former is more
efficient to obtain a low accuracy solution and the latter is
preferred if a high accuracy solution is desired.

1.1 Notation
We use upper case letters for matrices, e.g. X, and lower
case letters for the entries, e.g. xij . Σ(X) is a vector,
consisting of the singular values of X in descending order
and σi(X) denotes the ith largest singular value. The
Frobenius norm of the matrix X is defined as: �X�F :=
(
�

i,j |xij |2)
1
2 . The spectral norm is denoted as �X� :=

σ1(X) and the trace norm as �X�tr :=
�

i σi(X). Let
X = UΣV � be the singular value decomposition for X .
The “shrinkage” operator Dτ (X) is defined as [7]:

Dτ (X) = UΣτV
�
, (1)

where Στ = diag(max(σi − τ, 0)). The “truncate” opera-
tion Tτ (X) is defined as:

Tτ (X) = UΣτ̄V
�
, (2)

where Στ̄ = diag(min(σi, τ)). It is easy to verify that
X = Tτ (X) + Dτ (X). Let Ω be an index set, then XΩ

denotes the matrix copying the entries from X in the set Ω
and letting the remaining entries be “0”. A similar definition
can be extended to the tensor case. The inner product of
the matrix space is defined by �X,Y � =

�
i,j XijYij .

We follow [11] to define the terminology of tensors used
in the paper. An n-mode tensor (or n−order tensor) is
defined as X ∈ RI1×I2×···×In . Its elements are denoted
as xi1,··· ,in , where 1 ≤ ik ≤ Ik, 1 ≤ k ≤ n. For
example, a vector is a 1-mode tensor and a matrix is
a 2-mode tensor. It is sometimes convenient to unfold a
tensor into a matrix. The “unfold” operation along the
k-th mode on a tensor X is defined as unfoldk(X ) :=
X(k) ∈ RIk×(I1···Ik−1Ik+1···In). The opposite operation
“fold” is defined as foldk(X(k)) := X . Denote �X�F :=
(
�

i1,i2,···in |ai1,i2,···in |2)
1
2 as the Frobenius norm of a

tensor. It is clear that �X�F = �X(k)�F for any 1 ≤ k ≤ n.
Please refer to [11] for a more extensive overview of
tensors. In addition, we use a nonnegative superscript
number to denote the iteration index, e.g., X k denotes the
value of X at the kth iteration; the superscript “-2” in K−2

denotes the power.

1.2 Organization
We review related work in Section 2, introduce a convex
model and three heuristic models for the low rank tensor
completion problem in Section 3, present the SiLRTC,
FaLRTC, and HaLRTC algorithms to solve the convex
model in Section 4, Section 5, and Section 6 respectively,
report empirical results in Section 7, and conclude this
paper in Section 8. To increase the readability of this paper
for the casual reader most technical details can be found in
the appendix.

2 RELATED WORK
The low rank or approximately low rank problem broadly
occurs in science and engineering, e.g. computer vision
[42], machine learning [1], [2], signal processing [26], and
bioinformatics [44]. Fazel et al. [13], [12] introduced a
low rank minimization problem in control system analysis
and design. They heuristically used the trace norm to
approximate the rank of the matrix. They showed that the
trace norm minimization problem can be reformulated as
a semidefinite programming (SDP) problem via its dual
norm (spectral norm). Srebro et al. [39] employed second-
order cone programming (SCOP) to formulate a trace norm
related problem in matrix factorization. However, many
existing optimization methods such as SDPT3 [41] and
SeDuMi [40] cannot solve a SDP or SOCP problem when
the size of the matrix is much larger than 100× 100 [30],
[37]. This limitation prevented the usage of the matrix com-
pletion technique in computer vision and image processing.
Recently, to solve the rank minimization problem for large
scale matrices, Ma et al. [30] applied the fixed point and
Bregman iterative method and Cai et al. [7] proposed a
singular value thresholding algorithm. In both algorithms,
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one key building block is the existence of a closed form
solution for the following optimization problem:

min
X∈Rp×q

:
1

2
�X −M�2F + τ�X�tr, (3)

where M ∈ Rp×q , and τ is a constant. Candès and Recht
[9], Recht et al. [37], and Candès and Tao [10] theoretically
justified the validity of the trace norm to approximate the
rank of matrices. Recht [36] recently improved their result
and also largely simplified the proof by using the golfing
scheme from quantum information theory [15]. An alterna-
tive singular value based method for matrix completion was
recently proposed and justified by Keshavan et al. [21].

This journal paper builds on our own previous work
[29] where we extended the matrix trace norm to the
tensor case and proposed to recover the missing entries
in a low rank tensor by solving a tensor trace norm
minimization problem. We used a relaxation trick on the
objective function such that the block coordinate descent
algorithm can be employed to solve this problem [29].
Since this approach is not efficient enough, some recent
papers tried to use the alternating direction method of
multipliers (ADMM) to efficiently solve the tensor trace
norm minimization problem. The ADMM algorithm was
developed in the 1970s, but was successful in solving large
scale problems and optimization problems with multiple
nonsmooth terms in the objective function [28] recently.
Signoretto et al. [38] and Gandy et al. [14] applied the
ADMM algorithm to solve the tensor completion problem
with Gaussian observation noise, i.e.,

min
X

:
λ

2
�XΩ − TΩ�2F + �X�∗, (4)

where �X�∗ is the tensor trace norm defined in Eq. (8).
The tensor completion problem without observation noise
can be solved by optimizing Eq. (4) iteratively with an
increasing value of λ [38], [14]. Tomioka et al. [43]
proposed several slightly different models for the problem
Eq. (4) by introducing dummy variables and also applied
ADMM to solve them. Out of these three algorithms for
tensor completion based on ADMM, we choose to compare
to the algorithm by Gandy et al., because the problem
statement is identical to ours. Our results will show that our
adaption of ADMM and our proposed FaLRTC algorithm
are more efficient.

Besides tensor completion, the tensor trace norm pro-
posed in [26] can be applied in various other computer
vision problems such as visual saliency detection [47],
medical imaging [16], corrupted data correction [26], [27],
data compression [25].

3 THE FORMULATION OF TENSOR COM-
PLETION

This section presents a convex model and three heuristic
models for tensor completion.

3.1 Convex Formulation for Tensor Completion
Before introducing the low rank tensor completion problem,
let us start from the well-known optimization problem [24]
for low rank matrix completion:

min
X

: rank(X)

s.t. : XΩ = MΩ,

(5)

where X,M ∈ Rp×q , and the elements of M in the set Ω
are given while the remaining elements are missing. The
missing elements of X are determined such that the rank
of the matrix X is as small as possible. The optimization
problem in Eq. (5) is a nonconvex optimization problem
since the function rank(X) is nonconvex. One common
approach is to use the trace norm �.�∗ to approximate the
rank of matrices. The advantage of the trace norm is that
�.�∗ is the tightest convex envelop for the rank of matrices.
This leads to the following convex optimization problem for
matrix completion [3], [7], [30]:

min
X

: �X�∗

s.t. : XΩ = MΩ.

(6)

The tensor is the generalization of the matrix concept. We
generalize the completion algorithm for the matrix (i.e., 2-
mode or 2-order tensor) case to higher-order tensors by
solving the following optimization problem:

min
X

: �X�∗

s.t. : XΩ = TΩ
(7)

where X , T are n-mode tensors with identical size in each
mode. The first issue is the definition of the trace norm for
the general tensor case. We propose the following definition
for the tensor trace norm:

�X�∗ :=
n�

i=1

αi�X(i)�∗. (8)

where αi’s are constants satisfying αi ≥ 0 and
�n

i=1 αi =
1. In essence, the trace norm of a tensor is a convex
combination of the trace norms of all matrices unfolded
along each mode. Note that when the mode number n is
equal to 2 (i.e. the matrix case), the definition of the trace
norm of a tensor is consistent with the matrix case, because
the trace norm of a matrix is equal to the trace norm of its
transpose. Under this definition, the optimization in Eq. (7)
can be written as:

min
X

:
n�

i=1

αi�X(i)�∗

s.t. : XΩ = TΩ.
(9)

Here one might ask why we do not define the tensor
trace norm as the convex envelop of the tensor rank like
in the matrix case. Unlike matrices, computing the rank
of a general tensor (mode number > 2) is an NP hard
problem [18]. Therefore, there is no explicit expression for
the convex envelop of the tensor rank to the best of our
knowledge.
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3.2 Three Heuristic Algorithm

We introduce several heuristic models, which, unlike the
one in the last section, involve non-convex optimization
problems. A goal of introducing the heuristic algorithms
is to establish some basic methods that can be used for
comparison.
Tucker: One natural approach is to use the Tucker
model [46] for tensor factorization to the tensor completion
problem as follows:

min
X ,C,U1,··· ,Un

:
1

2
�X − C ×1 U1 ×2 U2 ×3 · · ·×n Un�2F

s.t. : XΩ = TΩ
(10)

where C ×1 U1 ×2 U2 ×3 · · · ×n Un is the Tucker model
based tensor factorization, Ui ∈ RIi×ri , C ∈ Rr1×···×rn ,
and T ,X ∈ RI1×···×In . One can simply use the block co-
ordinate descent method to solve this problem by iteratively
optimizing two blocks X and C,U1, · · · , Un respectively
while fixing the other. X can be computed by letting
XΩ = TΩ and XΩ̄ = (C ×1 U1 ×2 U2 ×3 · · · ×n Un)Ω̄.
C,U1, · · · , Un can be computed by any existing tensor
factorization algorithm based on the Tucker model. The
procedure can also be employed to solve the following two
heuristic algorithms.
Parafac: Another natural approach is to use the parallel
factor analysis (Parafac) model [17], resulting in the fol-
lowing optimization problem:

min
X ,U1,U2,··· ,Un

:
1

2
�X − U1 ◦ U2 ◦ · · · ◦ Un�2F

s.t. : XΩ = TΩ
(11)

where ◦ denotes the outer product and U1 ◦U2 ◦ · · · ◦Un is
the Parafac model based decomposition, Ui ∈ RIi×r, and
T ,X ∈ RI1×···×In .
SVD: The third alternative is to consider the tensor as
multiple matrices and force the unfolding matrix along each
mode of the tensor to be low rank as follows:

min
X ,M1,M2,··· ,Mn

:
1

2

n�

i=1

�X(i) −Mi�2F

s.t. : XΩ = TΩ
rank(Mi) ≤ ri i = 1, · · · , n.

(12)

where Mi ∈ RIi×(
�

k �=i Ik), and T ,X ∈ RI1×···×In .

4 A SIMPLE LOW RANK TENSOR COMPLE-
TION (SILRTC) ALGORITHM

In this section we present the SiLRTC algorithm to solve
the convex model in Eq. (9), which is simple to understand
and to implement. In Section 4.1, we relax the original
problem into a simple convex structure which can be solved
by block coordinate descent. Section 4.2 presents the details
of the proposed algorithm.

4.1 Simplified Formulation
The problem in Eq. (9) is difficult to solve due to the
interdependent matrix trace norm terms, i.e., while we
optimize the sum of multiple matrix trace norms, the
matrices share the same entries and cannot be optimized
independently. Hence, the existing result in Eq. (3) cannot
be used directly. Our key motivation of simplifying this
original problem is how to split these interdependent terms
such that they can be solved independently. We introduce
additional matrices M1, · · · ,Mn and obtain the following
equivalent formulation:

min
X ,Mi

:
n�

i=1

αi�Mi�∗

s.t. : X(i) = Mi for i = 1, · · · , n
XΩ = TΩ

(13)

In this formulation, the trace norm terms are still not
independent because of the equality constraints Mi = X(i)

which enforces all Mi’s to be identical. Thus, we relax the
equality constraints Mi = X(i) by �Mi − X(i)�2F ≤ di

as Eq. (14), so that we can independently solve each
subproblem later on.

min
X ,Mi

:
n�

i=1

αi�Mi�∗

s.t. : �X(i) −Mi�2F ≤ di for i = 1, · · · , n
XΩ = TΩ

(14)

di(> 0) is a threshold that could be defined by the user,
but we do not use di explicitly in our algorithm. This
optimization problem can be converted to an equivalent
formulation for certain positive values of βi’s:

min
X ,Mi

:
n�

i=1

αi�Mi�∗ +
βi

2
�X(i) −Mi�2F

s.t. : XΩ = TΩ.
(15)

This is a convex but nondifferentiable optimization prob-
lem. Next, we show how to solve the optimization problem
in Eq. (15).

4.2 The Main Algorithm
We propose to employ block coordinate descent (BCD) for
the optimization. The basic idea of block coordinate descent
is to optimize a group (block) of variables while fixing the
other groups. We divide the variables into n + 1 blocks:
X ,M1,M2, · · · ,Mn.
Computing X : The optimal X with all other variables fixed
is given by solving the following subproblem:

min
X

:
n�

i=1

βi

2
�Mi − X(i)�2F

s.t. : XΩ = TΩ.
(16)

It is easy to check that the solution to Eq. (16) is given by

Xi1,··· ,in =

� ��
i βifoldi(Mi)�

i βi

�

i1,··· ,in
(i1, · · · , in) /∈ Ω;

Ti1,··· ,in (i1, · · · , in) ∈ Ω.
(17)



5

Computing Mi: Mi is the optimal solution of the following
problem.

min
Mi

:
βi

2
�Mi − X(i)�2F + αi�Mi�∗

≡1

2
�Mi − X(i)�2F +

αi

βi
�Mi�∗.

(18)

This problem has been proven to lead to a closed form in
recent papers like [30], [7]. Thus the optimal Mi can be
computed as Dτ (X(i)) where τ = αi

βi
.

We call the proposed algorithm “SiLRTC”, which stands
for Simple Low Rank Tensor Completion algorithm. The
pseudo-code of the SiLRTC algorithm is given in Algo-

rithm 1 below. As convergence criteria we compare the
difference of X in subsequent iterations to a threshold.
Since the objective in Eq. (15) is convex and the nonsmooth
term is separable, BCD is guaranteed to find the global
optimal solution [45]. Note that this SiLRTC algorithm
actually simplifies the LRTC algorithm proposed in our
conference paper [29] by removing a redundant variable
Y . SiLRTC and LRTC produce almost identical results.

Algorithm 1 SiLRTC: Simple Low Rank Tensor Comple-
tion
Input: X with XΩ = TΩ, βi’s, and K

Output: X
1: for k = 1 to K do

2: for i = 1 to n do

3:
Mi = Dαi

βi
(X(i))

4: end for

5: update X by Eq. (17).
6: end for

5 A FAST LOW RANK TENSOR COMPLE-
TION (FALRTC) ALGORITHM
Although the proposed algorithm in Section 4 is easy to
implement, its convergence speed is low in practice. In
addition, SiLRTC is hard to extend to any tensor trace
norm minimization problem, e.g., the formulation “logistic
loss + tensor trace norm” is hard to minimize using the
strategy above. In this section we propose a new algorithm
to significantly improve the convergence speed of SiLRTC
and to solve a general tensor trace norm minimization
problem defined below:

min
X∈Q

: f(X ) := f0(X ) +
n�

i=1

αi�X(i)�∗ (19)

where X ∈ RI1×I2×...×In , Q is a convex set, and f0(X ) is
smooth and convex. One can easily verify that the low rank
tensor completion problem in Eq. (9) is just a special case
with f0(X ) = 0 and Q = {X ∈ RI1×I2×···×In | XΩ =
TΩ}.

The difficulty to efficiently solve the tensor trace norm
related minimization problems lies on that there exist

multiple dependent nonsmooth terms in the objective func-
tion. Although one can use the subgradient information
to replace the gradient information, the convergence rate
is O(K−1/2) where K is the iteration number [33]. In
comparison, the optimal convergence rate for minimizing
general smooth functions is O(K−2) [33], [31]. Nesterov
[34] proposed a general method to solve a nonsmooth
optimization problem. The basic idea is to

• first convert the original nonsmooth problem into a
smooth one;

• then solve the smooth problem and use its solution to
approximate the original problem.

We will follow this procedure to solve the problem in
Eq. (19).

Section 5.1 employs the smoothing scheme proposed by
Nesterov [34] to convert the original nonsmooth objective
function in Eq. (19) into a smooth one. Section 5.2 proposes
an efficient updating rule to solve the smooth problem and
analyzes the convergence rate of this method. Section 5.3
applies the smoothing scheme and the efficient updating
rule to the low rank tensor completion problem.

5.1 Smoothing Scheme

Consider one nonsmooth term in Eq. (19), i.e., the matrix
trace norm function �X�∗. Its dual version can be written
as:

g(X) := �X�∗ = max
�Y �≤1

�X,Y �. (20)

Its smooth version is

gµ(X) = max
�Y �≤1

�X,Y � − dµ(Y ) (21)

where dµ(Y ) is a strongly convex function with the param-
eter µ. Theorem 1 in [34] proves that gµ(X) is smooth and
its gradient can be computed by

�gµ(X) = Y
∗(X) := arg max

�Y �≤1
�X,Y � − dµ(Y ). (22)

Although one can arbitrarily choose a strongly convex
function dµ(Y ) to smooth the original function, a good
choice can lead to a closed form for the dual variables Y .
Otherwise, it involves a complicated min-max optimization
problem. Here, we choose d(Y ) = µ

2 �Y �2F where µ > 0
as the strongly convex term and the gradient is

�gµ(X) =Y
∗(X)

:=arg max
�Y �≤1

�X,Y � − µ

2
�Y �2F

=arg min
�Y �≤1

�Y − 1

µ
X�2F

=T1(
1

µ
X).

(23)

The last equality is due to Lemma 1 in the Supplemental

Material.
We apply this smoothing scheme to all nonsmooth terms

in Eq. (19) by introducing n dual variables Y1, · · · ,Yn ∈
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RI1×I2×···×In and n positive constants µ1, · · · , µn. The
objective function f(X) is converted into:

fµ(X ) := fµ1,··· ,µn(X )

=f0(X ) +
n�

i=1

max
�Yi(i)�≤1

αi�X(i),Yi(i)� −
µi

2
�Yi(i)�2F

=f0(X ) +
n�

i=1

max
�Yi(i)�≤1

αi�X ,Yi� −
µi

2
�Yi�2F .

(24)
Its gradient can be computed by

�fµ(X ) = �f0(X ) +
n�

i=1

αiT1

�
αi

µi
X(i)

�
. (25)

Finally, we obtain a smooth optimization problem as
follows:

min
X∈Q⊂RI1×...×In

: fµ(X ) (26)

and will use its optimal solution to approximate the original
problem in Eq. (19).

5.2 An Efficient Algorithm to Solve the Smooth
Version
In essence, the problem in Eq. (26) is a smooth optimiza-
tion. Nesterov [34] also proposed an algorithm to solve any
smooth problem in a bounded domain and guaranteed two
convergence rates O(K−2) for the smooth problem and
O(K−1) for the original problem, i.e.,

fµ(XK)− fµ(X ∗
µ ) ≤ O

�
K

−2
�

(27)

f(XK)− f(X ∗) ≤ O
�
K

−1
�
, (28)

where X ∗
µ and X ∗ are respectively the optimal solutions of

fµ(X ) and f(X ), X 0 is the initial point, and XK is the
output of our updating rule for fµ(X ). One is not surprised
about the first convergence rate, since for a general smooth
optimization problem, the rate O(K−2) is guaranteed by
Nesterov’s popular accelerated algorithm [32]. The second
rate is quite interesting. Note that XK is the output by
minimizing fµ(X ) instead of f(X ). The second inequality
indeed indicates how far the approximate solution is away
from the true solution after K iterations.

However, the constant factor of O(K−1) in Eq. (28) is
proportional to the size of the domain set Q, see Theorem 3
[34]. For this reason, the domain Q is assumed to be
bounded in [34]. Hence, if this algorithm is applied to
solve Eq. (26) directly, the inequality in Eq. (28) cannot be
guaranteed. Based on the algorithm in [34], we propose an
improved efficient algorithm to solve the problem Eq. (26)
in Algorithm 2 which allows the domain set Q to be
unbound and can guarantee the results in Eq. (27) and
Eq. (28). A more detailed explanation of the accelerated
scheme in Algorithm 2 is provided in the Supplemental

Material.
Unsurprisingly, the proposed algorithm can guarantee the

convergence rate O(K−2) for the smooth problem like
many existing accelerated algorithms [33], [34], [19], [31],
see Theorem 2 in the Supplemental Material.

At the same time, the following theorem shows that
the convergence rate O(K−1) for the original nonsmooth
problem is also obtained by the proposed algorithm.

Theorem 1. Define D as any positive constant satisfying

D ≥ min
X∗

: �X ∗ − X 0�F , (34)

where X ∗ is the optimal solution of the problem Eq. (19)
and X 0 is the starting point. Set the parameters in the
problem (26) as

µi =
2αiD

K
√
cIi

.

After K iterations in Algorithm 2, the output XK for the
problem in Eq. (26) satisfies

f(XK)− f(X ∗) ≤ 2L̄

c

�
D

K

�2

+
2D

K

�

i

αi

�
Ii

c
. (35)

where L̄ is the Lipschitz constant of f0(X ).

Theorem 1 and Theorem 2 extend the results in [34].
Although Nesterov’s popular accelerated algorithm [32],

[31], [33] can guarantee the convergence rate O(K−2) for
the smooth problem, there is no evidence showing that it
can achieve O(K−1) for the original problem. Ji et al. [19]
used this smoothing scheme and Nesterov’s popular accel-
erated method to solve a multiple kernel learning problem,
and also claimed the convergence rate O(K−1) for the
original problem. However, what they really guaranteed is
f(XK) − f(X ∗

µ ) ≤ O(K−1) which can be obtained from
Eq. (27).

Theorem 1 also implies that the reasonable parameters
should satisfy

µ1 : µ2 : · · · : µn =
α1√
I1

:
α2√
I2

: · · · :
αn√
In

.

5.3 The FaLRTC Algorithm
This section considers the specific tensor completion prob-
lem in Eq. (9). The smooth version of this problem is

min
X

:
n�

i=1

max
�Yi(i)�≤1

: αi�X ,Yi� −
µi

2
�Y�2F

s.t. : XΩ = TΩ.
(36)

Now we can use the proposed Algorithm 2 to solve this
smooth minimization problem above. First it is easy to
verify

Zk+1 = Zk − θk+1

Lk
�fµ(Wk+1), (37)

�
�fµ(Wk+1)

�
i1,··· ,in

=
� ��

i
(αi)

2

µi
T µi

αi
(Wk+1

(i) )
�

i1,··· ,in
, (i1, i2, · · · , in) /∈ Ω;

0, (i1, i2, · · · , in) ∈ Ω.
(38)

The last equation is due to Wk+1
Ω = TΩ. For a simple

implementation, we require the sequence Lk to be non-
decreasing, although the updating rule in Algorithm 2
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Algorithm 2 An Efficient Algorithm

Input: c ∈ (0, 1), x0, K, and L0.
Output: xK

1: Initialize z0 = w0 = x0 and B0 = 0
2: for k = 0 to K do

3: Find a Lk+1 as small as possible from {· · · , cLk, Lk, Lk/c, ...}, such that Eq. (31) holds. Let

θ
k+1 =

Lk

2Lk+1
(1 +

�
1 + 4BkLk+1), w

k+1 = τ
k+1

z
k + (1− τ

k+1)xk (29)

x
� = argmin

x∈Q
: p(x) = fµ(w

k+1) + ��fµ(wk+1), x− w
k+1�+ Lk+1

2
�x− w

k+1�2 (30)

where τk+1 = ( θ
k+1

Lk )/Bk+1 and Bk =
�k

i=1
θi

Li−1 . Test whether the following inequality holds:

fµ(x
�) ≤ p(xk+1), (31)

4: Update xk+1 and zk+1 by
x
k+1 = arg min

x∈{x�,xk,zk}
: fµ(x), (32)

z
k+1 = argmin

z∈Q
: h(z) =

1

2
�z − x

0�2 +
k+1�

i=1

θi

Li−1
(fµ(w

i) + ��fµ(wi), z − w
i�) (33)

5: end for

allows that Lk (L� in Algorithm 3) becomes smaller
(theoretically, the smaller, the better, see the proof of
Theorem 2). Because f(X ) involves computing SVD (this
is a big workload), we remove Zk from the candidate
pool. Note that these slight changes do not change the
properties of the output XK in Theorem 2 and Theorem 1.
Finally, Algorithm 3 summarizes the fast low rank tensor
completion algorithm, namely, FaLRTC. The lines 5 to 7
in Algorithm 3 are optional as they merely guarantee that
the objective is nonincreasing. The lines 8 to 13 are the
line search step. The main cost in this part is evaluating
fµ(X �), fµ(W), and �fµ(W). In fact, one of fµ(W) and
�fµ(W) can be obtained without much additional cost
while computing the other. Since all gradient algorithms
have to compute the gradient, the additional cost in each
iteration of the proposed algorithm is to compute fµ(X �).
One can avoid this extra cost by initialing L as the Lipschitz
constant of the objective fµ(W), i.e.,

�n
i=1

1
µi

because
it satisfies the condition in line 9. However, in practice
a line search often improves the efficiency. In addition,
the FaLRTC algorithm can be accelerated by decreasing
µi iteratively. Specifically, we set µk

i = ak−p + b for
k = 1, ...,K at the kth iteration where p is a constant in
the range [1.1, 1.2] and a and b are determined by solving
µ0
i = a + b and µK

i = aK−p + b (µ0
i = 0.4αi�X(i)�,

µK
i = µi is the input of Algorithm 3).

6 A HIGH ACCURACY LOW RANK TENSOR
COMPLETION (HALRTC) ALGORITHM
The ADMM algorithm was developed in the 1970s, with
roots in the 1950s, but received renewed interest due to
the fact that it is efficient to tackle large scale problems
and solve optimization problems with multiple nonsmooth

Algorithm 3 FaLRTC: Fast Low Rank Tensor Completion

Input: c ∈ (0, 1), X with XΩ = TΩ, K, µi’s, and L.
Output: X

1: Initialize Z = W = X , L� = L, and B = 0
2: for k = 0 to K do

3: while true do

4:

θ =
L

2L� (1 +
√
1 + 4L�B);

W =
θ/L

B + θ/L
Z +

B

B + θ/L
X ;

(39)

5: if fµ(X ) ≤ fµ(W)− ��fµ(W)�2F /2L�
then

6: break;
7: end if

8: X � = W − �fµ(W)/L�;
9: if fµ(X �) ≤ fµ(W)− ��fµ(W)�2F /2L�

then

10: X = X �;
11: break;
12: end if

13: L� = L�/c;
14: end while

15:
L =L

�;

Z =Z − θ

L
�fµ(W);

B =B +
θ

L
;

(40)

16: end for
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terms in the objective [28]. This section follows the ADMM
algorithm to solve the noiseless case in a direct way.
Based on the SiLRTC algorithm, we also give a simple
implementation using the ADMM framework. Recall that
the formulation in Eq. (13) is an equivalent form of the
original problem. We replace the dummy matrices Mi’s by
their tensor versions:

min
X ,M1,··· ,Mn

:
n�

i=1

αi�Mi(i)�∗

s.t. : XΩ = TΩ
X = Mi, i = 1, · · · , n.

(41)

We define the augmented Lagrangian function as follows:

Lρ(X ,M1, · · · ,Mn,Y1, · · · ,Yn)

=
n�

i=1

αi�Mi(i)�∗ + �X −Mi,Yi�+
ρ

2
�Mi − X�2F

(42)
According to the framework of ADMM, one can iteratively
update Mi’s, X , and Yi’s as follows:

1) {Mk+1
1 , · · · ,Mk+1

n } = argminM1,··· ,Mn :
Lρ(X k,M1, · · · ,Mn,Yk+1

1 , · · · ,Yk+1
n )

2) X k+1 = argminX∈Q :
Lρ(X ,Mk+1

1 , · · · ,Mk+1
n ,Yk

1 , · · · ,Yk+1
n )

3) Yk+1
i = Yk

i − ρ(Mk+1
i − X k+1).

One can refer to Eq. (18) and Eq. (16) in the SiLRTC
algorithm to obtain the closed form solutions for the
first two steps. We summarize the HaLRTC algorithm in
Algorithm 4. This algorithm can also be accelerated by
adaptively changing ρ. An efficient strategy [28] is to
let ρ0 = ρ (the input in Algorithm 4) and increase ρk

iteratively by ρk+1 = tρk where t ∈ [1.1, 1.2].

Algorithm 4 HaLRTC: High Accuracy Low Rank Tensor
Completion
Input: X with XΩ = TΩ, ρ, and K

Output: X
1: Set XΩ = TΩ and XΩ̄ = 0.
2: for k = 0 to K do

3: for i = 1 to n do

4:

Mi = foldi

�
Dαi

ρ

�
X(i) +

1

ρ
Yi(i)

��

5: end for

6:

XΩ =
1

n

�
n�

i=1

Mi −
1

ρ
Yi

�

Ω̄

7:
Yi = Yi − ρ(Mi − X )

8: end for

Note that the proposed ADMM algorithm in this section
aims to solve the tensor completion problem without ob-
servation noise unlike the previous work in [38], [43], [14].
Signoretto et al. [38] and Gandy et al. [14] also consider the

noiseless case in Eq. (9). They relax the equality constraint
in Eq. (9) into the noisy case in Eq. (4) and apply the
ADMM framework to solve the relaxed problem with an
increasing value of λ. However, our ADMM algorithm
handles this equality constraint directly without using any
relaxation technique. The comparison in Section 7 will
show that our ADMM is more efficient than the ADM-TR
Algorithm in [14].

Although the convergence of the general ADMM algo-
rithm is guaranteed [28], the convergence rate may be slow.
From the comparison in Section 7.3, we can observe that
HaLRTC is comparable to FaLRTC and even more efficient
to achieve a higher accuracy.

7 RESULTS

In this section, we first validate the tensor trace norm
based model in Eq. (9) by comparing to three heuristic
models in Section 3.2 and the matrix completion model for
tensor completion. Then the efficiency comparison between
SiLRTC, FaLRTC, and HaLRTC is reported. Several ap-
plications of tensor completion conclude this section. All
experiments were implemented in Matlab (version 7.9.0)
and all tests were performed on an Intel Core 2 2.67GHz
and 3GB RAM computer.

In the following we will use the 3-mode tensor T ∈
RI1×I2×I3 to explain how we generated the synthetic test
data sets used in the following comparison. All synthetic
data in Section 7 are generated in this manner. The tensor
data follows the tucker model, i.e., T = C×1U1×2U2×3U3

where the core tensor C is of size r1 × r2 × r3 and Ui is
of size Ii × ri. The entry of T is computed by

T (i, j, k) =
�

1≤m,n,l≤r

C(m,n, l)U1(i,m)U2(j, n)U3(k, l).

(43)
The entries of Ui are random samples drawn from a uniform
distribution in the range [−0.5, 0.5] and the entries of C are
from a uniform distribution in the range [0, 1]. Typically,
the ranks of the tensor T unfolded respectively along three
modes are [r1, r2, r3]. The data is finally normalized such
as �T �F = the number of entries in T .

7.1 Model Comparison: Tensor Trace Norm Ver-
sus Heuristic Models
We compare the proposed tensor completion model in
Eq. (9) to three heuristic models in Section 3.2 on both
synthetic and real-world data. We use SiLRTC, FaLRTC,
and HaLRTC to solve Eq. (9) and compare their results
to three heuristic methods. Since three heuristic models
are nonconvex, multiple initial points are tested and the
average performance is used for comparison. The initial
value at each missing entry is generated from the Guassian
distribution N(µ, 1) where µ is the average of other ob-
served entries. All experiments are repeated 10 times. The
performance is measured by RSE = �X − T �F /�T �F .
One can easily verify its connection to the signal-to-noise
ratio (SNR) by SNR = −20 log10 RSE.
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In the SiLRTC algorithm, the value of αi is set to 1/3
(3 is the mode number) and we only change the value of
βi. Let βi = αi/γi. It is easy to see that when the γi’s
go to 0, the optimization problem in Eq. (15) converges
to the original problem (7). In the FaLRTC algorithm, the
parameters αi’s are set like in the SiLRTC algorithm and
the parameters µi’s are set as µi = µ

αi√
ri

. Typically, µ is in
the range [1, 10], if the data is normalized as above. The
rank parameters of the three heuristic algorithms follow the
ranks of the tensor T unfolded along each mode.

We choose the percentage of randomly sampled elements
as 30% and 50% respectively and present the comparison
in Fig. 2 and Fig. 3.
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Tucker
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SVD
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Fig. 2: The RSE comparison on the synthetic data. I1 =
I2 = I3 = 50. The ranks of the tensor are given by
r1 = r2 = r3 = r where r is equivalent to 2, 4, 6, 8, · · · , 26
respectively. Tucker: Tucker model heuristic algorithm;
Parafac: Parafac model based heuristic algorithm; SVD:
the heuristic algorithm based on the SVD; γ = 10000,
γ = 1000, γ = 100, and γ = 10 denote the proposed
SiLRTC algorithm with βi = 1 and γi = γ. We let µ = 5
in FaLRTC algorithm. The sample percentage is 30%.

The brain MRI data is of size 181×217×181. Although
its ranks unfolded along three modes are [164, 198, 165],
they can decrease to [35, 42, 36] if removing small singular
values less than 0.01 percent of its Frobenius norm. Thus
this is approximately an low rank data. We use the same
normalization strategy above and report the comparison
results in Table 1.

Results from Fig. 2, 3, and Tab. 1 show that the proposed
convex formulation outperforms the three heuristic algo-
rithms. The performance of the three heuristic algorithms
is poor for high rank problems. We can also observe that the
proposed convex formulation is able to recover the missing
information using a small number of samples. Next we
evaluate the SiLRTC algorithm using different parameters.
We observe that the smaller the γ value, the closer the
solution of Eq. (15) to the original problem in Eq. (9). The
performance of FaLRTC is similar to the SiLRTC algorithm
with γ = 10.
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Fig. 3: See the caption of Fig. 2. The only difference is the
sample percentage of 50%.

7.2 Model Comparison: Tensor Trace Norm Ver-
sus Matrix Trace Norm

In this subsection we compare the behavior of matrix
and tensor completion in practical applications. We have not
obtained meaningful theoretical bounds for our tensor com-
pletion algorithms. Given a tensor T with missing entries,
we can unfold it along the ith mode into a matrix structure
T(i). Then the missing value estimation problem can be
formulated as a low rank matrix completion problem:

min
XΩ=T(i)Ω

: �X�∗. (44)

We compare tensor completion and matrix completion on
both the synthetic data and the real-world data and report
results in Table 2 and Table 3. We show an example slice
of the MRI data in Fig. 5.

Results from these two tables indicate that the proposed
low rank tensor completion algorithm outperforms the low
rank matrix completion algorithm, especially when the
number of missing entries is large.

Next, we consider a natural idea for using the matrix
completion technique for tensor completion. Without the
unfolding operation, one can directly apply the matrix
completion algorithm on each single slice of the tensor
with missing entries. We call this as the slicewise matrix
completion (S-MC). The comparisons on synthetic data and
real data are reported in Table 4 and Fig. 4, which also
show the advantages of tensor completion. In particular,
Table 4 indicates that tensor completion can almost per-
fectly recover the missing values while matrix completion
performs rather poorly in this case.

The key reason why the proposed algorithm outperforms
the matrix completion based algorithms may be that tensor
completion utilizes all information along all dimensions,
while matrix completion only considers the constraints
along two particular dimension.
7.3 Efficiency Comparison
This experiment concerns the efficiency of SiLRTC, FaL-
RTC, HaLRTC, and ADM-TR proposed in [14]. We com-
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TABLE 1: The RSE comparison on the MRI brain data. Tucker: Tucker model heuristic algorithm; Parafac: Parafac
model based heuristic algorithm; SVD: the heuristic algorithm based on the SVD; γ = 10000, γ = 1000, γ = 100, and
γ = 10 correspond to the proposed SiLRTC algorithm with βi = 1 and γi = γ. In the FaLRTC algorithm, µ is fixed as
5. We try different parameter values for three heuristic algorithms and report the best performance we obtain. The top,
middle, and bottom parts of the table correspond to the sample percentage: 20%, 50%, and 80%, respectively.

RSE Comparison (10−4)
Samples Tucker Parafac SVD SiLRTC γ = 104 SiLRTC γ = 103 SiLRTC γ = 102 SiLRTC γ = 10 FaLRTC HaLRTC

20% 371 234 274 309 47 22 21 17 16
50% 65 58 62 101 12 2 0 0 0
80% 21 45 16 40 4 1 0 0 0

(a) Original (b) With 90% missing entries (c) S-MC: RSE=0.1889 (d) TC: RSE=0.1445

Fig. 4: The RSE comparison on the real image between tensor completion and S-MC. (a) The original image. (b) We
randomly remove 90% entries from the original color image (3-mode tensor) and fill the value “255” on them. (c) The
recovered result by S-MC which slices the image into red, green, and blue channels. (d) The recovered result by FaLRTC.

TABLE 2: The RSE comparison on the synthetic data with
ri = 2. MCk (k = 1, 2, 3, · · · ) denotes the performance of
the solution of the problem (44) with i = k. We use the
FaLRTC algorithm to do tensor completion with µ = 1.
The top, middle, and bottom parts of the table respond to
different sizes of the synthetic data.

RSE Comparison (10−4), Size 20× 20× 20
Samples MC1 MC2 MC3 TC

25% 1663 1782 1685 34
40% 247 258 241 2
60% 0 0 0 0

RSE Comparison (10−4), Size 20× 20× 20× 20
Samples MC1 MC2 MC3 MC4 TC

20% 1875 1763 2011 1804 3
40% 92 102 97 88 0
60% 0 1 0 0 0

RSE Comparison (10−4), Size 20× 20× 20× 20× 20
Samples MC1 MC2 MC3 MC4 MC5 TC

15% 1874 1830 1663 1502 1688 50
40% 125 119 131 114 136 0
60% 0 0 0 0 0 0

TABLE 3: The RSE comparison on the MRI brain data.
µ = 5 in the FaLRTC algorithm. MCk (k = 1, 2, 3, · · · )
denotes the performance of the solution of the problem (44)
with i = k.

RSE Comparison (10−4)
Samples MC1 MC2 MC3 TC

20% 670 781 862 17

50% 27 36 75 0

TABLE 4: The RSE comparison on the synthetic data with
the size 60 × 60 × 60. S-MCk (k = 1, 2, 3, · · · ) denotes
the performance by applying matrix completion method
on each slice. We use the FaLRTC algorithm to do tensor
completion with µ = 1.

RSE Comparison (10−4), Samples percentage = 20%
S-MC1 S-MC2 S-MC3 TC

r�is = 2 2224 2317 2365 0
r�is = 4 4887 4756 4441 1
r�is = 6 6479 6789 6247 1

pare them on the synthetic data and the results are sum-
marized in Table 5. We report the running time of four
algorithms when achieving the same recovery accuracy
measured by RSE from 10−1 to 10−6 respectively. We
apply the efficient implementations of FaLRTC and HaL-
RTC by iteratively updating µk

i and ρk. We can observe
from this table: 1) the larger the value of γ, the faster
the SiLRTC algorithm, but a smaller value of γ can lead
to a more accurate solution in the SiLRTC algorithm; 2)
when three algorithms are configured to have the same
recovery accuracy, the FaLRTC algorithm and the HaLRTC
algorithm are much faster than the SiLRTC algorithm and
the ADM-TR algorithm; 3) the FaLRTC algorithm is more
efficient for obtaining the lower accuracy solutions while
the HaLRTC algorithm is much more efficient for obtaining
higher accuracy solutions. Fig. 6 shows the RSE curves of
the FaLRTC algorithm and the HaLRTC algorithm in terms
of the number of iterations and the computation time. We
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Fig. 5: The comparison of tensor completion and matrix
completion. The left up image (one slice of the MRI) is
the original; we randomly select pixels for removal shown
in white in the left middle image; the left bottom image
is the reconstruction by the proposed FaLRTC algorithm
with µ = 5; the right up, middle, and bottom images
are respectively the results of matrix completion algorithm
MC1, MC2, and MC3.

can observe from this figure that the FaLRTC algorithm
converges very fast at the beginning but takes some time to
obtain a high accuracy. Thus, FaLRTC is a good choice if
an accuracy lower than 10−2 is acceptable and the HaLRTC
algorithm is recommended if a higher accuracy is desired.
In practice, one might combine the FaLRTC algorithm and
the HaLRTC algorithm to improve the efficiency by running
FaLRTC first and then HaLRTC.

7.4 Applications
In this section, we outline three potential application ex-
amples with three different types of data: Images, Videos,
and reflectance data.

Images: Our algorithm can be used to estimate missing
data in images and textures. For example, in Fig. 7 we
show how missing pixels can be filled in a facade image.
Note how our algorithm can propagate global structure even
though a significant amount of information is missing.

Videos: The proposed algorithm may be used for video
compression and video in-painting. The core idea of video
compression is to remove individual pixels and to use tensor
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Fig. 6: The RSE comparison on the synthetic data. I1 =
I2 = I3 = I4 = 50 and r1 = r2 = r3 = r4 = 2. All
parameters are identical to the setting in the button part of
Table 5.

completion to recover the missing information. Similarly,
a user can eliminate unwanted pixels in the data and use
the proposed algorithm to compute alternative values for
the removed pixels. See Fig. 8 for an example frame of a
video.

Reflectance data: The BRDF is the “Bidirectional Re-
flectance Distribution Function”. The BRDF specifies the
reflectance of a target as a function of illumination direction
and viewing direction and can be interpreted as a 4 mode
tensor. BRDFs of real materials can be acquired by complex
appearance acquisition systems that typically require taking
photographs of the same object under different lighting
conditions. As part of the acquisition process, data can be
missing or be unreliable, such as in the MIT BRDF data set.
We use tensor completion to estimate the missing entries
in reflectance data. See Fig. 9 for an example. More results
are shown in the video accompanying this paper.
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TABLE 5: The efficiency comparison on the synthetic data. We run the proposed SiLRTC algorithm with βi = 1 and
three different values of γi (assume all γi’s are identical to γ as before): 104, 103, and 102. ADM-TR denotes the
ADMM algorithm proposed in [14]. We report the best result we obtain by tuning the main parameters in this algorithm.
The FaLRTC algorithm is run with four different values of µ (recall µi = µ

αi√
Ii

): 1000, 100, 10, and 1. µk
i is updated

iteratively based on the scheme in Section 5.3, i.e., µK
i = µ

αi√
Ii

, µ0
i = 0.4αi�X(i)�, and µk

i = ak−p + b with p = 1.15

and K = 200. We run the HaLRTC algorithm with five different inputs for ρ: 10−9, 10−8, 10−7, 10−6, and 10−5. ρ is
iteratively increased as discussed in Section 6, i.e., ρ(0) = ρ, ρk+1 = tρk where t = 1.15. We use the accuracy measured
by RSE from 10−1 to 10−6 as the stopping criteria and report the running time when the required accuracy is obtained.
The top and bottom parts of the table record the running time on two different synthetic data respectively. “-” denotes
the running time exceeds 100 seconds in the top table and 600 seconds in the bottom table.

Running Time (sec) I1 = I2 = I3 = 100 r1 = r2 = r3 = 2 Samples 20%
RSE(SNR) 10−1(20db) 3× 10−2(30db) 10−2(40db) 10−3(60db) 10−4(80db) 10−5(100db) 10−6(120db)

SiLRTC: γ = 104 8.4674 - - - - - -
SiLRTC: γ = 103 83.7156 90.7864 - - - - -
SiLRTC: γ = 102 - - - - - - -

ADM-TR 15.9333 28.7841 65.8791 94.1238 - - -
FaLRTC: µ = 103 2.8477 3.5597 8.5432 53.3950 - - -
FaLRTC: µ = 102 2.9097 3.6372 8.7292 37.4629 66.1966 - -
FaLRTC: µ = 101 2.9532 3.6915 8.4905 36.9152 63.4942 68.6623 -
FaLRTC: µ = 100 3.0084 3.7605 8.6491 37.6047 64.3041 69.5687 -

HaLRTC: ρ = 10−8 9.2625 10.8970 11.9867 15.8007 19.6146 23.4286 27.2425
HaLRTC: ρ = 10−7 5.4485 7.3555 8.9900 11.9867 16.0731 19.8871 23.7010
HaLRTC: ρ = 10−6 3.5415 5.4485 7.3555 10.8970 14.7110 18.5249 22.3389
HaLRTC: ρ = 10−5 - - - - - - -

Running Time (sec) I1 = I2 = I3 = I4 = 50 r1 = r2 = r3 = r4 = 2 Samples 20%
RSE(SNR) 10−1(20db) 3× 10−2(30db) 10−2(40db) 10−3(60db) 10−4(80db) 10−5(100db) 10−6(120db)

SiLRTC: γ = 104 398.7844 - - - - - -
SiLRTC: γ = 103 467.3572 554.4987 - - - - -
SiLRTC: γ = 102 - - - - - - -

ADM-TR 198.9887 226.7895 398.7835 588.9871 - - -
FaLRTC: µ = 103 25.3592 30.9946 76.0776 349.3935 - - -
FaLRTC: µ = 102 25.9213 31.6816 77.7640 336.9775 509.7864 - -
FaLRTC: µ = 101 26.3341 32.1861 79.0023 339.4174 514.9781 544.2382 -
FaLRTC: µ = 100 26.4496 32.3273 79.3488 340.9059 517.2366 546.6251 -

HaLRTC: ρ = 10−9 82.5930 107.6211 112.6268 150.1690 185.2085 217.7451 252.7845
HaLRTC: ρ = 10−8 52.5592 72.5817 77.5873 112.6268 147.6662 182.7056 217.7451
HaLRTC: ρ = 10−7 35.0394 37.5423 67.5761 92.6042 130.1465 167.6887 200.2254
HaLRTC: ρ = 10−6 - - - - - - -

Fig. 7: Facade in-painting. The left image is the original image; we select the lamp and satellite dishes together with a
large set of randomly positioned squares as the missing parts shown in white in the middle image; the right image is the
result of the proposed completion algorithm.
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Fig. 8: Video completion. The left image (one frame of the video) is the original; we randomly select pixels for removal
shown in white in the middle image; the right image is the result of the proposed LTRC algorithm.

Fig. 9: The left image is a rendering of an original phong BRDF; we randomly select 90% of the pixels for removal
shown in white in the middle image; the right image is the result of the proposed SiLRTC algorithm.

8 CONCLUSION

In this paper, we extend low rank matrix completion to
low rank tensor completion. We propose tensor completion
based on a novel definition of the trace norm for ten-
sors together with three convex optimization algorithms:
SiLRTC, FaLRTC, and HaLRTC to tackle the problem.
The first algorithm, SiLRTC, is intuitive to understand and
simple to implement. The latter two algorithms, FaLRTC
and HaLRTC, are significantly faster than SiLRTC and
use more advanced optimization techniques. Additionally,
several heuristic algorithms are presented. The experiments
show that the proposed algorithms are more stable and
accurate in most cases, especially when the sample entries
are very limited. Several application examples show the
broad applicability of tensor completion in computer vision
and graphics.

The proposed tensor completion algorithms assume that
the data is of low rank. This may not be the case in certain
applications. We plan to extend the theoretical results of
Candès and Recht to the tensor case. We also plan to extend
the proposed algorithms using techniques recently proposed
in [8], [48].
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