
Interactive Architectural Modeling with Procedural Extrusions
TOM KELLY
University of Glasgow
and
PETER WONKA
Arizona State University

We present an interactive procedural modeling system for the exterior of ar-
chitectural models. Our modeling system is based on procedural extrusions
of building footprints. The main novelty of our work is that we can model
difficult architectural surfaces in a procedural framework, e.g. curved roofs,
overhanging roofs, dormer windows, interior dormer windows, roof con-
structions with vertical walls, buttresses, chimneys, bay windows, columns,
pilasters, and alcoves. We present a user interface to interactively specify
procedural extrusions, a sweep plane algorithm to compute a two-manifold
architectural surface, and applications to architectural modeling.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Modeling packages

Additional Key Words and Phrases: procedural modeling, roof modeling,
urban modeling

ACM Reference Format:
Kelly, T. and Wonka, P., Interactive Architectural Modeling with Procedural
Extrusions. ACM Trans. Graph. VV, N, Article XXX, XX pages.
DOI = 10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

The main motivation for our work is to develop an interactive and
procedural modeling tool for complex architectural surfaces. We

Authors’ addresses: T. Kelly, Department Of Computing Science, Lilybank
Gardens, Glasgow, UK; email: twakelly@gmail.com; P. Wonka, Arizona
State University, Tempe, USA; email: pwonka@gmail.com. We would like
to thank the reviewers and Michael Schwarz for many helpful suggestions
for improving the various drafts of the paper. The research was supported
by NSF, the FIT-IT program from FFG, and the Scottish Informatics and
Computer Science Alliance.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/11-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

are interested in procedural and interactive modeling for three rea-
sons. First, procedural descriptions allow edits to architectural sur-
faces at multiple levels and previous edits will adapt to subsequent
ones. For example, the scene in Fig. 2 can be edited by reshap-
ing the building footprints, and the model buildings, including the
complete roof construction, will change according to the new in-
put. Second, procedural modeling is the most efficient method to
generate larger urban environments. Finally, we want to combine
interactive and procedural modeling, because a frequent obstacle
to using procedural tools is that it requires scripting. Eliminating
scripting will enable more people to use procedural modeling tools.

Fig. 1. Procedural extrusions allow a footprint (2d plan) to be extruded to
form the walls and roof of a house (inset). Meshes and procedural details
can then be attached (main).

Our goal is to model complex architectural features, including over-
hanging roofs, dormer windows, interior dormer windows, roof
constructions with vertical walls, buttresses, chimneys, bay win-
dows, columns, pilasters, and alcoves. See Fig. 1 for an example
showing some of these features. These complex architectural sur-
faces have not been handled in procedural modeling before, and
the main contribution of this paper is to introduce the first procedu-
ral modeling solution that includes these surfaces. Previous work
in procedural modeling using shape grammars [Müller et al. 2006;
Lipp et al. 2008] is able to model some architectural roof surfaces
on a restricted set of footprints, but not the more complex roofs of
arbitrary footprints shown in this paper.

The first part of our solution is to identify the most important ed-
its and to design a user interface to specify procedural extrusions.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • T. Kelly and P. Wonka

Fig. 2. We present an interactive procedural modeling system that is able to model difficult architectural surfaces, such as roof constructions. This figure
shows procedural extrusions applied to 6000 floorplans from a GIS database of Atlanta.

We consider this part interesting because after analyzing examples,
such as the one shown in Fig. 1, it is not clear how to model such a
building, and what editing operations are even necessary to ensure
that a larger class of interesting architecture can be modeled. An
important aspect of our solution is to model buildings from floor-
plans and profile curves, see Fig. 5. In Sec. 3 we will describe our
user interface in more detail including the architectural configu-
rations that motivated the different user interface parts. The goal
of our work is to have tools that are expressive enough to be able
to quickly model most aspects of a building. We will evaluate our
system on a catalog of 50 buildings in various styles in Sec. 6 to
demonstrate the efficiency of our tools and to document geometric
configurations that are difficult to reproduce.

The second part of our solution is a collection of algorithms to com-
pute procedural extrusions from the user specification, see Sec. 4.
We propose a sweep plane algorithm to grow the architectural sur-
face upwards and to handle various events stemming from user ed-
its or plane intersections. Our algorithms are inspired by the straight
skeleton [Aichholzer et al. 1995]. We want to note that the compu-
tational geometry community emphasizes provably correct algo-
rithms and therefore often favors rational arithmetic. In contrast,
our work consists of heuristic algorithms that emphasize computa-
tion speed and are geared towards a floating point implementation.
While our heuristics include various mechanisms to make the re-
sults more robust, it is possible that the computations can fail. For
example, in the Atlanta data set of 6000 buildings we noted that two
roof planes were not computed correctly. The approximate nature
of our floating point computation also results in roof planes being
moved by millimeters.

The contributions of our work are:

—the design of the system and the set of tool choices to enable
procedural modeling of complex architectural surfaces.

—heuristic algorithms to generate a polygonal mesh from the user
specification that is approximately consistent with the input data.

—the evaluation of the system on a collection of examples to verify
its practical utility, and to identify configurations that are difficult
to model with our tools.

2. RELATED WORK

In architecture, Stiny pioneered the idea of shape grammars [Stiny
1975]. In computer graphics grammars were used as a design tool

Fig. 3. These two examples show architectural surfaces overlayed with the
user input. Plans (green), profiles (blue), natural steps (orange) and offset
events (red) are specified in the user interface. The output of our system is
an architectural shell (gray).

for architecture by Wonka et al. [2003], Müller et al. [2006], Aliaga
et al. [2007], and Lipp et al. [2008]. L-systems [Prusinkiewicz and
Lindenmayer 1991] were also proposed for procedural modeling
of architecture [Marvie et al. 2005]. Merrel and Manocha [2008]
propose a more general approach that can create new models from
an example mesh. Given a man-made model as input, great results
for reshaping were achieved by Cabral et al. [2009] and Gal et
al. [2009]. The output of our procedural extrusions could also be
further processed to distribute brick patterns [Legakis et al. 2001].

The straight skeleton was introduced by Aichholzer et al. [1995;
1996] and the authors commented how the straight skeleton com-
putes a very plausible roof construction over a polygon. The idea
of weights for the straight skeleton has been briefly mentioned by
Eppstein and Erickson [1998], but the topic was only developed
for a convex polygon decomposition [Aurenhammer 2008]. These
papers are the inspiration for our work, and they aim to make a
contribution to theory in computational geometry. In contrast, we
focus on the application to modeling and extensions that are in-
spired by the demands of our modeling system. A starting point for

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Interactive Architectural Modeling with Procedural Extrusions • 3

Fig. 4. Three example buildings constructed in our user interface. We demonstrate multiple profiles on a simple plan (abcd), modeling overhangs (efghi) and
anchors (jklmn). Simple profiles (ab) are applied to the green and purple edges of the plan (c) to create the geometry (d). Note the horizontal profile section.
Overhangs are defined using an additional pair of profile polylines associated with every edge (ef) to create typical roof geometry (hi). Anchors (magenta
circles) are defined on the profile (j) and the plan (l) to position features. In this example the anchors position a rectangular natural step (m) with a profile (k)
that creates a roof-window (n).

our implementation was the work by Felkel and Obdrzalek [1998]
and Cacciola [2004].

Applications to architectural modeling of extrusion operations
and the straight skeleton were demonstrated by several authors,
e.g. [Laycock and Day 2003; Havemann 2005; Müller et al. 2006;
Kelly 2006; Autodesk Inc.]. Our goals are similar to these ap-
proaches and we contribute new extensions to the straight skeleton
and an interactive procedural modeling system.

3. USER INTERFACE DESCRIPTION

Our interface controls a sequence of extrusions that are particularly
suitable for creating the shell of architectural models. In this section
we will introduce the functionality of our user interface.

3.1 Modeling With Profiles

The inspiration for our work comes from simple roofs, that are de-
fined by a 2d polygonal floorplan and an angle that defines the roof
slope. We extend this simple concept to construct a wide variety
of roofs by using different angles on each edge and entire building
shells by changing the angle as we ascend using profiles, Fig. 3.

To construct our geometry we use a sweep plane that rises verti-
cally from the base of the building. This sweep plane defines an
active plan that combines the changing profiles, and discrete mod-
ifications to create complex architecture.

Fig. 5. The interactive interface during the design of a temple. The right
window contains the output preview whilst the left window contains the
plan and the profile editors.

3.2 Plans and Profiles

The UI consists of one pane showing the plan, one pane for profile,
and a 3d preview window as shown in Fig. 5.

The plan is a set of edges (see Sec. 4.1 for the definition of a
plan). For each edge in the plan, there is an associated collection
of polyline segments, called a profile, that define the shape of a
cross-section through the building at that plan edge. As the user
edits either the plan or the profiles, our system shows the resulting
architectural shell in the 3d preview window.

The user interface presents standard operations for inserting, delet-
ing, and moving vertices in the profile polylines, and vertices
(called corners) in the floor plan. In Fig. 4(abcd) we show an exam-
ple with one polygon as the plan (c) and two profiles (a and b). The
plan edges are color coded to show which of the two profiles is as-
sociated with each edge. Note that the profiles have to be monotonic
in the vertical direction, but we allow horizontal polyline segments
as special case. In the implementation, every change of direction in
a profile will lead to an edge direction event (Sec. 4.5).

3.3 Overhangs

One important design choice we had to make is how to model over-
hangs. There are two possibilities: 1) Allow the user to draw ar-
bitrary polylines as profiles that can go up or down in the vertical
direction; 2) Force the user to explicitly model profiles as multiple
polylines where each polyline must be monotonic in the vertical di-
rection. After some experiments we decided that the second option
makes it easier to synchronize overhangs across multiple profiles.
We will explain the process of modeling overhangs using the sec-
ond example in Fig. 4 (efhgi).

The user creates the input floor plan shown in (g). The edges in
this floor plan are color coded as either red or blue. A red edge will
be extruded according to the red profile (e) and the blue edges will
be extruded according to the blue profile (f). The final geometric
construction is shown in (h) and (i). The red profile as well as the
blue profile each consist of three polylines. Each of these polylines
is monotone in the vertical direction. Modeling overhangs is an ex-
plicit operation. The overhang is modeled by inserting two new
polylines into both profiles at a certain height. In the user interface
this is one atomic insertion operation. If the user clicks to add a new

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • T. Kelly and P. Wonka

vertex overhang in one profile, then all profiles will obtain two new
polylines at the same height. The user can edit the new polylines
for each profile independently, only the starting height will remain
synchronized. In the implementation, we will trigger a profile offset
event (Sec. 4.6) at this height.

3.4 Anchors

Several editing operations require us to locate features on the man-
ifold. These might include meshes, such as doors and windows, or
discrete changes to the plan, such as chimneys. The features have
to be placed so that they can still be located after subsequent edits.
This is called the persistence problem in editing procedural mod-
els [Lipp et al. 2008], and we introduce anchors as a solution in our
system.

The user can place anchors by selecting a location in the 3d view, or
by selecting points on the input plan’s edge and the corresponding
profile polyline. In Fig. 4 (jklmn) the anchors are shown as magenta
circles on a floor plan edge and a profile edge. We allow the user
to select from two types of anchor on a plan edge — relative and
absolute. A relative anchor’s location is a fraction of its length on
the active plan edge. If the edge is represented in the active plan at
the specified height, the feature is instanced.

Absolute anchors are defined on an input plan edge, and define a
plane perpendicular to this edge. The intersection of this plane and
the corresponding edge in the active plan at the height specified by
the profile anchor defines the instance location. Because an edge in
the active plan may shrink as it ascends, absolute anchors may not
be instanced if they lie outside the edge on the active plan. Because
an active plan edge may grow, it is possible to position absolute
anchors beyond the ends of the input plan edge.

3.5 Plan Edits

Discrete edits to the plan at a certain height are know as plan ed-
its. These are located by anchors specified by the user, and may
modify, create or delete edges in the active plan. In the example
Fig. 4 (jklmn) a plan edit is introduced at the location of the anchor.
The plan edit itself is a set of edges (m). These edges are extruded
along the new profile (k). Again the user is offered several tech-
niques with different advantages. Forced steps insert an arbitrarily
set of edges into the plan, while natural steps offer a range of sim-
ple shapes that can be inserted. For reasons that are discussed later,
forced steps are more powerful, but can lead to self intersections,
while natural steps are guaranteed to create manifold geometry.

As shown in Fig. 6 we can use discrete plan edits to locate fea-
tures such as roof windows, or chimneys. Additionally, by adding
a rectangle exterior to the active plan, and applying the appropriate
profiles, we can create buttresses, as in Fig. 23. If the input plan has
several repeated elements, such as bay windows or buttresses, plan
edits give a convenient tool for defining an instance once, whilst
repeating it at a number of different anchored locations.

3.6 Positioning Procedural Details

Anchors can be used to mark the top-left and bottom-right elements
in a grid of features, such as windows. Parameters can be set to con-
trol the width of the repetitions, and when combined with relative
anchors, allow features to be distributed on resizable façades. Varia-
tions on this theme allow rows or columns of features to be located,

Fig. 6. Left: The plan (solid green line) and profiles (blue lines) define the
shape of the structure. The anchors (orange) locate the chimney (red). A
natural step is inserted into the building at the anchored location (dashed
green lines). Middle: The finished 3d geometry, showing the profiles for the
new edges. Right: Alternative natural step which adds an additional rectan-
gle into the plan (dashed green lines) to specify a chimney.

for example a line of dormer windows on a roof. Anchors may also
be used to specify the location of complex external features, such
as windows and doors, described by arbitrary meshes.

Faces of the output model can be identified by adding tags to the
profile segment. These are represented by small triangles in the user
interface. Once the manifold is complete, the faces that were gen-
erated from the specified profile segment are post-processed in a
particular way, for example to add tiles to the roof.

3.7 Modeling Larger Environments

We provide tools to model larger environments by example. We
implemented several feature extraction algorithms to automatically
label the edges of a building’s plan. Example labels are length ∈
{short,medium, long} and orientation ∈ {street, side, back}.
The most important label is an angle computed by orienting the
building to the street and mapping the normal vectors of the foot-
print edges to the unit disk. We assume that each footprint in the
environment is labeled with a building type by another procedu-
ral algorithm. For each building type we can assign one or multiple
profiles to each edge type including a probability value if more than
one profile is assigned.

4. COMPUTING PROCEDURAL EXTRUSIONS

In this section we give an overview of the procedural extrusion al-
gorithm. We begin by defining the terms used in the algorithm, the
inputs and outputs, before outlining the many possible events that
take place. Finally we give details for the computation of each event
type.

4.1 Definitions

In this paper we compute an architectural shell in 3d Euclidean
space with a xyz world coordinate system. The up direction is
along the z axis. See Fig. 7 for an illustration of the terms.

A (floor) plan is a planar partition (a straight line planar embedding
of a planar graph) that divides a plane into inside and outside re-
gions. A plan has corners and edges. A plan is embedded in a plane
parallel to the xy-plane (the ground plane), so that all corners of a
plan have the same z (height) value. We require that the boundaries
of a plan are a non-intersecting collection of oriented polygons.
The inside is on the left-hand side of each oriented polygon edge.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Interactive Architectural Modeling with Procedural Extrusions • 5

The polygons are typically oriented counter-clockwise, but poly-
gons describing holes are oriented clockwise. Additional bounded
regions may be recursively located inside a hole. The jth polygon
is described by nj polygon corners cji ∈ R3 with 1 ≤ i ≤ nj .
Each corner cji is connected to the next corner (according to the
polygon orientation) by an edge, eji . In everything that follows, in-
dices should be treated cyclically, so that in a polygon with corners
cj1, cj2, and cj3, the corner cj4 means cj1.

Each edge in a plan is associated with a direction plane, dpji , which
contains the edge. It is defined by an angle θ such that −π/2 ≤
θ ≤ π/2. A vertical direction plane has θ = 0, whilst a direction
plane oriented towards the inside (outside) satisfies θ > 0 (θ < 0
respectively). The angle is measured between the direction plane
and a vertical plane that also contains the edge.

A profile is a polyline that is used to control the direction plane
of an edge. A profile is modeled in a local 2d wz-coordinate sys-
tem and consists of a list of m points ti. The location of point i is
(ti.w, ti.z) and we require that ti.z ≤ ti+1.z. The profile defines
m−1 angles, θ1..θm−1. The angle θi is calculated as the clockwise
angle between a vertical line and the line ti to ti+1. The angle lies
in the range −π/2 ≤ θi ≤ π/2 and the final angle is constrained
such that θm−1 > 0.

4.2 Overview

We describe the input, the output, and give an outline of the algo-
rithm.

Input: The input of the algorithm is a (floor) plan, called the input
plan, profiles associated with the edges of the input plan, profile
offset events, and anchor events. Anchor events specify the location
of plan edits or a mesh instance.

Fig. 7. Our algorithm constructs the architectural shell, shown on the right,
for an input plan, shown on the left. In this simple example, each profile only
has a single segment; Adding additional segments to the profile eventually
allows us to model an entire building, including the walls. The input is de-
fined by the corner positions cji , the angles θji , and the corner connectivity.
The output is a shell consisting of faces on the respective direction planes,
dpji .

Output: The main output of the algorithm is an architectural
shell (3d mesh) in the xyz world coordinate system. In the non-
degenerate case the shell is watertight and two-manifold. An archi-
tectural shell is a polygonal mesh stored in a half-edge data struc-
ture. For the sake of clarity we refer to these output edges as arcs
(after Aichholzer et al. [1995]). The half-edge data structure stores
a set of vertices in R3, a set of arcs between the vertices, and a set
of planar faces which may contain holes. Faces are defined by a
counter-clockwise ordering of arcs.

The architectural shell can then be post-processed to apply textures,
add procedural geometry (such as roof tiles), and attach meshes at
anchor points.

main begin
Q = new priority queue;
foreach corner cji ∈ inputP lan do

foreach plan edge eji ∈ planDataStructure do
p1 = eji .directionP lane;
p2 = cji .previousEdge.directionP lane;
p3 = cji .nextEdge.directionP lane;
IE = intersect (p1, p2, p3);
/* Queue ordered by z-height */

Q.insert (IE, IEi.z);

/* Insert edge direction events, profile offset

events and plan events into the queue */

foreach event ue ∈ userEdits do
Q.insert(ue, ue.z);

sweepZ = 0;
while ! Q.empty() do

event = Q.nextEvent();
if event.position.z ≥ sweepZ then

sweepZ = event.position.z;
/* handleEvents may insert additional

events into the queue */

handleEvent(event);

end

Fig. 8. Pseudo-code for the main loop.

Outline: The algorithm extrudes the input plan using a sweep plane
algorithm. At each height of the sweep plane a 2d cross-section
through the building is another 2d plan. We call the plan associ-
ated with the current sweep plane the active plan. To extrude a
plan, each plan edge moves to be colinear with the intersection of
the direction and sweep planes. This movement and the implicitly
defined geometry is straightforward until an event occurs. During
events, we process modifications to the active plan. After insert-
ing edges into the active plan, we must recalculate the intersection
events between the direction planes. The core algorithm, Fig. 8, is
a loop that handles events according to their height.

Data structures: The plan data structure describes the implicit ac-
tive plan on the sweep plane [Felkel and Obdrzalek 1998]. This
structure is a doubly linked list of corners. Each corner has a pointer
to the next corner and the previous corner (assuming counter-
clockwise order) and a pointer to its previous and next edges,
Fig. 10. At the beginning of the algorithm the plan data structure
encodes the input plan. During the sweep the data structure is up-
dated to encode any changes to the active plan. To give a concise
description we define the algorithm by discussing changes to the
implicit active plan.

The second important data structure is a priority queue that sorts
events by ascending height. Intersection events are automatically
created, while others (edge direction events, profile offset events
and anchor events) are defined by the user. We fill the priority queue
with a large number of potential intersection events. An intersection
event occurs wherever three or more direction planes intersect.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • T. Kelly and P. Wonka

Fig. 9. An example construction demonstrating basic intersection events,
and the active plan (blue, green and red lines) on the sweep plane after each
event is processed. In (1) three adjacent direction planes collide at an edge
event. In (2) we see a vertex event where more than three direction planes
collide at one point. Finally, in (3) we show a split event that splits the area
bounded by the plan.

Fig. 10. The plan data structure, shown part way through the sweep.

Given the active plan at all event heights, the generation of the
half-edge data structure describing the architectural shell and sub-
sequent triangulation of shell-faces is fairly straightforward.

4.3 Description of Events

In this section we describe the events encountered as the sweep
plane ascends.

Generalized Intersection Event: There are three event types,
given by previous authors [Felkel and Obdrzalek 1998; Eppstein
and Erickson 1998], which automatically occur to the edges in the
active plan as the sweep plane rises. Edge events occur as the length
of an edge shrinks to zero. When an edge shrinks to zero the direc-
tion planes defined by three consecutive (linked by corners) edges
collide (Fig. 9, 1). Split events take place when two adjacent direc-
tion planes, and one non adjacent direction plane collide (Fig. 9,
3). These split the region bounded by the active plan into two parts.
Finally vertex events occur in the degenerate case when more than
three direction planes collide at one point (Fig. 9, 2).

Unfortunately, we did not find this categorization of events help-
ful to designing an algorithm. In practice architectural models give
rise to a large number of degenerate events and the implementa-
tion is dominated by special event handling. Since edge and split
events are special cases of a vertex event, we introduce one gen-
eral intersection event that consists of an arbitrary number of di-
rection planes, bounding one region, intersecting at one point. See

Fig. 11. Procedural extrusions that give rise to three degenerate cases. At
a and b, four faces collide at one point. Point c shows seven faces colliding
from a variety of angles, including horizontally.

Fig. 11 and 12 for four examples. We introduce a new algorithm to
resolve this generalized intersection event that uses chains of edges
involved in the intersection.

Edge Direction Events: An edge direction event occurs when a
profile curve changes direction. The event updates the angle and
direction plane associated with a set of edges in the active plan.

Profile Offset Events: Profile offset events occur at heights speci-
fied by user edits. Intuitively, a profile offset event results in addi-
tional inside regions being added to the active plan at the specified
height.

Anchor Events: Anchor events specify locations on the architec-
tural shell, and are defined by the user. There are two types of an-
chor events. Plan Edit Anchors: These modify the active plan to
insert new features such as chimneys, or dormer windows. Mesh
Anchors: These store the location of the anchors as an attachment
point for geometry.

4.4 Generalized Intersection Event

Generalized intersection events perform topological changes on the
active plan to ensure that it never self-intersects as the sweep plane
ascends. These events are automatic, not user driven.

There are many possible topologies that can give rise to a gener-
alized intersection event. Previous authors have described how to
adjust the active plan to deal with split and edge events. These are
the most frequent events when the input is a random polygon. We
describe a generalization of these techniques to deal with the most
likely class of topologies when dealing with architecture, a locally
connected region. When our interface is used to model architec-
ture, these account for the vast majority of events. A locally con-
nected region is a region, that immediately before the event is lo-
cally equivalent to a topological disc, Fig. 11 (abc). In a single event
the locally connected region may be either an “inside” or “outside”.

In addition to locally connected regions, there are several unlikely
classes of increasingly degenerate events in which the intersecting
edges define a nested boundary, Fig 15. When this situation occurs
we give a warning in the user interface that the output may be un-
desirable.

Event Detection: We use expanded bounds for intersection loca-
tion clustering. This addresses two stability problems.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Interactive Architectural Modeling with Procedural Extrusions • 7

Fig. 12. Left: Five faces creating an intersection event. Right: Events can
interfere with each other if they have the same height, in this case the four
points share a roof ridge.

First, in symmetrical inputs, like architectural plans, it is very com-
mon for more than three direction planes to meet at a point. To
avoid degenerate output in a floating point situation it is neces-
sary to identify intersections whose locations are close together,
and treat these as a single event. See Fig. 12 (left) for an example.

Second, direction plane intersections that are far apart from each
other can interfere if they are close to one other in height, Fig. 12
(right). It is necessary to detect and handle these together to ensure
the region bounded on the sweep plane does not self-intersect and
to resolve the ambiguities that can occur (described in Sec. 4.8).

Event Clustering: After initialization we iteratively process (po-
tential) events stored in the priority queue. To address the two previ-
ously mentioned event detection problems, we cluster the events in
two directions. We poll the priority queue to collect all intersection
events whose height, z, is within some threshold, δ1, of the initial
event. Second, we cluster all the events according to their location
after projection onto the xy sweep plane. The clustered volume is
therefore a cylinder of radius δ2 and height δ1. See Fig. 13 for an
illustration of the clustering step. For our building floorplans with
a size in meters we use double precision floating point representa-
tions and values δ1 = 10−4, δ2 = 10−6, found through trial and
error on our large procedural floorplan set. There are certain patho-
logical inputs which cause this clustering stage to fail. An example
would be a row of events, each within δ1 of another, which could
contain an arbitrary number of events. In such a case we alert the
user with a warning message, but none of the users reported such a
situation.

Input: The input of a generalized intersection event is a point
l ∈ R3, and a set of three or more active plan edges, f , whose
associated direction planes intersect at l. The point l is calculated
as the center of the clustered volume.

Output: The output of a generalized intersection event is an up-
dated active plan. This represents the bounded region on the sweep
plane after the event.

Fig. 13. When an event is processed we simultaneously extract all inter-
section events within a height of δ1. Then we cluster all events that are
within a cylinder of radius δ2 and height δ1.

Chain construction: We process the edges involved in the clus-
tered intersection events into a set of chains. A chain defines a
connected portion of the active plan boundary involved in the
event, Fig 14 (a). A chain, hi, is a list of consecutive active plan
edges, εi1...ε

i
hmaxi

. A cyclic chain list, b, contains all such chains,
h1...hbmax (we assume a cyclic index). The list is ordered by the
edge’s orientation around l.

The list of chains, b, is now processed to update the active plan in
two stages. First within each chain (intra-chain), and then between
the chains themselves (inter-chain).

Intra-chain handling: In a chain of 2 or more edges, the interior
edges shrink to length 0 as we approach the intersection event,
Fig 14 (ε22). Therefore in the intra-chain stage we remove all in-
terior edges from a chain hi, leaving only the start, εi1, and the
end, εihmaxi

, of the chain as shown in Fig. 14 (cd). That is, if
hmaxi ≥ 3, then edges εi2..ε

i
hmaxi−1 are removed from the ac-

tive plan, being replaced by a new corner at l, connecting the end
of εi1 to the start of εihmaxi

.

Inter-chain handling: In a typical intersection event, the closest
edges in adjacent chains move into each other. To allow this without
self-intersections the inter-chain stage takes place between each ad-
jacent pair of chains, hx and hx+1 in the cyclic chain list b. Firstly,
if any chains contain only one edge, we split that edge by inserting
a corner at l, Fig. 14 (de). Secondly, for each pair of adjacent chains
we create a new corner at l and connect the start of the last edge in
the proceeding chain, εxhmaxx

, and the end of the first edge in the
following chain, εx+1

1 , Fig. 14 (e). Finally the inter-chain stage fin-
ishes by removing any unreferenced corners from the active plan.

In addition to this basic technique, there a several implementation
issues that we address — the filtering of invalid events, checking
for chain intersections and local non connected events.

Filtering invalid events: Before the clustering stage we remove
any invalid edges from the edge set, f . Because the intersections are
detected using unbounded direction planes, there may be edges in
f that do not approach l on the active plan. Such edges are removed
from f . The line defined by the intersection of the direction plane
and the sweep plane may pass close to l, however the line-segment
defined by the associated active plan edge may not. A small epsilon
range, δ3, expands the length of the edge and ensures that collisions
occur reliably. On our inputs we find δ3 = 10−5 a sufficient margin.

Second, an edge may have been removed from the active plan by a
previous event. These edges are also removed from f . After filter-
ing, if the number of edges in f is less than 3, the event is ignored.

Post inter-chain intersections: There are rare situations where the
chains after the inter-chain stage no longer form a valid plan on
the sweep plane. To test if the chains form a valid plan we predict
the chain locations on a plane higher than the active plan. If any of
the chains intersect each other we use an application of the wind-
ing rule to calculate valid region boundaries for the current active
plan. This may re-orient some edges, as well as insert new edges or
corners into the active plan.

Local non connected events: The above handling of locally con-
nected events is sufficient to create large cityscapes, Fig. 2. There
are however, a class of degenerate topologies that can occur on the
active plan, which are not connected, such as in Fig. 15. While we
do not present a solution for each of these classes, the following
observations are made.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • T. Kelly and P. Wonka

Fig. 14. Active plan modification during a generalized intersection event. a) The active plan just before the intersection of chains h1 (red), h2 (purple), and
h3 (green) at the point l. The chains consist of edges, ε. b) The topology just before the event. c) The active plan geometry at the event, note the disappearing
region bounded by coincident edges ε21 and ε31. d) The topology of the chains after the intra-chain stage. An edge, ε22, has been removed. e) The topology of
the active plan after the inter-chain stage. The edge in a chain of length one, ε31, has been divided at l. After the edges are linked at l, the active plan has been
split into three regions. The three new corners (e, orange) are at the same location, l, but they are expected to move in different directions over the course of
the extrusion process.

Fig. 15. A complex, non-connected region, causing an intersection event.
Left: The active plan just prior to the intersection event between all the 9
edges. Middle: The output shell at this height, showing the edge angles and
the colliding edges. Right: One of several non-symmetrical solutions that
removes all but one edge.

If the edges in a chain form a closed loop, the chain may be sim-
ply removed. If there is more than one chain of length one, the
associated chain edges must be parallel and the geometry between
such adjacent chains may also be removed. Finally, if a chain is
nested inside another chain there are situations where inter-chain
updates no longer work. Here we just note that reversing a sec-
tion of the enclosing chain is enough to keep the area enclosed on
the active plane well formed. We note that we could not find an
example where such degenerate events were part of a meaningful
architectural construction.

4.5 Edge Direction Events

A set of edge direction events are created for each profile. An edge
direction event updates the angle and direction planes of a set of
edges. There are two types of edge direction event, standard and
near horizontal. Standard edge direction events are constructed
from a single angle in the plan, while a near horizontal edge di-
rection event is constructed from two consecutive angles and a dis-
tance. These values are calculated from the profile polyline.

4.5.1 Standard Edge Direction Events. Input: A set of edges, f ,
in the active plan, each associated with the same profile and a single
new angle for all the edges, γ. Output: A new active plan which
replaces the original.

For each of these edges eji ∈ f , we update the associated direction
plane by setting its angle to γ. The edge, eji , continues to propagate
over the sweep plane as defined by the new angle.

4.5.2 Near Horizontal Edge Direction Events. We need a sepa-
rate approach as the angle associated with an edge, θ, approaches
±π/2, as two parallel (horizontal) direction planes do not intersect
to form a line. Additionally, as the angle approaches these limits we
are colliding near coplanar planes, causing numerical instability. As
Fig. 16 illustrates, we first increase the angles for numerical robust-
ness, recursively apply procedural extrusions, and then project onto
the sweep plane. This produces the required horizontal surface.

Input: A set of edges in the active plan, f , associated with the pro-
file, a distance, d, a direction angle, γ, and a following angle, ζ.
The angle γ ≈ π/2 (γ ≈ −π/2) specifies the direction of
the horizontal as towards the inside (respectively outside) of the
active plan. ζ specifies the angle of the following non-horizontal
edge event. Output: A new active plan which replaces the original.

Fig. 16. The horizontal section desired (b) can be created by an additional
application of procedural extrusions to calculate the offset in the given di-
rection. After flattening (c) unchanged edges (red, d) are ignored.

First we create a temporary plan as a copy of the active plan. For
each edge in the original plan, eji , and associated angle θji , the tem-
porary plan has an edge Ej

i , and associated angle Θj
i . Secondly we

update the angles in the temporary plan according to the following
mapping:

Θj
i =

{
tan−1(d) if eji ∈ f and γ > 0
− tan−1(d) if eji ∈ f and γ < 0

0 otherwise

A recursive application of procedural extrusions extrudes the tem-
porary plan for a height of one unit. The temporary active plan is
projected onto, and replaces, the active plan in the original procedu-
ral extrusion instance. That is, eji is replaced byEj

i if it exists in the
updated plan. If it does not exist in the updated plan eji is removed

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Interactive Architectural Modeling with Procedural Extrusions • 9

from the active plan. The location of Ej
i is projected onto the orig-

inal active plan. Finally the values of θ in the original skeleton are
updated using the mapping:

θji =

{
ζ if eji ∈ f
θji otherwise

Occasionally multiple edge direction events occur at the same
height. In this situation the direction events are sequenced by the
order of user creation. The user can manually override this priority.

4.6 Profile Offset Events

Fig. 17. Some meshes that can be computed from an input plan (a) us-
ing profile offset events. Buildings b and c are shown in two orientations.
By creating two offset boundaries (e) that define an offset region (h), an
overhanging roof (b) can be generated from an arbitrary plan (a). If two
edges are disabled in the profile offset event, open-ended roofs can be cre-
ated (c,f,i). Finally, by offsetting inside the active plan, walled roofs can be
created (d,g,j).

Profile offset events specify the start of overhangs. The difficulty of
specifying and handling profile offset events comes from the pro-
cedural definition. While it is easy to specify overhangs for a given
region, the geometry must adjust itself according to subsequent user
edits. Our technique must procedurally perform changes to the ac-
tive plan without creating awkward self-intersections.

At a profile offset event an additional inside region, called an off-
set region, is inserted into the active plan (see Fig. 17). Two offset
boundaries are grown from the active plan to enclose the new offset
region. We introduce new edges and corners into the active plan to
represent this newly enclosed region on the sweep plane. The new
edges are classified as inside, outside, or side, depending if the edge
stems from the first boundary, the second boundary, or an intersec-
tion operation between the two boundaries described later in this
subsection.

Input: A map for each edge in the active plan, eji to a tuple,
tji = {disabledji , dist insideji , dist outsideji , profile insideji ,
profile outsideji} and a single profile side. The variable

Fig. 18. The recursive application of procedural extrusions (b) to a plan (a)
from Fig. 17 (c). The faces between z = 1 and z = 2 are projected onto the
primary active plan (c), before being merged (d). Zero area faces (blue and
purple) are removed, and profiles assigned based on the origin of the edge.
In (d) green edges are assigned profile inside, red profile outside and
blue profile side.

disabledji is a boolean value that specifies if the offset region as-
sociated with this edge is present in the output; dist insideji and
dist outsideji are real values that define distance and direction
from the active plan of the inside and outside offset boundaries;
profile insideji , profile outsideji and profile side are pro-
files. We require that all values of dist insideji and dist outsideji
have the same sign; a positive (negative) sign indicates an offset
(respectively inset) of the active plan. To ensure proper topology
on the active plan, the distance, dist inside, is constrained to be
non-zero. Output: The output of an offset event is an updated ac-
tive plan, typically with the additional region defined either inside
or outside of the input active plan.

We create a temporary plan as a copy of the primary (input) ac-
tive plan. For each edge in the primary plan, eji , the temporary plan
has an edge Ej

i , and an associated profile, profile recursiveji .
Edge Ej

i is constructed by projecting eji onto the plane z =

0. The profile profile recursiveji defines the angles Θj
i =

tan−1(dist insideji) at z = 0, and Θj
i = tan−1(dist outsideji)

at z = 1. We execute a recursive application of procedural extru-
sions using the temporary plan as input. It is executed from height 0
to 2, to create a temporary output shell. Faces of the shell between
the planes z = 1 and z = 2 are projected onto the primary active
plan, forming the offset region, Fig. 18.

The projection associates each tuple, tji , with an offset region in
the primary active plan. The entire offset region is bounded by the
projected edges, r. Additionally the projection defines a 1:1 map-
ping between the new edges, ekl ∈ r, and a subset of the temporary
shell’s arcs Ak

l . We remove from the primary active plan any edges
in r that enclose an offset region of area 0 or that are associated
with a tuple containing a value of disabledji = true. We update
the profile, profileji , associated with each edge, eji , in the primary
active plan according to the function:

profileji =


profileji if eji /∈ r

profile insideji if Aj
i lies in the plane z = 1

profile outsideji if Aj
i lies in the plane z = 2

profile side otherwise

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • T. Kelly and P. Wonka

Finally we merge adjacent parts of the offset region to avoid self-
intersections. We remove the corresponding edges and corners from
the active plan.

4.7 Insertions into the polygon

Fig. 19. Inserting a plan edit into the active plan during execution. a) The
plan data structure (blue dots, green arrows) implicitly defines the active
plan (cyan). b) To insert new edges into the active plan, corresponding edges
are linked into the plan data structure. c) The resulting architectural shell.

Fig. 20. Given an intricate plan, calculating a robust perturbation is chal-
lenging. Forced steps are positioned at the location of the anchors (a, or-
ange). These are combined with the boundary using a geometrical union
operation. However many geometry artifacts are undesirable (c, red) in an
architectural situation. Given natural steps at certain positions (a, orange),
small changes to the boundary are made (d), which are then grown (e) us-
ing a recursive application of procedural extrusions, to create more natural
geometry (f).

Plan edits introduce discrete changes to the active plan at specified
heights. We describe how plan edits operate efficiently and detail
two methods to define them.

When performing a plan edit, some edges are deleted, some edges
are moved, and some edges are inserted, Fig. 19. These new edges
are at the height of the current sweep plane.

Our user interface offers two types of plan edits. Inserting an arbi-
trary shape gives the largest variety of geometric designs. However
these forced steps offer no guarantees that the resulting active plan
will not self intersect and create an invalid topology. The challenge
comes again from the procedural nature of our approach and the

fact that the edit has to work for all input plans. Natural steps of-
fer a solution to this problem by using a recursive application of
procedural extrusions to insert edges into the active plan.

Natural steps are calculated on the active plan at a given height
by amending a small (typically 10−3 by 10−3) protrusion. This is
offset by a recursive application of procedural extrusions such that
it does self intersect, Fig. 20. This is similar to the edge direction
events of Sec. 4.5. This application of procedural extrusions is con-
structed by assigning θ = 0 to all edges not part of the feature,
and a user defined θ to those edges in the protrusion. The result-
ing temporary active plan is calculated at a specific height, and this
is incorporated into the original active plan. The new edges in the
active plan have the relevant profiles assigned to them.

4.8 Ambiguities in Procedural Extrusions

Fig. 21. An ambiguous situation that arises in the case of a concave input
plan, a. The intersection of the yellow and green edge’s direction planes
gives two possible output arc directions (a, red). This may be resolved into
two ways, b,c.

Fig. 22. Two identical bay windows that lead to the same two events (red
circles) involved in an ambiguous situation (red line). To resolve the am-
biguous situation, a single edge must be chosen to replace the others. The
building on the left (right) resolves the ambiguity using the volume maxi-
mizing (respectively minimizing) priority technique. The resulting unused
section of the original profile is shown in orange. Note that in each case,
two ambiguous events occur at the same height, and must create globally
consistent output.

We show that procedural extrusions (as well as the weighted
straight skeleton [Eppstein and Erickson 1998]) are ambiguous
in the concave case. Different modeling choices lead to different
ambiguous-case resolution strategies, Fig. 22.

The ambiguous case may arise when two (or more) neighboring
edges in the active plan become colinear on the same side of a re-
gion. This happens, for example, when edges previously separating

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Interactive Architectural Modeling with Procedural Extrusions • 11

the colinear edges are eliminated. We may also arrive in this situa-
tion if the input, or any of the plan edits, introduce colinear edges.

If the two neighboring and colinear edges bound different sides of a
region the output is an arc representing a ridge and the computation
proceeds as normal, assured that at the opposite end of the ridge the
two edges will collide again [Felkel and Obdrzalek 1998]. This is
not an ambiguous event and we can distinguish the regular roof
ridge case from an ambiguous event by making use of the fact that
we use oriented edges to describe a plan. When the edges have the
same orientation (they bound the same side of a region) we are
not able to determine the direction of the output arc, Fig. 21. This
produces an ambiguity.

The individual ambiguous events need to be solved consistently
from a global perspective, Fig. 21; This is one reason for the ver-
tical clustering outlined earlier. All colinear consecutive edges in-
volved in an intersection on the active plan are grouped together.
We resolve the situation by merging all consecutive edges into one
and applying the profile of the edge that has the highest priority.
Then we remove the other edges involved in the ambiguous events.
To select the one edge we assign a priority ordering over the edges
and choose the edge with the highest priority.

We introduce three possible priority schemes. It is interesting to
note that most architectural roof structures (such as bay or dormer
windows) enclose the maximum volume in the ambiguous case.
This leads to our default scheme in which the highest priority edge,
eji , has the lowest (closest to−π/2) associated angle, θ. Alternately
the minimum case (largest associated θ) may be useful when esti-
mating conservative offsets. The third option is to manually define
the priority function in the user interface. Section 6.2 describes sit-
uations where it is desirable for the user to manually define the
priority function.

5. RESULTS

5.1 Modeling Results

In this section we show several interesting applications of modeling
with procedural extrusions.

Fig. 23 shows many typical architectural shells that are not pos-
sible using just the straight skeleton or other existing procedural
modeling tools. We can also create buildings with horizontal roof
overhangs, such as Fig. 24. The alcoves and columns show how
disconnected regions can merge together and interact. This is only
possible because we allow negative angles for the roof planes.

Procedural extrusions may be used on a large scale to describe
cityscapes. We created a procedural model using about 6000 foot-
prints from Atlanta (see Fig. 2). The current model has three mil-
lion polygons, 5 different building styles, took 20 minutes model-
ing time, 10 minutes to compute the procedural extrusions, and 15
minutes to render. Our current limitation is that we were not able
to find a rendering infrastructure to render a few hundred million
polygons of a detailed model. We therefore had to omit ornaments
and some details of the roof constructions from the designs.

We implemented the proposed system in Java and measured the
running time of our system on 64bit 2.6GHz Xeon.

We created a procedural model for town homes adjacent to a curved
street, Fig. 26. The street can be reshaped interactively, while the

Fig. 23. From top, left: buttress, dormer windows, flying buttress, bay win-
dows, curved plan, eight faces meeting on a symmetrical footprint with a
chimney, hipped roof, curved roof, a horizontal overhang, an overhanging
gable, standard gable and interior dormer windows

Fig. 24. Inset: the output of our procedural extrusions using a complex
footprint, horizontal sections and plan edits. We are able to create pillars,
covered parking and alcoves respectively. Main: A procedural condo with
roof texture surrounded by procedural trees

building models adapt to the new footprints. Finally, procedural ex-
trusions can be used to model other architectural features such as
windows or moldings, Fig. 27.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • T. Kelly and P. Wonka

Fig. 25. The example cases and modeling statistics. v Vertices in modeled plan (additional vertices); l Polygons in modeled plan (polygons in library plan);
p Number of profile sections in model; s Number of natural steps designed (number of natural step applications); o Number of offset events.

6. EVALUATION

To evaluate the skeleton as a modeling primitive we constructed 50
buildings. Here we detail the process we undertook to perform the
modeling.

6.1 Evaluation Setup

We modeled each building from a plan and a perspective image.
A set of four simple meshes (Fig. 28) were used to add detail to

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Interactive Architectural Modeling with Procedural Extrusions • 13

Fig. 26. A procedural model that renders a street from a spline. In this case
the street was generated by four points defining the street’s curve. Seed
points were grown using another application of the skeleton to create the
building footprints.

Fig. 27. Using a creative set of profiles, a wide range of architectural fea-
tures can be created. By setting the input in a different plane, various win-
dows may be extruded.

the structures. The events used for modeling were edge direction
events, profile offset events and natural steps.

Fig. 28. The four example meshes used in the evaluation. The meshes are
parameterized via control points (blue and green circles) and can be in-
stanced to different sizes.

We undertook the evaluation with the goal that all major roof
features from the elevation drawings should be present, although

smaller details (such as cornices, plumbing and decorative win-
dows) may be excluded. We traced the plans from those specified
or aerial views of the property. The construction of profiles and po-
sitioning of features was performed by eye by the first author of
this paper.

The first 45 buildings were taken from a library of ready designed
architectural styles for family homes [Hanley Wood, LLC. 2010].
We modeled the first example in each of the categories the library
provided. The library contained styles as diverse as ranch or Dutch
(Fig. 25, examples 13 and 32 respectively), however much of the
stylistic content was dependent on architectural details that were
replaced with our simple meshes. Because the plans were pre-
designed, they had predominantly 90◦ and 45◦ degree angles be-
tween floorplan edges. That is, the design was not constrained by
environmental features. To provide more challenging examples, we
chose an additional five buildings from European cities that had ir-
regular plans (Fig. 25, examples 46-50). These buildings were mod-
eled from satellite and aerial views, Fig. 29.

The modeling times ranged from 20 to 120 minutes with a mean
time of 63 minutes. Features on the input plan smaller than 30cm
were not modeled. We also recorded a number of additional metrics
for each building: the number of vertices in the input plan and in the
model; the number of corner-loops in the input and in the model;
the number of profiles in the model, the number of offset events,
the number of natural step templates and the number of instances
of those steps.

6.2 Evaluation Results

It was possible to model all the buildings using our interface. Some
roof-lines were easier than others, and in this section we describe
some of the problems encountered.

The most common issue when modeling was the construction of
roof areas that contained edges not specified in the input plan
(Fig. 30 (a). In these circumstances it was necessary to add ex-
tra edges to model these features. These would either be added in
the plan, leading to the difference between the vertices in the input
plans and the model in several of the examples, or by natural steps
at certain heights.

We share a limitation with the straight skeleton that certain smaller
edits to the footprint can result in bigger changes to the roof sur-
face [Eppstein and Erickson 1998]. For example when two adjacent
edges with different angles are nearly parallel, the behavior of the
resulting roof can be erratic as the angle between the edges is set to
greater than, or less than zero. In practice these edges do not appear
often in architecture, and we often end up adding a perpendicular
edge (Fig. 30, a).

In several circumstances one face relies upon another, spatially sep-
arated, face to halt its propagation at the correct time, that is an edge
is fated to meet another (Fig. 30, b). When another feature blocks,
or changes the course of one of these faces, the other may not ter-
minate, or collide in an unexpected location. These fated edges lead
to potentially undesirable intermediate outputs while editing.

Modeling circular arches was difficult because any adjustment in
the width of the arch, would have to be accompanied by a re-scaling
of the profiles. Modeling techniques such as shape grammars are
able to retain such semantic information to automate such a pro-
cess, and it is possible to imagine a similar system for the procedu-
ral extrusions.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • T. Kelly and P. Wonka

Fig. 29. Sample aerial photographs of buildings used for modeling examples 46 to 50 in Fig. 28. a,b) Stockholm, c) Copenhagen, d) Edinburgh, e) Vienna.
c©2011 Microsoft Bing Maps [Microsoft Corp.].

Fig. 30. a) The red roof face is not described in the input polygon(left). By creating a small change to the input polygon we can create the desired face (green).
b) left: edges can be expected to collide at a certain height (green polygons), right: however when these edges are involved in other events (such as those from
the red polygon), there may be undesired consequences, here a non-terminating polygon. c) Some structures (such as dormer windows and chimneys) do not
obey the volume-maximizing resolution to the ambiguous case, in this situation we have to lower the ambiguous case priority of some edges (blue) to get the
desired result. d) A face (yellow) may be shared between two profiles (blue lines), defining co-planar profile sections requires patience on behalf of the user.

It is not convenient to model a roof that is held only by a large
number of pillars, because it is not easy to model the transition
from pillars to the roof. For example, pergolas (Fig. 25, example
31) contain no walls to allow the plan to generate a roof. These
were not a large part of our data set, and were approximated by
walled structures of similar volume.

It was occasionally necessary to override our default of a volume
maximizing priority in the ambiguous case. For example, in the
case of a chimney stack or a dormer window (Fig. 30, c). To do
this we used tags to specify high priority and low priority profile
segments. This proved simple compared to the alternative of speci-
fying a priority for every pair of segments.

While allowing one profile to split into two is the simple case of
inserting an edge with a step, allowing two profiles to merge to one
is more difficult (Fig. 30, d). We see this architectural feature as
two different profiles to merge at the top of a shorter roof (Fig. 25,
examples 3, 20). To design a profile with a face co-planar to an-
other is difficult, especially if the second edge starts from an edge
parallel, but not colinear to the first.

Natural steps proved very versatile for inserting edges into the poly-
gons. For example, Fig. 25 (example 34) required a new edge inter-
nal to the plan for the back-facing wall of the tower. By positioning
a wide square natural step on the end of the building, it was possi-
ble to split the polygon into two. One partition became the tower,
and the other the remainder of the roof structure.

From a development perspective the algorithms are difficult to im-
plement. It is hard to give a formal guarantee that the implementa-
tion will work correctly on all inputs. This may be observed when
using our user interface, as occasionally a face will not contain

enough arcs to close the area. In this case the face will not be visible
to the user. This may occur once in every 5 minutes of interactive
editing with multiple edits per second; It is certainly possible to
construct pathological input cases. In the procedural case, we visu-
ally identified missing faces in two of the meshes, from the 6000
floorplans in the GIS database, Fig. 31.

Fig. 31. The two observed examples of missing geometry. Note the miss-
ing roof sections in both buildings.

However, our modeling system is more specialized than most com-
mercial polygonal modeling packages. The virtual model of Atlanta
is unique and we argue that no existing approach can model a city
of comparable (roof) complexity in reasonable time.

7. DISCUSSION

A major design decision for our system was to choose between a
rational arithmetic or a floating point implementation. Our float-
ing point implementation is better suited to interactive modeling

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Interactive Architectural Modeling with Procedural Extrusions • 15

applications because it prioritizes interactive update speeds over
high precision. A rational arithmetic approach may be important to
give theoretical guarantees and such an alternative implementation
would be very valuable.

Fig. 32. Left: Straight skeleton; Middle: Straight Skeleton with angle
changes; Right: Procedural extrusions

We are the first to introduce an algorithm for extrusions using edges
with independent per-edge angles (weights). This results in a 3d
instead of a 2d algorithm. We are also the first to recognise the
difficulty of independent per-edge angles. The possibility of a 2d
weighted skeleton is discussed in previous work [Eppstein and Er-
ickson 1998; Barequet et al. 2008], but no algorithm is given and
the ambiguous cases were not discovered. Even though our work
is based on previous work in the unweighted case, e.g. [Cacciola
2004; Felkel and Obdrzalek 1998], our modifications result in sub-
stantial improvements in the range of forms that can be produced,
Fig. 32.

In previous work [Havemann 2005] the direction of the extrudes
is monotonic in the upwards direction, that is they are limited to
angles above the sweep plane. By using profile offset events, we
can allow non-monotonic profiles.

8. CONCLUSIONS

We believe that the combination of interactive and procedural mod-
eling is a significant boost to artists productivity and a great com-
plement to existing modeling tools. In some sense our work is com-
plementary to previous work by Lipp et al. [2008]. Our approach
to encoding procedural models is very different from the previous
shape grammar approach [Müller et al. 2006; Lipp et al. 2008]. We
believe that we are the first to provide a solution for the procedu-
ral modeling of roofs, procedural modeling from arbitrary building
footprints, and other complex architectural surfaces. However, pre-
vious work is better suited for placing elements on facade planes
and we see some potential in combining both approaches in future
work.

The main contribution of this paper is the design of the system and
the set of tool choices to enable procedural modeling of complex
architectural surfaces. Procedural extrusions can model many com-
plex architectural surfaces that could not be easily modeled with
previous procedural modeling tools. Examples are curved roofs,
overhanging roofs, dormer windows, interior dormer windows, roof
constructions with vertical walls, buttresses, chimneys, bay win-
dows, columns, pilasters, and alcoves.

REFERENCES

AICHHOLZER, O. AND AURENHAMMER, F. 1996. Straight skeletons for
general polygonal figures in the plane. In Computing and Combinatorics.
Springer-Verlag, 117–126.

AICHHOLZER, O., AURENHAMMER, F., ALBERTS, D., AND GAERTNER,
B. 1995. A novel type of skeleton for polygons. Journal of Universal
Computer Science 12, 12, 752–761.

ALIAGA, D. G., ROSEN, P. A., AND BEKINS, D. R. 2007. Style gram-
mars for interactive visualization of architecture. IEEE Transactions on
Visualization and Computer Graphics 13, 4, 786–797.

AURENHAMMER, F. 2008. Weighted skeletons and fixed-share decompo-
sition. Comput. Geom. Theory Appl. 40, 2, 93–101.

AUTODESK INC. Revit
TM

. http://www.revit.com.
BAREQUET, G., EPPSTEIN, D., GOODRICH, M. T., AND VAXMAN, A.

2008. Straight skeletons of three-dimensional polyhedra. In ESA ’08:
Proceedings of the 16th annual European symposium on Algorithms.
Springer-Verlag, Berlin, Heidelberg, 148–160.

CABRAL, M., LEFEBVRE, S., DACHSBACHER, C., AND DRETTAKIS, G.
2009. Structure preserving reshape for textured architectural scenes.
Computer Graphics Forum (Proceedings of the Eurographics confer-
ence).

CACCIOLA, F. 2004. A CGAL implementation of the straight skeleton of a
simple 2d polygon with holes. In 2nd CGAL User Workshop.

EPPSTEIN, D. AND ERICKSON, J. 1998. Raising roofs, crashing cycles,
and playing pool: applications of a data structure for finding pairwise in-
teractions. In SCG ’98: Proceedings of the fourteenth annual symposium
on Computational geometry. ACM, New York, NY, USA, 58–67.

FELKEL, P. AND OBDRZALEK, S. 1998. Straight skeleton implementation.
In Proceedings of Spring Conference on Computer Graphics. 210–218.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D. 2009.
iWires: an analyze-and-edit approach to shape manipulation. ACM Trans.
Graph. 28, 33:1–33:10.

HANLEY WOOD, LLC. 2010. eplans.com. http://www.eplans.com.
HAVEMANN, S. 2005. Generative mesh modeling. Ph.D. thesis, TU Braun-

schweig.
KELLY, T. W. A. 2006. City architecture generation. M.S. thesis, Bristol.
LAYCOCK, R. G. AND DAY, A. M. 2003. Automatically generating large

urban environments based on the footprint data of buildings. In SM ’03:
Procedings of the ACM symposium on Solid modeling and applications.
ACM Press, NY, USA, 346–351.

LEGAKIS, J., DORSEY, J., AND GORTLER, S. 2001. Feature-based cellular
texturing for architectural models. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques. SIGGRAPH
’01. ACM, New York, NY, USA, 309–316.

LIPP, M., WONKA, P., AND WIMMER, M. 2008. Interactive visual editing
of grammars for procedural architecture. ACM Trans. Graph. 27, 102:1–
102:10.

MARVIE, J.-E., PERRET, J., AND BOUATOUCH, K. 2005. The FL-system:
a functional L-system for procedural geometric modeling. The Visual
Computer 21, 5, 329–339.

MERRELL, P. AND MANOCHA, D. 2008. Continuous model synthesis.
ACM Trans. Graph. 27, 158:1–158:7.

MICROSOFT CORP. Bing maps
TM

. http://www.bing.com.
MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND VAN GOOL,

L. 2006. Procedural modeling of buildings. ACM Trans. Graph. 25,
614–623.

PRUSINKIEWICZ, P. AND LINDENMAYER, A. 1991. The Algorithmic
Beauty of Plants. Springer Verlag.

STINY, G. 1975. Pictorial and Formal Aspects of Shape and Shape Gram-
mars. Birkhauser Verlag, Basel.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W. 2003. In-
stant architecture. ACM Trans. Graph. 22, 669–677.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

