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Figure 1: We introduce connectivity editing operations to control irregular vertices in quadrilateral meshes. This can lead to improved results
in the design of a glass structure: (a) top: the original mesh with irregular vertices as colored dots, (a) bottom: a stripe pattern applied to the
mesh, (b) a rendering of the design as glass construction. In (c) and (d) we show the edited mesh. The glass panels on the roof are generated
from the edges in the meshes.

Abstract

We propose new connectivity editing operations for quadrilateral
meshes with the unique ability to explicitly control the location,
orientation, type, and number of the irregular vertices (valence not
equal to four) in the mesh while preserving sharp edges. We provide
theoretical analysis on what editing operations are possible and im-
possible and introduce three fundamental operations to move and
re-orient a pair of irregular vertices. We argue that our editing op-
erations are fundamental, because they only change the quad mesh
in the smallest possible region and involve the fewest irregular ver-
tices (i.e., two). The irregular vertex movement operations are sup-
plemented by operations for the splitting, merging, canceling, and
aligning of irregular vertices. We explain how the proposed high-
level operations are realized through graph-level editing operations
such as quad collapses, edge flips, and edge splits. The utility of
these mesh editing operations are demonstrated by improving the
connectivity of quad meshes generated from state-of-art quadran-
gulation techniques.
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1 Introduction

Quadrilateral and hexahedral meshes are popular choices in simula-
tion and shape modeling due to the natural tensor product property
that they possess. Quadrilateral meshes can also facilitate architec-
tural modeling as well as texture and geometry synthesis. Impor-
tant aspects of a quadrilateral mesh include the location, orienta-
tion, type, and number of irregular vertices. While there has been
some work in quad mesh connectivity editing [Daniels et al. 2008;
Bommes et al. 2011], achieving irregular vertex control is challeng-
ing and many questions about what editing operations are possible
and impossible still need to be answered.

In this paper, we propose three operations that move an irregular
vertex pair (two valence 3, two valence 5, or one valence 3 and
one valence 5) over the mesh. To show that these are fundamental
operations for quad mesh editing, we will establish the following
properties:

• These editing operations impact the smallest possible region
on the mesh and are therefore as local as possible (in a convex
region).

• A region containing only one irregular vertex cannot be
edited.

• A region containing two irregular vertices can be edited by
changing the location of the irregular vertices within the re-
gion. However, they cannot be canceled. Some irregular ver-
tex pairs can be merged while others cannot, depending on
their graph distance in the initial configuration.



• A region with three irregular vertices can be edited by cancel-
ing or merging the irregular vertices.

• Our three movement operations can perform all possible edits
within a (convex) region that contains two irregular vertices.

While the three vertex pair movement operations are at the core of
this paper, we also introduce several supplementary operations to
control the type and number of irregular vertices: splitting, merg-
ing, cancellation, and alignment. All of these operations can be re-
alized through three graph-level editing operations: quad collapses,
edge flips, and edge splits.

Our paper does not extensively deal with the geometric conse-
quence of mesh editing. We consider feature edges in our imple-
mentation and analysis, but otherwise treat editing operations that
result in isomorphic graphs as identical. Our analysis is based on
recent work in triangular mesh editing [Li et al. 2010]. We adapt the
definitions from this earlier work and their proof for Theorem 7.1
(shown in the additional materials). The enumeration (and parame-
terization) of all valid requadrangulations given a regular convex
region is a contribution of this paper. Furthermore, while Li et
al. [2010] demonstrate that it is possible to move an irregular vertex
pair, we establish the condition under which this is possible with an
explicit algorithm to requadrangulate a region.

2 Related Work

There has been much work in mesh optimization, most of which is
for triangular meshes and usually focuses on preserving geometric
details in the underlying surface or achieving optimal aspect ratio
and size of triangles in the mesh under a reasonable triangle bud-
get [Hoppe 1996; Desbrun et al. 1999; Alliez et al. 2002]. For a
complete reference of past work in mesh processing we refer the
readers to [Botsch et al. 2010]. In contrast, our work focuses on
optimizing the connectivity of quadrilateral meshes.

There has been much recent work in the generation of a quad mesh
given an input triangular mesh, i.e., quadrangulation. Typical ap-
proaches include tracing evenly spaced hyperstreamlines [Alliez
et al. 2003; Marinov and Kobbelt 2004; Dong et al. 2005], con-
structing a global parameterization [Ray et al. 2006; Kälberer et al.
2007; Bommes et al. 2009; Zhang et al. 2010], and generating a
patch layout on the surface that facilitates quadrangular remesh-
ing [Dong et al. 2006; Tong et al. 2006; Myles et al. 2010]. For ap-
proaches depending on hyperstreamline tracing and global param-
eterizations, a guiding 4-way rotational symmetry (4-RoSy) field
is needed. The quality of the remeshes depends on the quality of
the fields, and this has led to work on generating geometry-aware
fields either manually [Zhang et al. 2006; Zhang et al. 2007; Pala-
cios and Zhang 2007; Ray et al. 2008] or automatically [Ray et al.
2009; Nieser et al. 2010]. In contrast to all of this work which as-
sumes an input triangular mesh, the goal of our work is to perform
connectivity editing directly on an input quadrilateral mesh, i.e., re-
quadrangulation. In addition, our method provides explicit control
over the location, orientation, type, and number of irregular vertices
in the mesh.

There has been some work in formulating algorithms to quadran-
gulate an empty region with specific goals such as having fewest
irregular vertices possible [Nasri and Yasseen 2009; Schaefer et al.
2004]. Our work is different in two ways. First, instead of for-
mulating specific algorithms, our theoretical analysis provides an
exhaustive enumeration of all possible quadrangulations within a
simply-connected, convex region with up to two irregular vertices.
Second, instead of quadrangulating the region from scratch, in our
editing framework different quadrangulations are achieved by ap-
plying several local operators with minimal footprint.

Irregular vertex control is important as the location and type of ir-
regular vertices are often intrinsically linked to the geometric fea-
tures on the surface [Akleman and Chen 2006] and can impact the
quality of inverse subdivision [Taubin 2002], pattern generation [Li
et al. 2010], as well as remeshing [Ray et al. 2006]. Local op-
erators have been proposed for quad mesh simplification [Tarini
et al. 2010]. Surprisingly, however, local operators such as quad
collapse, edge split, vertex rotation, and edge flip all increase the
number of irregular vertices when applied to a single irregular ver-
tex. Therefore, it is important to investigate operators on larger
regions that do not increase the number of irregular vertices in a
quad mesh [Daniels et al. 2008; Bommes et al. 2011], or a triangu-
lar mesh [Surazhsky and Gotsman 2003; Li et al. 2010]. Finally,
Burgers vectors have been used in crystallography to displace irreg-
ular vertices [Hull and Bacon 2001].

3 Overview

The input to our system is a quadrilateral mesh M that represents
a closed manifold surface. The valence of a vertex v in M, which
we denote as l(v), is the number of edges in the mesh incident to
v. A vertex with a valence of n is denoted as vn, e.g., v3 and v5.
A v4 vertex is considered as regular, and vertices of other valences
are referred to as irregular. A pair of valence m and n vertices is
denoted as m−n pair.

To simplify the discussion, we only consider irregular vertices with
a valence of 3 or 5. Other irregular vertices can be transformed to
multiple v3 or v5 vertices through our atomic type change opera-
tions (Section 8).

The focus of this paper is to introduce and analyze the following
three operations: 3−5, 3−3, and 5−5 pair movement operations.
To realize these operations, we develop a three-level hierarchy of
editing operations: basic operations, atomic semantic operations,
and the three pair-wise movement operations.

1. Basic operations (Section 4) include quad collapse, edge split,
and edge flip. All semantic operations are achieved by a com-
bination of these three types of operations.

2. Atomic semantic operations (Section 5) are single basic oper-
ations with semantic interpretations. Users can generate and
remove irregular vertices as well as move, split, and merge
adjacent irregular vertices.

3. Pair-wise movement operations (Section 6) include the afore-
mentioned 3−5, 3−3, and 5−5 pair movement operations.
These operations are accomplished by multiple atomic seman-
tic operations.

In Section 7 we provide theoretical analysis of the proposed op-
erations. We first prove that it is impossible to requadrangulate a
convex region containing a single irregular vertex without intro-
ducing additional irregular vertices. Consequently, possible local
operations require at least two irregular vertices. By analyzing all
possible connectivity edits for a pair of irregular vertices within a
convex region, we conclude that the three proposed irregular ver-
tex pair movement operations are sufficient to generate all possible
local edits within a convex region containing two irregular vertices.

In Section 8 we present several useful operations built upon the
three pair-wise movement operations. These additional operations
can be used to reduce the number of irregular vertices, align 3− 3
and 5−5 pairs, and merge one 3−3 or 5−5 pair into one v2 or v6
vertex. The aforementioned editing operations are topological by
design and may lead to a loss of geometric details in the underlying
surface and quadrilaterals with poor aspect ratios. We provide sev-
eral geometric operations to remedy such problems. In Section 9



we compare our editing operations to the irregular vertex editing
operations for triangular meshes proposed in [Li et al. 2010]. In
Section 10 several applications of our editing operations are shown.

4 Basic Operations

Our set of basic operations has the following desirable properties:
First, the support for these operations is local. Second, their imple-
mentations are relatively easy with a low computational cost. Third,
it is straightforward to combine multiple basic operations, incurring
no limitations and special cases (Figure 2).

Figure 2: Quad collapse: a pair of diagonally opposing regular
vertices (gray) is merged. The face to be deleted is shown in red.
The v3 vertices are shown in blue and the v6 vertex in red. Edge
split: a pair of connected edges (green) is bloated into a face (yel-
low). The v5 vertices are shown in orange. Edge flip: an edge
(green) is flipped in a counter-clockwise and clockwise direction.
One way to realize an edge flip is by one edge split followed by one
quad collapse (shown below).

Quad Collapse: Quad collapse can be intuitively understood as
merging a pair of diagonally opposing vertices (v1,v2) sharing the
same face. The face they share will be deleted, and the valence of
the merged vertex will be l(v1)+ l(v2)−2, while the valence of the
other pair of diagonally opposing vertices will be decreased by one
per vertex.

Edge Split: Edge split can be intuitively understood as bloating a
pair of connected edges (e1,e2) into one face and the central vertex
v between them is split into two. After an edge split, a new face and
a new vertex will be created. The pair of edges (e1,e2) separates the
remaining edges incident to v1 into two groups containing d1 and
d2 edges, respectively. After the edge split, the valences of the two
vertices are d1+2 and d2+2, respectively. The valence of the other
two vertices involved in the operation will be increased by one.

Edge Flip: Edge flip can be intuitively understood as rotating an
edge in either the counter-clockwise or clockwise direction. The va-
lence of the two vertices on the edge will be decreased by one, while
the valence of the other two involved vertices will be increased by
one.

Quad collapse and edge split are inverse to each other; they are both
atomic in the sense that each cannot be realized by any combination
of the other two basic operations. On the other hand, the inverse of
an edge flip is an edge flip in the other direction; it is not atomic
because it can be realized by one edge split and one quad collapse.

5 Atomic Semantic Operations

The influence of the aforementioned basic operations on the valence
is non-trivial and lacks semantic meaning, which makes it difficult
to use them directly to control irregular vertices. By providing se-
mantic interpretations for basic operations we define a collection of
atomic semantic operations.

Adjacent 3−5 Pair Movement: A pair of adjacent v3 and v5 ver-
tices can be moved in the direction of its six adjacent vertices (Fig-
ure 3).

Figure 3: Possible directions of an adjacent 3− 5 pair movement
operation. Moving to the upper-left and upper-right corners are
achieved by one quad collapse. Moving to the lower-left and lower-
right corners is achieved by one edge split. Moving to the left and
right is achieved by one edge flip. Faces adjacent to the 3− 5
pair are shown in gray to assist comparisons. In the lower-left and
lower-right cases faces created by edge split are shown in yellow.

v3(v5) Movement and 3− 5 Pair Generation: A v3 vertex can
be moved to one of its adjacent locations, and one adjacent 3− 5
pair is created. Each direction can be achieved by two kinds of
quad collapses and two kinds of edge flips. Similarly, a v5 vertex
can be moved to one of its five adjacent locations, and one adjacent
3−5 pair is created. Each direction can be achieved by two kinds of
edge splits and two kinds of edge flips. Figure 4 shows one possible
moving direction for a v3 and a v5 vertex.

v3(v5) Movement and 3− 5 Pair Removal: This operation is the
inverse of the operation described above. It can be understood by
reading Figure 4 in the reverse direction.

3−3−5−5 generation/removal: By one edge flip two v3 and two
v5 vertices can be generated. Inversely two v3 and two v5 vertices
can be removed by one edge flip in the other direction.

Type Change Operations: Type change operations increase or de-
crease vertex valences. As mentioned before, all irregular vertices
other than v3 or v5 can be transformed into a set of v3 or v5 irregular
vertices by using type changing operations.

A vertex’s valence can be increased by applying a quad collapse to
one of its adjacent faces, at the cost of creating adjacent irregular
vertices. For example, applying a quad collapse to a v2 vertex with
a regular diagonally opposing vertex can transform the v2 vertex
into a regular vertex, while decreasing valence of the other pair of
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Figure 4: Examples of moving an irregular vertex upward from
its current location. (a) to (c): the v3 vertex is moved upward by
either (b) collapsing the face on the left or (c) flipping the left edge
clockwise. It can also be achieved by collapsing the face on the
right or flipping the right edge counter-clockwise. (d) to (f): the v5
vertex is moved upward by either (e) splitting the edge pair on the
left or (f) flipping the left edge counter-clockwise. It can also be
achieved by splitting the edge pair on the right or flipping the right
edge clockwise. Note that in all these scenarios a 3− 5 irregular
vertex pair is created as a result of the movement operation.

diagonally opposing vertices by one (Figure 5a). Similarly, a ver-
tex’s valence can be decreased by applying an edge split to one of
the adjacent edge pairs between it, at the cost of creating adjacent
irregular vertices. For example, splitting a v6 vertex along an edge
pair that evenly separates its six adjacent edges will create two reg-
ular new vertices, while increasing the other two vertices’ valence
by one (Figure 5b).

(a) (b)

Figure 5: Applying type change operations to convert v2 and v6
vertices into v3 and v5 vertices. (a) A v2 vertex is converted to two
v3 vertices by one quad collapse. (b) A v6 vertex is converted to
two v5 vertices by one edge split.

6 Pair-wise Movement Operations

While the aforementioned atomic operations only have local influ-
ences, we can move non-adjacent pairs of irregular vertices (3−5,
3− 3, and 5− 5) by a combination of multiple atomic operations.
We also show how the pair can be moved even when the shortest
path between the vertices intersects some feature edge that has to
be preserved. These operations result in quads being inserted into
and deleted from the mesh. Therefore, we also need to interleave
smoothing operations with these operations to avoid degrading the
mesh quality.

3− 5 Pair Movement: A non-adjacent 3− 5 pair can be moved
together in the same direction in the following three-step pipeline:

1. Move the v3 vertex to a user-specified adjacent location by

applying a v3 movement and 3−5 pair generation operation.

2. Apply multiple adjacent 3− 5 pair movement operations to
transport the generated 3− 5 pair toward the v5 vertex until
they become adjacent.

3. Apply a v5 and 3− 5 pair removal operation to remove the
3−5 pair and shift the v5 vertex. The relative position of the
two vertices remains the same.

Alternatively the pipeline can be executed reversely by moving the
v5 vertex first and then colliding the generated 3− 5 pair toward
the v3 vertex. Each movement has four moving directions, which
can be understood as moving on a 2D Cartesian grid with a nearby
regular vertex as the origin. After one movement the relative dis-
tance between the 3−5 pair, defined by the number of edges of their
two connecting separatrices (Definition 7.7) will be preserved. In
Figure 6 the four moving directions for 3−5 pairs in different con-
figurations are analyzed.

3−5 Pair Movement with Sharp Features: The transportation of
the generated 3−5 pair in the second step does not need to follow
the shortest path between the irregular vertices. Figure 7 illustrates
this with an example. If the generated 3− 5 pair is transported
through the shortest path, the sharp feature will be modified. Al-
ternatively, the generated 3− 5 pair can be transported through a
longer path to avoid modifying the sharp feature.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Moving a 3−5 pair. The four moving directions (red ar-
rows) for 3− 5 pairs with aligned (top row) and mis-aligned (bot-
tom row) separatrices. Each green line denotes a shortest path be-
tween the pair. The blue faces denote the nearest unchanged quad
strips that enclose the affected region. The yellow and red faces are
generated or deleted depending on which direction the 3− 5 pair
moves, while red faces denote the ones that are immediately to be
created or deleted. The length of the connecting path determines
the number of faces created or deleted in one movement.

3− 3 Pair Movement: The mechanics of moving a non-adjacent
3−3 irregular vertex pair is identical to moving a 3−5 pair. There
are also four directions of movement. The major difference is that
the graph distance between the two irregular vertices changes. We
define the number of edges on each of the two connecting separa-
trices as d1 and d2 (See Figure 8). If the two vertices are directly
connected by a separatrix one of these two values is equal to zero.
One step of movement can be labeled by the changes to (d1,d2) in
one of the four possible ways: (+1,+1), (+1,−1), (−1,+1), and
(−1,−1).

5−5 Pair Movement: This operation is similar to moving a 3−3
pair in that there are four directions of movement and the graph
distance between the vertices changes in the same fashion.
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Figure 7: Moving a 3−5 pair whose shortest path intersects sharp
features. Faces generated in the process are shown in yellow and
faces deleted are shown in red. (a) The connecting path, shown in
green, intersects the sharp feature shown in grey. (b) to (d) The
generated 3−5 pair is transported toward the v3 vertex through an
alternate path that avoids the sharp feature.

(a) (b) (c)

Figure 8: Examples of 3− 3 pair movement. (a) to (b) The 3−
3 pair is moved in the (−1,+1) direction (shown as red arrow).
(b) to (c) The 3− 3 pair is moved again in the (+1,+1) direction.
Generated faces are shown in red.

UI Implementation: Figure 9 shows our UI implementation of the
three pair-wise movement operations. The four moving directions
for 3− 5, 3− 3, and 5− 5 pair movements are shown as colored
arrow pairs to help the user predict the effect of a movement before
actually executing it.

7 Topological Analysis

In this section we provide theoretical analysis on why the three pair-
wise movement operations are fundamental. Unlike vector and ten-
sor field editing in which it is possible to move a singularity and
cancel a singularity pair with opposite singularity indexes, it is im-
possible to move an irregular vertex (Theorem 7.1), and topological
changes between a pair of irregular vertices have to follow specific
constraints. For example, an irregular vertex pair whose discrete
Gaussian curvature sum to zero cannot be canceled. The follow-
ing theoretical discussion explains all possible edits within a con-
vex region containing one or two irregular vertices (v3 or v5). This
discussion explains why our suggested operations are the simplest
possible operations that do not increase the number of irregular ver-
tices. Note that some terminologies used in Theorem 7.1, 7.2, 7.3,

(a) (b) (c)

Figure 9: UI implementation of the three pair-wise movement op-
erations. Each of the four possible moving directions is shown as
one pair of arrows with the same color.

and 7.4 are defined in Definitions 7.5, 7.6, and 7.7.

Theorem 7.1 Consider a convex region R that contains exactly one
irregular vertex v0 in its interior. When l(v0), the valence of v0, is
not a multiple of 4, it is impossible to remesh the interior quadrilat-
erals of R to have a different configuration that still contains only
one irregular vertex.

The proof of Theorem 7.1 is adapted from [Li et al. 2010] and is
given as additional material. The following three theorems deal
with two irregular vertices in a convex region. A convex N-sided
polygonal region is regular if all N-sides have equal length mea-
sured in graph distance. In this case we call the length of each side
to be the side length of the region.

Figure 12: All possible configurations in a region that contains a
3− 5 pair. Each configuration is labeled by its parameterization
(m,n). Notice they correspond to translations over a regular 2D
grid parameterized by the locations of the red and yellow stars.
Every node has at most four neighbors, indicating four possible
moving directions given a configuration.

Theorem 7.2 Let R be a regular convex digon with a side length L.
If R encloses a 3−3 irregular vertex pair, there are τ(L) mutually
distinctive requadrangulations of R where τ(L) = N(N− 1) when
L is even and N2 when L is odd. Here N = b L

2 c. These configu-
rations can be parameterized by the set {(m,n) | m ≥ 0,n ≥ 0,0 <
m+n ≤ L−2} (Figure 10). Any one-step requadrangulation from
the case (m0,n0) must be one of the following possible scenarios:
(1) (m0 + 1,n0− 1), (2) (m0− 1,n0 + 1), (3) (m0 + 1,n0 + 1), and
(4) (m0− 1,n0− 1). The operations can correspond to distance-
preserving mutual spinning as well as distance-varying movement.
Furthermore, when R is not regular, the number of valid configu-
rations is at most τ(L) where L is the side length of the smallest
regular digon that contains R.

Theorem 7.3 Let R be a regular convex hexagon with a side length
L. If R encloses a 5−5 irregular vertex pair, there are τ(L) mutu-
ally distinctive requadrangulations of R where τ(L) = 3N(N− 1)
when L is even and 3N2 when L is odd. Here N = b L

2 c. These con-
figurations can be parameterized by the set {(m,n, p) | m ≥ 0,n ≥
0,0 < m+n≤ L−2,1≤ p≤ 3} (Figure 11). Any one-step requad-
rangulation from the case (m0,n0, p0) must be one of the following
possible scenarios: (1) (m0+1,n0−1, p′0), (2) (m0−1,n0+1, p′0),
(3) (m0 + 1,n0 + 1, p′0), and (4) (m0− 1,n0− 1, p′0). Here p′0 can
be p0, p0−1, or p0+1, depending on the situation. The operations
can correspond to distance-preserving mutual spinning as well as
distance-varying movement. Furthermore, when R is not regular,
the number of valid configurations is at most τ(L) where L is the
side length of the smallest regular hexagon that contains R.

Theorem 7.4 Given a convex region R that encloses a 3− 5 pair
connected by separatrices of lengths d1 and d2, there are exactly



Figure 10: All possible configurations of a region that contains a 3− 3 pair. Note that this figure extends to infinity. All possible requad-
rangulations of a specific region would be a sub-grid (either blue or red) that is cut along a line n+m < c, where c is a constant. Rα , the
smallest region between the pair, is shown in blue, and the smallest regular digons containing Rα are shown in grey. Each configuration is
labeled by its parameterization (m,n) and represented by a node positioned at (m,n) in a 2D coordinate system rotated by π

4 . Every node has
at most four neighbors, indicating four possibilities of movement given a configuration. Note that each pair of nodes (x,0) and (0,x) on the
boundaries (not including the v2 case) represent the same degenerate case parameterized differently, thus each boundary configuration can
also have at most four neighbors. Note that the grids of configurations with even (red) and odd (blue) L are disconnected, i.e., it is impossible
to requadrangulate a configuration with even L to any configuration with odd L and vice versa. Note that the grids of configurations with odd
and even L are dual to each other, i.e., each face corresponds to a vertex and each pair of adjacent faces corresponds to an edge.

Figure 11: All possible configurations within a regular hexagon of side length six (left) and five (middle) that contains a 5− 5 pair. Each
configuration is labeled by its parameterization (m,n, p). For brevity we show all parameterizations in the right. Note that the grids of
configurations with odd and even L are dual to each other, i.e., each face corresponds to a vertex and each pair of adjacent faces corresponds
to an edge.
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Figure 13: (a) An open path (left) and a loop (right). Blue trian-
gles indicate normal convex turn points and red triangles indicate
concave turn points. (b) All possible cases of the smallest convex re-
gion containing a vertex pair connected by separatrices with length
d1 and d2 in the counter-clockwise order. (left) and (middle) Two
non-degenerate cases. (right) Degenerate case where d2 is 0.

K =MN mutually distinctive requadrangulations of R that still con-
tain a 3− 5 pair. Here M and N are constants derived from the
side lengths Ei’s of R and d1 and d2. The set of the requadran-
gulations is parameterized by the following set: {(m,n) | 1 ≤ m ≤
M,1 ≤ n ≤ N} (Figure 12). Any one-step requadrangulation from
the case (m0,n0) must be one of the following: (1) (m0 +1,n0), (2)
(m0− 1,n0), (3) (m0,n0 + 1), and (4) (m0,n0− 1). Each of these
moves corresponds to the irregular vertex pair moving toward one
of the four sides of R without mutual spinning or change in distance
between the irregular vertex pair.

To prove these theorems we need the following definitions adapted
from [Li et al. 2010].

Definition 7.5 A path γ (Figure 13a) on the mesh M consists of a
sequence of edges ei = (vi,vi+1) for 0 ≤ i < N. N is the length of
γ . A path is a loop (Figure 13a right) if v0 = vN . Otherwise, γ is an
open path (left). A loop γ is degenerate if there exists a vertex in γ

that is incident to at least three edges in γ .

A degenerate open path can be defined in a similar fashion. An
open path γ consisting of only regular vertices is regular. For a
regular open path γ , the edges in γ divide the 1-ring neighborhood
of any interior vertex v on γ into two subsets of quadrilaterals. v
is a turn point if there are three quadrilaterals on one side and one
quadrilateral on the other side. Otherwise, it is a non-turn point.
For non-regular open paths turn points and non-turn points are un-
defined. For any vertex v on a loop γ , v is a non-turn point if there
are two quadrilaterals in the exterior of the loop, otherwise it is a
turn point. A path γ is straight if every interior vertex in γ is regular
and non-turning.

A region R is a subset of the quadrilaterals in M whose dual graph
is connected. That is, for any two quadrilaterals s and t in R, there
is a sequence of quadrilaterals such that t0 = s, tN = t, and ti and
ti+1 share an edge in R for all 0 ≤ i < N. The boundary of R, de-
noted by ∂R, is a loop. R is degenerate if ∂R is a degenerate loop,
otherwise it is non-degenerate. In this paper we assume a region
is non-degenerate and has exactly one boundary loop unless other-
wise specified. A turn point on ∂R is convex if it has more than two
adjacent quadrilaterals in R̄, the exterior of R. Otherwise the turn
point is concave (Figure 13a). The angle of a turn v, denoted by
k(v), is (m(v)− 2) π

2 where m(v) is the number of incident quadri-
laterals of v in R̄. Because we only consider boundary vertices with
a valence up to six, a convex turn point can have a turning angle
up to π (m(v) = 4). We refer to such points as a sharp convex turn
point. A sharp convex turn point is considered as two normal con-
vex turn points (m(v) = 3) connected by an edge of length zero.
Finally, a region R is convex if there are no concave turn points on
∂R. Otherwise, it is concave.

Definition 7.6 Two regions are compatible if their boundaries are
indistinguishable from the exterior. That is, there exists a way to

walk each boundary and produce the same sequence of turning an-
gles of the vertices. Remeshing a region is defined as finding a
different but compatible region.

A side of a region R is a sequence of edges of ∂R between two
normal convex turn points. Alternatively we can say two regions
are compatible if there exists a way to walk each boundary and
produce the same sequence of length of sides.

Definition 7.7 An open separatrix is an open and straight path
whose interior vertices are regular and at least one of the end ver-
tices is irregular. A closed separatrix is a loop that contains exactly
one irregular vertex. In the remainder of the paper we are only
interested in open separatrices. There are l(v0) separatrices ema-
nating from v0.

The discrete Gauss-Bonnet theorem relates the total turning angle
∑v∈∂R k(v) along the boundary ∂R to the total discrete Gauss cur-
vature of the vertices of R as follows:

∑
v∈∂R

(m(v)−2)+ ∑
v∈intR

(4− l(v)) = 4χ(M) (1)

where χ(M) is the Euler characteristic of M.

To prove Theorems 7.2, 7.3 and 7.4, first we need the following
lemmas.

Lemma 7.8 Under the assumption of Theorems 7.2, 7.3 and 7.4,
the smallest region between v1 and v2, Rα , is unique and must be
a rectangular grid of size d1×d2 in the counter-clockwise order. If
d1 or d2 is zero we have the degenerate case of the two irregular
vertices connected by a single separatrix.

The proof of Lemma 7.8 is based on [Li et al. 2010] and is given
as additional material. All possible cases of the smallest convex
region are shown in Figure 13b.

We note that the smallest enclosing convex region for an irregular
vertex pair is the 1-ring neighborhood of Rα .

Lemma 7.9 Given a convex region R that contains no irregular
vertices and no sharp convex turn points on its boundary ∂R, the
number of sides (equal to the number of normal convex turn points)
in ∂R is given by 4−G(R) where G(R) = is total discrete Gaussian
curvature of R.

Proof From Equation 1 we have ∑v∈∂R(m(v)− 2) = 4χ(R)−
∑v∈intR(4− l(v)). Since R has only convex turn points, for any
normal convex turn point on ∂R we have m(v) = 3 and non-turn
point m(v) = 2. Consequently, the left side of this equation, i.e.,
∑v∈∂R(m(v)− 2), is equal to the number of normal convex turn
points in ∂R. On the right side of this equation, χ(R) = 1 since R
is simply-connected. Furthermore, G(R) = ∑v∈intR(4− l(v)) is the
total discrete Gaussian curvature of R.

A consequence of this lemma states that the number of sides of a
convex region R contains a 3− 3, 5− 5, and 3− 5 irregular vertex
pair has 2, 6, and 4 sides, respectively (see Figure 14 for examples).

Lemma 7.10 The atomic step to expand a convex region R while
keeping R convex without introducing irregular vertices is to add a
strip of quadrilaterals adjacent to one side of R.

Proof To expand a region at least one quadrilateral belonging to R̄
adjacent to an edge in ∂R has to be added. Consequently, for the
two ending vertices of the edge, denoted as va and vb, both gain an
adjacent quadrilateral and m(va) and m(vb) decrease by 1. Thus va
and vb will become concave turn points if it is not a convex turn
point (m(va),m(vb) <= 2). To avoid creating concave turn points
adding more quadrilaterals adjacent to edges in ∂R right next the



(a) (b) (c)

Figure 14: Examples of convex regions R enclosing exactly one (a) 3− 3, (b) 5− 5 and (c) 3− 5 pair v1 and v2 connected by separatrices
of length d1 and d2. The smallest region between the pair Rα is shown in blue. ∂R is shown in red. Blue triangles indicate normal convex
turn points. Separatrices of v1 and v2 that go outward from Rα are shown in green. E1 to E6 denote the length of sides of R. e1 to e6 denote
the number of quad strips extended from Rα along the outward separatrices. The intersection points between separatrices and the region
boundary are marked with yellow stars.

first edge is necessary until both ending vertices are convex turn
points.

Theorem 7.11 Given a convex region R enclosing a 3− 3, 5− 5,
or 3− 5 pair, the configuration is uniquely determined by the fol-
lowing vector of couples (Si j, ui j) where i is the index of the irreg-
ular vertex, j is the index of a separatrix emanating from vi, Si j is
the side on ∂R that intersects with this separatrix, and ui j is the
graph distance of this intersection point from the starting point of
this side (counterclockwise). In Figure 14 each of these locations is
highlighted with a yellow star-shaped symbol.

The proof for Theorem 7.11 is similar to that of Theorem 7.1. Ba-
sically the location of the intersection points on the boundary and
the side lengths of the region boundary are related to the distance
of the irregular vertex pair to each edge of ∂R. This relation can be
characterized by a linear system that has a unique solution. Conse-
quently, should the solution have only positive entries (all distances
are positive), there is a unique configuration corresponding to this
set of parameters.

The following lemmas show the underlying structure of R contain-
ing exactly a 3−3, 5−5 or 3−5 pair:

Lemma 7.12 Under the assumption of Theorem 7.2, arbitrary con-
vex regions R can be constructed as follows: from the smallest con-
vex region between the 3−3 pair Rα , there are e1 strips of quadri-
laterals extending from one v3 vertex parallel to its outward sep-
aratrix and e2 strips of quadrilaterals extending from another v3
vertex parallel to its outward separatrix. An example is shown in
Figure 14a.

Lemma 7.13 Under the assumption of Theorem 7.3, arbitrary con-
vex regions R can be constructed as follows: from the smallest con-
vex region between the 5−5 pair Rα , there are e1, e2 and e3 strips
of quadrilaterals extended from one v5 vertex parallel to its three
outward separatrices, and e4, e5 and e6 strips of quadrilaterals
extended from another v5 vertex parallel to its three outward sepa-
ratrices. An example is shown in Figure 14b.

Lemma 7.14 Under the assumption of Theorem 7.4, arbitrary con-
vex regions R can be constructed as follows: from the smallest
convex region between the 3− 5 pair Rα , there are e1, e2 and e3
strips of quadrilaterals extended from the v5 vertex parallel to its
three outward separatrices, and e4 strips of quadrilaterals extended

from the v3 vertex parallel to its outward separatrix. An example is
shown in Figure 14c.

Proof For Rα , which is unique according to Lemma 7.8,
Lemma 7.12 holds with e1 and e2 equals 0, Lemma 7.13 holds
with e1 to e6 equals 0, and Lemma 7.14 holds with e1 to e4 equals
0. Consider Rα as the unique first step in constructing R. By
Lemma 7.9 we know that R has exactly 2, 6, and 4 sides when
containing exactly a 3− 3, 5− 5, and 3− 5 pair. By Lemma 7.10
we know that the atomic step to expand a convex region is to add
one strip of quadrilaterals adjacent to one side. It can be easily veri-
fied that each side is perpendicular to one outward separatrix of one
v3 or v5 vertex. Since the strip of quadrilaterals added is parallel to
one side, it is also perpendicular to one outward separatrix of one
v3 or v5 vertex, thus Lemmas 7.12, 7.13 and 7.14 hold after the
expansion.

Since these lemmas hold for the unique first step of constructing R
and hold after all possible atomic steps to expand R, by mathemat-
ical induction we know that they hold for arbitrary convex regions
R, which must be constructed from the unique Rα by several atomic
expansion steps.

We now prove Theorem 7.2.

Proof By Lemma 7.12 we denote the two sides of R adjacent to
the e1 and e2 strips of quadrilateral as E1 and E2, as shown in Fig-
ure 14a. It can be easily verified that the following equations hold:
E1 = d1 +d2 +2e2 and E2 = d1 +d2 +2e1.

Consequently, e1 and e2 are uniquely determined given E1, E2, d1,
and d2. We now seek to enumerate (and parameterize) all possible
such requadrangulations when E1 = E2.

After remeshing we denote the changes of each variable as ∆d1,
∆d2, ∆e1 and ∆e2. Since E1 = E2 are constant we have the follow-
ing set of equations: ∆d1+∆d2+2∆e2 = 0 and ∆d1+∆d2+2∆e1 =
0.

From these equations we know that ∆d1 +∆d2 must be even oth-
erwise ∆e2 and ∆e1 will not be an integer. In other words ∆d1
and ∆d2 have to be either both even or both odd. Furthermore, if
∆d1 = ∆d2 = 0 then ∆e2 = 0 and ∆e1 = 0. All variables do not
change thus R remains identical.

In the case of a regular digon containing a 3− 3 pair that is not



connected by a single separatrix, each edge of the digon will in-
tersect one separatrix from one vertex, say v1, and two separa-
trices from the other, say v2. Suppose that the first edge in the
digon intersects separatrix 1 of v1 and separatrices 0 and 2 of v2,
i.e., S11 = S20 = S22 = 1. Recall that u11, u20, and u22 denotes
the location of the intersection points. Consequently, we have
u20 < u11 < u22. Notice that d1 = u22− u11 and d2 = u11− u20.
When the irregular vertex pair is connected by a separatrix, each
edge in the digon will only intersect one separatrix from each ver-
tex. In this case, d1 = u22−u11 and d2 = 0.

When d1 + d2 = E1, the irregular vertex pair must appear on the
boundary of R. Since we discuss only convex regions free of ir-
regular vertices on its boundary, this is not allowed. Furthermore,
once d1 and d2 are given, the set of intersection points between any
separatrix from v1 or v2 with any edge will be determined. Ac-
cording to Theorem 7.11, there is at most one valid configuration
(requadrangulation) that satisfies the requirements on positions of
intersection points. Consequently, all possible requadrangulations
of R with a 3− 3 pair can be parameterized by m and n as fol-
lows: {(m,n) |m≥ 0,n≥ 0,0 < m+n < E1−2}. Here m = d1 and
n = d2. For degenerate cases, i.e., d2 = 0, both (d1,0) and (0,d1)
are allowed. This gives rise to a pyramid-shaped grid such as the
one shown in Figure 10. When E1 is even, there are N(N−1) mu-
tually distinguishable configurations. When E1 is odd, there are
N2 mutually distinguishable configurations. Here N = b L

2 c and
L = E1 = E2. Every grid point corresponds to a valid requadran-
gulation, and (0,0) corresponds to the case in which the irregular
vertex pair is merged into a single v2 vertex.

Given a configuration, it is possible to move the irregular vertex
pair in at most four directions, corresponding to the four neighbor-
ing grid points. Each of these four atomic changes can be realized
using a pair-wise movement operation. Given this, we now have an
explicit algorithm of realizing any valid configuration inside a regu-
lar digon. For configurations where m+n is even, we start with the
unique configuration corresponding to the (0,0) case. For configu-
rations where m+ n is odd, we start with the unique configuration
corresponding to the (0,1) case. The uniqueness is a result of The-
orem 7.1. Next, we find a shortest path in the grid between the start-
ing case and the target configuration and perform necessary steps to
move from the former towards the latter through appropriate graph-
level operations. This demonstrates that each valid configuration
inside a regular digon can be realized, i.e. there is one and only one
remeshing corresponding to every grid point.

The proof for Theorem 7.3 is similar, except that the relationships
governing these variables are given by:

E1 = d1 + e2 + e6

E2 = e1 + e3

E3 = d2 + e2 + e4

E4 = d1 + e3 + e5

E5 = e4 + e6

E6 = d2 + e1 + e5 (2)

When R is a regular hexagon containing a 5−5 pair, i.e., E1 = E2 =
E3 = E4 = E5 = E6, there is again a two-fold rotational symmetry
which maps two different configurations to the same remeshing.
These two cases corresponding to the positions of the irregular ver-
tex pair are swapped. In the remainder of the discussion we will
treat the two configurations as one, which is equivalent to modulat-
ing out the two-fold symmetry. When the irregular vertices are not
connected by a single separatrix, it is straightforward to verify that

there are exactly four edges in R that intersect two separatrices, one
from v1 and v2 each. Due to the two-fold symmetry in the hexagon.
These four edges form two pairs of opposing edges. Consequently,
it is sufficient to consider only two consecutive edges from the four.

After the initial modulation, there is still a three-fold rotational sym-
metry, which corresponds to three pairs of consecutive sides. For
example, in Figure 14b the sides with length E3 and E4 are one such
pair. Every valid configuration for one pair can be used to generate
a solution for the other two pairs through an appropriate rotation,
and vice versa. Consequently, it is sufficient to consider only the
case where the pair of sides each intersect with one separatrix from
v1 and v2. Notice that the distance between the two intersection
points on the first side is equal to d1, and the distance between the
intersection points on the second side is d2.

For the special case when there is a connecting separatrix between
v1 and v2, we consider that d2=0. Consequently, the set of solutions
can be parameterized by the same set of m and n as for the 3− 3
pair. However, due to the aforementioned three-fold symmetry, we
add the third index p which ranges from 1 to 3 to distinguish them.
This leads to three squares being glued together to form the surface
of a half cube (Figure 11). Like the 3−3 case, in a regular hexagon
there is one and only one valid configuration corresponding to each
point in the grid. Any valid configuration can be explicitly realized.

We now prove Theorem 7.4.

Proof By Lemma 7.14 we denote the four sides of R adjacent to
the e1 and e4 strips of quadrilateral as E1 and E4, as shown in Fig-
ure 14c. It can be easily verified that the following equations hold:

E1 = d1 + e2 + e4

E2 = e1 + e3

E3 = d2 + e2 + e4

E4 = d1 +d2 + e1 + e3 (3)

After remeshing we have ∆Ei = 0 for 1 ≤ i ≤ 4. This implies that
∆d1 = ∆d2 = 0, i.e., any remeshing of R cannot change the relative
position of the two irregular vertices. However, these configurations
can differ in terms of e1 and e2. Given the values of E1, E2, e1,
and e2 such that 1 ≤ e1 < E2 and 1 ≤ e2 < E1− d1, there exists
a unique legal requadrangulation of R. Consequently, the set of
possible requadrangulations can be parameterized by e1 and e2, and
the range of m = e1 and n = e2 are given by [1,E2−1] and [1,E1−
d1− 1], respectively. This is illustrated in Figure 12. Any atomic
requadrangulation will translate Rα towards one of the sides of ∂R,
corresponding to the four neighboring grid points.

8 Complementary Operations

Irregular Vertex Cancellation: We can move a v3 vertex to col-
lide with a v5 vertex, or vice versa, by applying multiple pair-wise
movement operations. When one v3 and one v5 vertex collide they
cancel each other and both become regular. At least one other ir-
regular vertex needs to be involved in this cancellation. In this fash-
ion we develop a 3− 5 pair cancellation operation. It is possible
that the last step of a 3− 5 pair cancellation is equivalent to one
3− 3− 5− 5 removal operation and two pairs of irregular vertices
are canceled at once. Examples can be found in Figures 16 and 17.

Irregular Vertex Merging: A 3− 3 pair can be merged to a v2
vertex and a 5− 5 pair can be merged to a v6 vertex when their
graph distance is even. Theorems 7.2 and 7.3 provide the theoretical
analysis that is related to such a merge.



Irregular Vertex Alignment: Under the assumptions of Theo-
rems 7.2 and 7.3, arbitrary 3− 3 and 5− 5 pairs can be aligned
by applying multiple movement operations until d1 = 0 or d2 = 0.

Smoothing: We use iterative Laplacian mesh smoothing to im-
prove the geometry if the connectivity edits degrade the shape of
the mesh above a user-defined tolerance. The user can select uni-
form weights or cord-length weights, and elect to preserve sharp
features by constraining the positions of vertices on sharp edges.
The smoothing scheme can improve the aspect ratios of modified
faces. After each iteration all vertices are projected back onto the
original mesh. We have also experimented with a scheme in which
newly generated vertices are pulled towards vertices in the origi-
nal mesh if the distance between the new and original vertices is
above a threshold. The projection and pulling scheme can narrow
the difference to the original mesh.

9 Comparisons to Triangle Mesh Editing

We show the analogy between the editing operations for triangular
meshes proposed in [Li et al. 2010] and our operations for quadri-
lateral meshes. First, it is impossible to generate, move, or delete
a single irregular vertex within a convex region for both triangular
and quadrilateral cases. Thus the simplest possible operations that
do not increase the number of irregular vertices must involve an ir-
regular vertex pair. For the triangular case they are 5−7, 5−5, and
7−7 pair movements, and for the quadrilateral case they are 3−5.
3−3, and 5−5 pair movements.

The 5− 7 pair (triangular case) and 3− 5 pair (quadrilateral case)
movements both will not change the relative distance between the
pair, measured in the length of their connecting separatrices.

Similarly, the 5− 5 / 7− 7 pair (triangular case) and 3− 3 / 5− 5
pair (quadrilateral case) movements both will change the relative
distance under specific constraints. In general in both cases the pair
will move in a symmetric, rotating fashion.

We note that despite the similarity in the suites of editing operations
for both triangular and quadrilateral meshes, i.e., both comprise a
hierarchy of basic, atomic semantic, and composite operations, our
paper is the first to be able to enumerate all possible configurations
given a regular convex region. Such analysis was not present in [Li
et al. 2010]. Consequently, while they demonstrated that it is possi-
ble to move a 5−5, 7−7, or 5−7 pair in practice, no guarantee was
provided, neither was an explicit algorithm given to transform from
one valid configuration to a different valid configuration within the
regular convex region.

Figure 15: A simple disc shaped mesh with higher order (36) ir-
regular vertices is converted to a semi-regular mesh. The faces and
edges of the mesh define the panels of the designed structure.

10 Applications

Irregular Vertex Cancellation and Alignment: In Figure 1 we
improve a highly irregular structure designed by an architect that
consists of quadrilateral glass panels. We reduce the numbers of ir-
regular vertices from 168 (92 v3, 62 v5, and 14 v6) to 24 (12 v3 and
12 v5) by multiple 3−5 pair cancellation operations. Then we align
the irregular vertices to improve the flow of the panel structure. The
editing process takes approximately 12 minutes (7 minutes for ir-
regular vertices cancellation and 5 minutes for alignment).

In Figure 15 we transform a mesh with higher order irregular ver-
tices (36 v3, 2 v36) to a semi-regular (4 aligned v3 vertices) mesh
by several valence reduction operations and several irregular vertex
alignment operations.

Connectivity Improvement: Figure 16, 17, and 18 show our edit-
ing framework is capable of repairing various kinds of defects
found in results of state-of-art quadrangulation approaches. Even
though these existing quad remeshing algorithms produce excel-
lent results, they are essentially heuristics to tackle an NP-complete
problem resulting from the fact that the selection and positioning of
irregular vertices is a discrete optimization problem. Therefore, we
believe that it is unlikely that a general solution can be found. In
our analysis a user can identify several meaningful edits that can im-
prove a mesh for many automatically generated results. We there-
fore argue that manual editing tools are an essential component of
a complete mesh processing pipeline.

Future Work: We believe that several automatic mesh processing
algorithms can be built using the proposed editing operations. As
a preliminary result we show how irregular vertices can be reduced
by iteratively performing a 3−5 pair cancellation operation in Fig-
ure 19. This result is achieved by a greedy optimization scheme,
where at each step the operation with lowest cost is selected from a
set of candidate operations. The questions that we plan to address
are how to select candidate operations, how to evaluate the cost of
a candidate operation, and how to preserve the shape of the input
model. For our initial result we simply considered all possible op-
erations as candidates and we used the sum of the affected vertices
discrete mean curvature as cost function. As future work, it might
also be possible to improve upon existing work in irregular vertex
aware quad mesh simplification and to find new applications in pat-
tern design on surfaces.

11 Conclusion

In this paper we propose editing operations for quad meshes to ex-
plicitly control the location, orientation, type, and number of irreg-
ular vertices. We analyzed what edits are possible and what edits
are impossible in a quad mesh with sharp feature edges. Our con-
clusion of this theoretical analysis is that the movement of a pair
of irregular vertices is the best possible compound editing opera-
tion. These operations and their effects on the mesh are also dis-
cussed in this paper. We believe that these editing operations are
essential in applications such as quadrangular mesh optimization
and pattern design. We underline our argument by showing how
our editing operations can improve the output of important state-
of-the-art remeshing algorithms. We hope that our research can
make a contribution to the communities of 3D artists, designers,
and architects. Here, quad meshes are often created manually, even
in a quad-by-quad fashion, instead of automatically generated by
remeshing techniques.



(1) (2)

Figure 16: Using our editing framework to improve a remeshed rockarm model from Mixed-Integer Quadrangulation [Bommes et al. 2009].
(left) Original mesh with an ill-shaped corner part. The diagonal 3− 5 pair leads to a highly non-planar face in between and distorts the
nearby faces on the upper-left side. (1) The misplaced v3 vertex is made regular by a quad collapse. (2) The generated 3−5 pair is moved
upper-left to cancel with the v5 vertex by a 3− 5 pair cancellation. Movement of vertices on sharp features are constrained. (right) Mesh
improved by our editing framework. Now the corner part has a nice structure.

(1) (2)

Figure 17: Using our editing framework to improve a remeshed fandisk model from Wave-Based Anisotropic Quadrangulation [Zhang et al.
2010]. (left) Original mesh with an ill-shaped upper part caused by a mis-aligned 3−3 pair. (1) The misplaced v3 vertex is moved to proper
location by an edge flip. (2) The created 3−5 pair is moved downward to cancel with the v5 vertex by a 3−5 pair cancellation. (right) Mesh
improved by our editing framework. Now the upper part has a nice structure and the face strips flow consistently through the front surface.

(1) (2)

Figure 18: Using our editing framework to fix a defect on a remeshed accessory model from Wave-Based Anisotropic Quadrangulation
[Zhang et al. 2010]. (left) Original mesh with a v3 irregular vertex positioned on the feature edge. The v3 vertex’s deficiency of valence
leads to a degenerated, triangular shaped quad face on its lower side. (1) to (2) The v3 vertex is pulled off the feature edge by a 3−5 pair
movement. The shape of nearby faces are improved because of the better mesh topology.

(a) (b) (c) (d)

Figure 19: Progressive irregular vertex cancellation. (a) Bunny model produced by a mesh simplification algorithm [Tarini et al. 2010], in
which 956 of the total 3006 vertices are irregular. (b) and (c) Intermediate results with 400 and 48 irregular vertices. (d) Maximally reduced
form with only eight v3 irregular vertices. The smaller figures show the same models with a checkerboard pattern by greedy coloring (so that
adjecent quad faces have different colors).
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