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1.1 Comparisons to Other Operators

We show that several other proposed operators for quadrilateral
meshes can be realized by our operations under common situations.
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Figure 2: Realization of vertex rotation and quadrilateral flip
(2,0)− (0,2) (extrusion) by our operations. (a) Before we perform
vertex rotation around v. (b) First we perform edge splits around
the closest loop around v (quads created are shown in yellow), then
we collapse quads adjacent to v (red). (c) Final result. (d) Before
we perform extrusion in the face. (e) First we perform two edge
splits along two pairs of consecutive sides, creating two temporary
v2 vertices. (f) We perform two more edge splits. The result is an
extruded face within the original face.

We first discuss the comprehensive collection of local editing oper-
ators proposed in [Tarini et al. 2010]. Edge rotate is exactly edge
flip. Vertex rotate is equivalent to a combination of quad collapses
and edge splits, as shown in Figure 2. Diagonal collapse is exactly
quad collapse. Edge collapse, as stated in the paper, is equivalent
to one vertex rotation followed by one diagonal collapse, thus is
equivalent to a combination of our operations. Doublet removal
and singlet removal are special cases of quad collapse.

The quadrilateral flips proposed in [Bern and Eppstein 2001],
which correspond to swapping the top and bottom views of a cube,
can be realized by our operators. In particular in Figure 2 we show
the equivalent sequence of edge splits for the (2,0)− (0,2) case
which resembles the extrusion operation commonly found in 3D
sculpting tools.

GP operators [Bommes et al. 2011], of which poly-chord col-
lapse [Daniels et al. 2008] is a special case, can also be realized
by our operations when applied to a convex region with a single
boundary, as shown in Figure 3. A key requirement for the GP op-
erators is that they must circulate a loop with total turning angles
of 0 because there must be the same numbers of right turns and
left turns in the state machine. In other words the convex region
is cut into two parts, one within the loop and one adjacent to the
boundary. By Equation 1 we know that the total valence deficiency
within the loop is 4, e.g. 4 v3 vertices. Thus one strategy to re-
alize GP operators by our four operations is to move the irregular
vertices within the region enclosed by the loop to achieve the same
topology effects. However, this strategy does not work for all quad
meshes, e.g., for a genus one mesh (torus) we cannot find such con-
vex region (the connected part surrounding the loop always has two
boundaries). Finding a mapping between pair-wise movements and

Figure 3: Realization of poly-chord collapse and GP operators
(shifting right) by our operations. (left) Original mesh. The loop
of quads to be collapsed or shifted are denoted in yellow. Blue
faces and colored paths are marked to assist comparisons. (top
row) Poly-chord collapse (left) is equivalent to a series of 3−3 pair
movements (right). Red arrows (numbered by orders) denote the di-
rections of movements. (bottom row) Shifting right by GP operators
(left) is equivalent to a series of 3−3 pair movements (right).

GP operators in the general case is an interesting topic for future
research.

1.2 Proof of Lemma 7.8

Proof We first make the following comment. A region R is convex
if and only if for any vertices u,v ∈ R any shortest path connecting
them is also in R. A sketch of the proof is as follows. Assume that
the region is convex yet there exist u,v ∈ R such that a shortest path
γ connecting u and v is partially outside R. Then γ must intersect ∂R
an even number of times. Consider the first two such intersection
points w1 and w2. Then there must be a negative angle of turn on
∂R between w1 and w2. This contradicts that R is convex. For the
other direction of the comment, assume that R is not convex yet for
any u,v∈R we have γ ⊂R where γ is any shortest path connecting u
and v. In this case we can find two sides of ∂R that have a negative
turn since R is concave. Let the two sides be si and si+1 and the
point of turn is w. Consider the vertices on ∂R immediately before
and after w. They are located on si and si+1, respectively. Between
these vertices there is a shortest path connecting them but is outside
R, again a contradiction.

Given the comment, it is straightforward to show that Rα is unique.
Assume there are two such minimal regions U 6= V . Then W =
U

⋂
V must be strictly smaller than U or V . Say W is strictly smaller

than U . Furthermore, since U and V are convex they both satisfy
the condition that for any vertices u,v ∈ R any shortest path con-
necting them is also in R. Consequently, W satisfies this condition
as well yet it is smaller than U . Thus U is not minimal which is a
contradiction.

By Equation 1 it is easy to show that every convex region in a reg-
ular mesh must form a rectangular grid of size d1 by d2. Conse-
quently Rα has to be a rectangular grid because it does not include
irregular interior vertices. Furthermore, v1 and v2 need to be lo-
cated at the opposing corners otherwise the rectangular grid is not
minimal. Because all vertices other then v1 and v2 are regular, two
adjacent sides of Rα become v1 and v2’s connecting separatrices of
length d1 and d2. All possible configurations of Rα are shown in
Figure 13b.



1.3 Proof for Theorem 7.1

Figure 4: A v3 vertex in blue and the three separatrices in green.
The separatrices divide the neighborhood of the irregular vertex
into three sectors. Each boundary segment (red) intersects exactly
two sectors, and is distance increasing in one sector and distance
decreasing in the other.

Definition 1.1 Given a mesh M and an irregular vertex v0 with a
valence of l(v0), a valid neighborhood R of v0 is a non-degenerate
region in M whose boundary is a regular loop and whose only ir-
regular vertex is v0.

The separatrices of v0 divide any of its valid neighborhood into
l(v0) sectors, with each sector bounded by two separatrices and
∂R. A straight path inside a valid neighborhood R can intersect
exactly two sectors, resulting in two pure segments, i.e., a segment
contained entirely inside one sector. Along each segment the graph
distance of the vertices on the segment to the irregular vertex v0
will monotonically increase or decrease along the segment (see Fig-
ure 4). One of the two segments must be distance increasing while
the other is a distance decreasing. The length of the straight path is
the number of edges on the path, and the distance of the path to the
irregular singularity v0 is the minimal graph distance of any vertex
on the segment to v0.

The following lemmas are needed to prove Theorem 7.1.

Lemma 1.2 Consider a convex region R that contains only one ir-
regular vertex v0 in its interior. The boundary of R must contain
l(v0) turns, each of which with an angle of turn of π

2 .

Proof Since R is simply connected and there is only one irregular
vertex inside R, from Equation 1 we have ∑v∈∂R(m(v)−2) = l(v0).
Given that R is convex, for any turn point on ∂R we have m(v) = 3.
Consequently, there can be exactly l(v0) turns along ∂R.

Lemma 1.3 Consider a convex region R that contains only one ir-
regular vertex v0 in its interior. Let bi be the length of segment si
and di the graph distance of si to v0. Then we have bi = di−1+di+1.

Proof From previous discussion we know that each boundary seg-
ment intersects two sectors, and each sector intersects two sides of
∂R. Let qi, j = si

⋂
S j where S j is the j-th sector. Assume qi, j 6= /0

if and only if j = j or j = i+ 1. Since S j intersects si−1 and si,
we have length(qi, j) = di−1 and length(qi−1, j) = di (see diagram).
Consequently, bi = length(qi, j)+ length(qi, j+1)= di−1+di+1.

We now present the proof for Theorem 7.1.

Proof Given Lemmas 1.2 and 1.3, we know a convex region R
satisfying the condition of this theorem will have l(v0) sides and
the length and distance of these sides satisfy

bi = di−1 +di+1 (4)

for all 0 ≤ i < l(v0). Assume that we have requadrangulated the
interior of region R such that there is a unique irregular vertex v′0.
Let d′i be distance of v′0 to side si. Then we have

bi = d′i−1 +d′i+1 (5)

In other words, the configurations of the interior of R before and
after the requadrangulation satisfy the same system of equations
Ad = b where d = [d1, ...,dl(v0)], b = [b1, ...,bl(v0)], and A = (ai j)
in which ai j = 0 except ai,i+1 = ai+1,i = 1. Notice that A has a
non-zero determinant when l(v0) mod 4 6= 0, which means there
is a unique solution for di. Consequently, the requadrangulations
before and after represent the same configuration and the irregular
vertex cannot be moved. If the valence is a multiple of four the
determinant of A is 0 and multiple solutions exist.

In fact, the requirement in the theorem that the enclosing polygon is
convex can be relaxed. Basically, if the polygon can be enlarged to
a convex one without including any additional irregular vertex, then
it is impossible to move the irregular vertex in the original polygon
which may be concave. While this theorem only states that moving
a single irregular vertex within a convex region is impossible, we
have not found a case where we can move an irregular vertex in
practice.



(a) (b) (c) (d) (e) (f)

Figure 5: Laplacian smoothing and pulling schemes. (a) to (c) Apply Laplacian smoothing to improve the positions of vertices adjacent to a
3−5 pair movement. (d) to (f) An area with a large difference to the original mesh (red) is pulled iteratively to the original mesh.

Figure 6: From left to right: the first two images show two views of a tower model with a large number of irregular vertices and small
mesh faces due to the intersection computation in a professional modeling package. The second two views show how we reduced several
singularities and improved the mesh layout. The last image is a rendered model. This example is a motivation for future work where we would
like to investigate editing operations to control mesh lines.
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Figure 7: Using our editing framework to improve a remeshed fandisk model from Mixed-Integer Quadrangulation [Bommes et al. 2009].
(left) Original mesh with an ill-shaped upper part. The mis-aligned v3 vertex pair distort the structure. (1) Geometry improved by adjusting
the positions of adjacent vertices. However, bad shaped faces emerge because the local connectivity does not match the desired shape. (2) to
(3) The misplaced v3 vertex is moved to its proper location by an edge flip. (4) to (8) the created 3−5 pair is moved to its proper location.
(right) Mesh improved by our editing framework. The upper part now has a nice structure with aligned irregular vertices and consistent face
strips.



Figure 8: Editing a mesh to align separatrices.


