EUROGRAPHICS 2011 / M. Chen and O. Deussen
(Guest Editors)

Volume 30 (2011), Number 2

Interactive Modeling of City Layouts using Layers of
Procedural Content

M. Lippl, D. Scherzer!, P. Wonka® and M. Wimmer!

Vienna University of Technology Arizona State University

Abstract

In this paper, we present new solutions for the interactive modeling of city layouts that combine the power of proce-
dural modeling with the flexibility of manual modeling. Procedural modeling enables us to quickly generate large
city layouts, while manual modeling allows us to hand-craft every aspect of a city. We introduce transformation
and merging operators for both topology preserving and topology changing transformations based on graph cuts.
In combination with a layering system, this allows intuitive manipulation of urban layouts using operations such
as drag and drop, translation, rotation etc. In contrast to previous work, these operations always generate valid,
i.e., intersection-free layouts. Furthermore, we introduce anchored assignments to make sure that modifications

are persistent even if the whole urban layout is regenerated.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Procedural city modeling is a rapidly evolving field in com-
puter graphics, with applications to urban planning, design
reviews, game design and others. Procedural techniques are
often based on grammars and parameters, which makes it
difficult to achieve exactly the desired outputs. Recent work
has introduced a new paradigm for the procedural modeling
of building facades [LWWO08]: interactive modeling with di-
rect control, allowing direct modifications of the generated
output without having to go back to the original procedural
specification. However, for the urban layouting step, there
are no such solutions. This is mainly because city layouts
do not offer a regular structure as facades do, but can be
topologically very complex. City layouts are responsible for
the overall aspect of an urban model and for controlling all
the other parts of a procedural city generation system, and
therefore it is paramount that the user has a powerful control
mechanism for this step.

Current urban layouting systems [WMWGO09, Pro10] of-
fer only limited editing possibilities once an urban layout
has been produced procedurally. While it is possible to drag
individual nodes in the street graph, the resulting urban lay-
out has intersections and is therefore not valid anymore (see
Figure 1). To make the layout valid requires expensive man-
ual operations like filling the gaps, reconnecting the street

(© 2010 The Author(s)

Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

graph when an element is deleted, making space for new ele-
ments, etc. Even worse, if the underlying procedural descrip-
tion changes, the whole layout has to be regenerated from
scratch, losing all manual customizations since they are not
persistent. More complex operations like consistently merg-
ing different layouts, possibly from different sources (proce-
dural or manual), are practically impossible.

ey

rrr— =

Figure 1: This figure illustrates how, using traditional ur-
ban layouting tools, a simple translation transforms a valid
layout (left) into an invalid one with intersections (right).

In this paper we present an interactive city modeling sys-
tem that is built on persistent editing operations that remain
in the space of valid urban layouts. The system combines
procedural edits, local manual edits, and higher level man-
uval edits. It is designed to meet the following research chal-
lenges:

Direct control and editing of procedural layouts. 1deally,

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

to modify an urban layout, designers would like to use sim-
ple and intuitive editing operations, like soft selection of ele-
ments, drag and drop, insertion and deletion of elements etc.
Most importantly, these operations should again produce a
valid urban layout. They need to handle changes in topol-
0gy, and should be designed to have local influence only. In
particular, they should be reversible, so that the original ap-
pearance of a city part is restored when an inserted element
gets dragged to another location (this is also called circular
editing). An example of such an operation supported by our
method is shown in Figure 2.

Figure 2: The orange street is moved and rotated. The
underlying parcels update accordingly. When the street is
moved or rotated back, the original layout is regained again,
providing circular editing capabilities.

Combining urban layouts. One of the most frequent prob-
lems that occur in urban modeling is to consistently merge
urban layouts at different levels. Examples include inserting
a (manually modeled) parking lot, a park, a whole street, a
whole block (like a shopping mall) or even a whole quarter,
into an existing city layout. Consistent merging capabilities
allow designers to reuse components or to model compo-
nents separately. There is currently no solution to merge ur-
ban layouts automatically. One such merge process possible
with our system is shown in Figure 3.

Figure 3: Content from a different source, highlighted in or-
ange, is inserted into the layout and moved, scaled and ro-
tated. Full circular editing is supported.

Persistence. Changes applied by the user should survive
local and global editing operations. Urban layouting drives
the whole city generation, like parameter assignments, dis-
tribution of landmarks etc., so these assignments need to sur-
vive modifications of the urban layout. Modifications to an
already customized urban layout belong to the most expen-
sive design operations for example in level design.

Main contributions. In order to meet the research chal-
lenges previously listed, this paper introduces a new set of

editing operations that transform one valid urban layout into
another valid one. Full circular editing capabilities like drag
and drop, insertion, deletion etc., with arbitrary topological
changes are provided. The operations are based on the com-
bination of a layering system in the spirit of image manip-
ulation programs, and a novel merging algorithm that con-
sistently merges urban layouts based on graph cuts. We also
extend the locator concept introduced in previous work to
achieve persistent anchored assignments, linked to elements
in an urban layout, allowing modifications to survive global
procedural modifications. These methods are implemented
in a city modeling system that combines the power and con-
venience of procedural street generation with the flexibility
and direct artistic control of a traditional content creation
system.

2. Previous Work

This paper addresses the editing of city layouts, includ-
ing street networks, parcels, and parameter distributions
for building generation. In a procedural production envi-
ronment, our work can be complemented by other com-
ponents for: 1) the generation of three-dimensional street
geometry [Zim07], 2) the procedural modeling of build-
ings [MWH*06], 3) the editing of procedural building mod-
els [LWWOS], and 4) plant generation [PL91]. A more ex-
tensive review of procedural urban modeling methods can be
found in a recent survey paper by Vanegas et al. [VAW*10].

While there is substantial work on the procedural gener-
ation of city layouts [PM01, KM07, CEW™*08, WMWG09,
AVBO08, VABW09], the work on editing procedural layouts
has only started recently, so that no competing solutions to
the problems explained in the introduction exist in the litera-
ture. However, there are some promising initial ideas for the
editing of urban layouts. We can categorize these strategies
into three categories:

Direct low-level editing. The street graph network gener-
ated by a procedural model can be edited using traditional
interactive editing operations, such as moving vertices (inter-
sections), adding edges (street segments), and deleting edges
of the graph. These operations were used by most proce-
dural systems starting from [PMO1], and are commercially
available in Procedural’s CityEngine [Pro10]. The important
unanswered problem is how to preserve local edits after a
change to the procedural model is made and how to ensure
that the urban layout remains valid.

Global procedural regeneration. The most common
operation in procedural models is to change parameters
of the procedural model and then regenerate the com-
plete model. Examples of this type of operation are mov-
ing city centers [PMO1], changing the underlying tensor
field [CEW*08], changing simulation parameters during
an urban simulation [WMWGO09], and changing population

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

density values or job locations [VABW09]. While these op-
erations may be applied only locally, the global procedural
regeneration results in (potentially drastic) global changes,
even in parts of the model that are distant from the local
edit of the parameters. These global changes are difficult to
anticipate and control for a designer due to a lack of direct
control, and prevent any form of direct control mechanisms
such as modifying individual streets or lots.

Local procedural regeneration. Another editing opera-
tion is to select a part of the model, delete it, and regen-
erate the deleted part [CEW™*08, AVB0S8]. Similarly, Kelly
and McCabe [KMO7] proposed a mixture of interactive
and procedural techniques: Major roads are created man-
ually, while the minor roads enclosed by main roads are
created procedurally. The capability of local regeneration
is an attribute of the procedural model, and also other re-
cent papers can be set up to constrain modifications to an
area [WMWGO09, VABW09]. Local procedural regeneration
shares some drawbacks of direct low-level editing and global
procedural regeneration: global changes destroy local edits,
and even local procedural regeneration can be difficult to
control.

Our work is also inspired by Lipp et al. [LWWO08],
who introduced several methods connected to editing
procedural models in the context of facade modeling.
Further, we were inspired by editing operations on
graphs (e.g. [ABVA08, ZHW*06]) or man-made objects
(e.g. [CLDD09, GSMCO09]) through optimization. We
share the goal of enabling editing on graphs from these pa-
pers, but the challenges posed by procedural models require
a different methodology. In particular, optimization strate-
gies often lead to global changes that are difficult to control.

Layered procedural modeling. Outside the context of city
editing, a layer-based procedural editing method that targets
single objects and supports triangle meshes was introduced
by Schmidt and Singh [SS08]. In contrast to this, we target
city-wide modeling and support three semantically different
categories (streets, parcels and assignments) for each layer.

Graphcut. In image processing, graphcut [FF62] can be
used to merge images [KSE*03]. Zhou et. al [ZHW*06]
showed how to use graph cuts to merge overlapping mesh
regions in the context of geometric texture synthesis. In con-
trast to our work, they use multiple local graph cuts in over-
lapping regions, while we use a global graph cut on the
whole city layout.

3. Transformations of Urban Layouts

The main problem to solve in a city modeling system is how
to transform a valid urban layout into another one, as illus-
trated in Figure 1. For this we introduce three basic transfor-
mation operators and show how they can express most direct
urban layout editing operations.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

3.1. Definition of Urban Layouts

An urban layout U consists of a street network and parcels,
as shown in Figure 4. The street network is given as an undi-
rected planar graph G = (V,E) with nodes V and edges E.
We also refer to the nodes as crossings and the edges as
streets (note that for simplicity we do not distinguish be-
tween street segments and streets). A parcel p € P is a pos-
sibly concave, simple polygon with at least 3 vertices. When
referring to either a street, a crossing or a parcel we use the
term element.

quarter
block
/0-‘ enclosed parcel
major street free parcel
minor streetw I

Figure 4: The basic building blocks for urban layouts.

A face of an embedded planar graph is a cycle that sur-
rounds a region that contains no edge. We call the faces of
the planar graph G the blocks B of an urban layout. The faces
obtained when ignoring all minor streets are called quarters.

Street network and parcels are connected through a binary
ownership relation O C P x B between parcels and blocks:
Every parcel p that is completely inside a block b is owned
by this block, and (p,b) € O. A parcel is owned by at most
one block. Parcels without an owner are called free parcels,
while the others are called enclosed parcels. Given an urban
layout, O can be calculated by first finding all blocks and
then performing containment tests of all parcels with those
blocks.

Crossings, streets and parcels can have an arbitrary
amount of key-value pairs attached, we refer to them as
tags. The tags of every street must at least contain the key
streetType with the value of either minor ormajor to
discern between minor and major streets (other street types
like highway would also be possible).

The definition of urban layouts so far does not ensure that
such layouts make sense. It allows streets intersecting with-
out crossings, parcels intersecting streets etc. In order to re-
strict editing operations to “useful” urban layouts, we define
an urban layout U as being valid if (1) there are no intersec-
tions between streets and (2) parcels do not intersect streets
or other parcels. We denote such a layout with U.

In the following, we define three operations on valid urban
layouts U, i.e., the result will again be a valid urban layout:
The non-topological transform 7', a flexible merge operation
My and a hard merge operator M. In Section 4 we will then
describe how most direct editing operations can be expressed
using T', My, M), and a layering system.

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

3.2. Non-Topological Transform

Many editing operations consist of small changes to an ex-
isting layout. For example, the user drags one node, denoted
v, in the street graph by a small amount, represented by the
affine transformation A. As a small transformation we define
one that does not change the topology of the street graph
(i.e., the dragged street does not intersect a new street). For
such small transformations, the user expects the layout to
remain valid (i.e., the parcels in adjacent blocks move with
the changed street), and that these changes have as few side
effects as possible.

Therefore we introduce the non-topological transform
T(U,A,W), where A is an affine transformation and W con-
tains a weight wy € [0, 1] for every node in v € U. In the pre-
viously mentioned example of a dragged node v, A would
be a translation and the weights would be 1 for v and O for
the other nodes. 7 (U, A, W) ensures that after applying A the
layout is still valid, and works as follows:

(1) Every node v € V is transformed using vi = (Av)w, +
v(1.0 — wy). This creates a potentially invalid layout Uj. (2)
We test U; for street to street intersections, to ensure that
there are no topological changes. If there are intersections,
T(U,A,W) simply returns the original layout U, essentially
ignoring the transformation A. (3) If there are no street to
street intersections, we modify the parcels in U; to ensure
there are no street to parcel intersections. This creates a valid
layout U, which is then returned. Note that concurrently to
our work, the newest release of the commercial Cityengine
[Pro10] features some kind of automatic parcel updating, but
no details on the implementation have been published. Our
method of updating the parcels has several steps:

Figure 5: The orange street was moved. Left: Smooth trans-
formation of parcels, exhibiting some distortions. Right: Lo-
cal parcel regeneration.

Finding affected parcels. All parcels contained in blocks
adjacent to transformed streets need to be updated. The al-
gorithm goes through all blocks and checks whether any of
the vertices v contained in the cycle defining the block has a
non-zero weight wy. In turn, all affected parcels contained in
those blocks are found using the parcel ownership relation
0. We denote blocks before applying the transformation A
as b and after applying A as by.

Parcel update. It is desirable to update parcels in a
“smooth” way. However, larger deformations require adding

or removing parcels. We therefore provide two mechanisms
for parcel updates: a smooth transform, which geometrically
distorts the parcels to fit the new block, and local regenera-
tion, which procedurally recreates the parcels in the block.
The differences are shown in Figure 5. We decide on a per-
block basis which mechanism to employ: When either the
area of the corresponding block or the angles enclosed be-
tween connected block edges change more than user-defined
thresholds, the parcels of this block are regenerated, other-
wise they are transformed smoothly.

Smooth transform. We first calculate the mean value coor-
dinates [HF06] of every vertex of every affected parcel with
respect to its untransformed owner block b. Using those co-
ordinates, we recalculate all vertex positions with respect to
the transformed block b. This method retains the original
parcel layout, but may lead to distortions.

Local regeneration. First, all parcels originally belonging
to b are deleted. The new parcel boundary is obtained by
shrinking by in order to accommodate for the distance of
the parcels to the road, using the skeleton-based algorithm
found in CGAL [Cac09]. Finally, parcels are generated pro-
cedurally in the new parcel boundary using the method in-
troduced by Weber et al. [WMWGO09].

3.3. Flexible Merging using Graphcut

Editing operations that change the topology of the street net-
work are much harder to realize than topology-preserving
ones. An important contribution of our paper is that we ex-
press these edits using sequences of operations that involve
merging two different urban layouts, as will be discussed in
Section 4. As a simple example, an arbitrary translation of
a street can be achieved by moving the street to a separate
layout, translate the street there, and merging the temporary
layout back. More involved operations require the merging
of whole city parts with user-defined priority maps.

As the heart of these operations, we introduce a flexible
binary merge operator M ¢ (Uq,U}) that is designed to merge
two urban layouts U, and Uy, producing a new valid urban
layout. Similar to alpha mattes in image processing, we al-
low the artist to flexibly assign priorities to elements in the
layouts.

Unlike image mattes, the priority cannot be incorporated
through a simple compositing operation of regular images.
Instead, in this section, we show a compositing algorithm on
urban layouts that is computed using graph cuts.

Let us first review graph cuts [FF62]: Consider a graph
G = (V,E), asource s € V, asink r € V and a capacity ce
associated with every edge e € E. Then an s-f graph cut par-
titions the vertices into two subsets S and 7 with s € S and
t € T. The cut-set includes all edges whose vertices are in
different partitions. The cut is minimal if the sum of all edge
capacities in the cut set is minimal.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

§ E“‘V
(a) / (b) A;ZE

©) "\? (d) 2‘3
A -

Figure 6: Application of graph cut to city layouts. (a) Creation of shared graph. Green: U, red: Uy, orange dots: intersections,
white/black dots represent nodes with constraint arcs to source/sink. (b) The blue line represents a possible cut. White and black
dots now represent the graph coloring. (c) Deletion of streets with nodes in a wrong partition. (d) Mending of holes by including

certain streets of Uq.

In image processing, a graph cut is often employed to
merge different images [KSE*03] when blending is not de-
sirable. The question now is how to cast the merging of two
urban layouts U, and U}, into a graph cut problem. The gen-
eral idea is to work on the street networks of the layouts, and
interpret the user priorities as capacities for the graph cut.

However, there is an additional challenge: In order to cal-
culate a graph cut, a single shared graph needs to be con-
structed from the two source layouts. In image processing,
this is straightforward, as the different images share a com-
mon pixel grid which defines a shared graph. There is no
obvious shared graph for the city layouts U, and U,,. Fur-
ther challenges are the creation of source and sink nodes,
and the reconnection of the two partitions. The whole proce-
dure works as follows, and is illustrated in Figure 6:

(1) Assign priorities. (2) Create a shared graph. (3) Au-
tomatically create a source and a sink, and create constraint
arcs to them. (4) Search for a minimal s-t cut. (5) Delete
streets that are in the wrong partition, and reconnect parti-
tions. (6) Update the corresponding parcels.

Assign priorities. Numerical priority assignments to nodes
are done by the artist using anchored assignments as shown
in Section 5, giving two separate priority distributions for
U, and Uj,. Each street samples the corresponding priority
distribution at its midpoint to obtain its capacity c. to be used
for the graph cut.

Creation of a Shared Graph. We need to bring U, and
Uy, into a common shared graph G in order to apply the
graph cut algorithm: First, every street from U, is copied
to the shared graph G. Then, an intersection test of every
street in U}, with the streets in G is performed (coincident
streets are deleted). A new crossing is created at every in-
tersection, and the streets involved in the intersection are
rerouted along these new crossings. We call these new cross-
ings intersection nodes N;. During insertions, we add a tag to
every street indicating its original layer. An example shared
graph is shown in Figure 6(a). To provide better numerical
stability, we remove all dead end streets.

Source and Sink Connections. We create a source node
corresponding to layer U,, and a sink node for layer Uy,

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

While source and sink do not have a position in space, it is
crucial which nodes are connected to source and sink: The
minimal cut should be located in the region where U, and
U}, overlap. If it were outside, large holes would occur after
step 5 in the algorithm (see grey lines in Figure 7 for such
cuts). Therefore, analogously to image merging [KSE*03],
the borders of the overlapping region need to be constrained
to belong to one of the partitions, forcing the cut to be in the
overlapping region. This is done by connecting each border
node to source or sink using a constraint arc, e.g., an edge
with a high capacity, which essentially forces the node to be
in the source or sink partition after the cut.

Figure 7: Visualization of constraint arcs: White and black
dots represent necessary constraint arcs to the source and
sink respectively. Left: Overlapping region. Right: Red
graph is completely contained in the green graph. Grey lines
are examples of cuts that we want to prevent.

This is simple for regular images, but for irregular street
networks we need to employ a more involved algorithm to
find border nodes: (1) Find potential border edges, which
connect one node a from U, or b from U}, with an intersec-
tion node from N;. All nodes a and b are potential border
nodes. (2) Remove all potential border nodes a that are in-
side a block of Uy, and all nodes b inside a block of U,. This
removes all nodes that can not be a border because they are
located inside a block of the other graph. (3) All remaining
nodes are border nodes. An example set of border nodes is
shown in Figure 7 (left).

There is one special case, shown in Figure 7 (right), that
this algorithm does not handle: When the graph U, is com-
pletely inside the graph U}, no border nodes will be found
for Ug. To still constrain some nodes of Uy, we use the fol-
lowing heuristic: The nodes of the edges with the n highest
priorities are constrained. We found n = 5 to be sufficient in
our test cases.

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

Computing minimal cut. The algorithm of Edmonds and
Karp [EK72] is used to solve for the maximum flow and
respectively the minimum cut. The result is a coloring of the
graph where white nodes correspond to the source partition
and black nodes to the sink partition, as shown in Figure
6(b).

Deletion of streets and reconnection. Now we delete all
streets whose nodes are not in the correct partitions. Uy
nodes should be in the white partition, U}, nodes in the black
one. This separates the graph as seen in Figure 6(c). In order
to mend the created holes, we first add back all streets of Uy,
that have at least one correct node, shown as orange lines in
Figure 6(d). This may still leave some holes. Therefore we
start a depth first search at each border street of U, and add
back all encountered U, streets until a street would enter a
block of Uy,. All streets added back this way are shown in
magenta in Figure 6(d).

Note that it would also be possible to alter this algorithm
by adding back streets of U, instead U,. The choice of
adding streets of U, or U}, to mend the holes essentially de-
termines if U, or U}, should be preferred near the cut. We
allow the artist to override the default behavior of using Ua
with a global setting.

Incorporation of parcels. To correctly handle parcels, the
following preparation steps are performed before the shared
graph is created: First, all free parcels are enclosed with
streets. This is necessary because the merging only considers
the streets. Then, all blocks By, Bj, and ownership relation-
ships Oy, Oy, of the layouts U, and U}, are calculated.

Using those relations, adding the parcels back after the
graph cut is done as follows: First we find all blocks of the
graph cut result. Then, for every block that contains only
streets of one layer, the parcels that were previously defined
for this block are found using the ownership relation and are
added. The parcels for all the other blocks are procedurally
regenerated.

3.4. Hard Topological Merge

One important special case of the flexible merge
M§(Uq,Up) occurs when the priorities of U, are much
higher than the priorities of U,: All the elements of U,
will be present in the result. This has two advantages: First,
having all the elements of U, retained may be the desired
result when an artist merges a small but important element
into a city. Second, we can significantly speed up this
special case, as we will show in this section.

Let us therefore introduce the hard topological merge op-
erator Mj,(Ug,U}), with the property that all elements of U,
are present in the result. The main idea to speed this up is
that we already know where the minimal graph cut should
be: All streets of U, that intersect the concave hull of any

connected component of U;, must be in the cut set. This en-
sures that the cut is just outside of Uj.

As we know where the cut should be, we do not need to
perform a graph cut. But there is another chance for improv-
ing performance: In the first step of the flexible merging, a
shared graph is created by intersecting every street of U,
with the streets of U,. However, as we know that no street
of U, should protrude into a concave hull of U, we can
simply intersect those concave hulls with Uy, reducing the
amount of intersection tests. This simplifies the algorithm to
the following:

(1) Insert all elements of Uy, into the result. (2) Find the
concave hulls of connected components. (3) Clip all ele-
ments of U, against the concave hulls, and insert the clipped
result. (4) Incorporate the parcels.

To make the clipping numerically stable, we insert streets
that do not enclose any block (shown in Figure 8) separately
using line intersections.

A

non-enclosing

[
streets DU

concave hulls
without dead ends

Figure 8: Streets are classified into hull and non-enclosing
streets for numerically stable clipping.

Finding the hulls and the non-enclosing streets can be
done using the block list B, and the ownership relation
Op. All streets that are not a border of any block are non-
enclosing streets. All streets that are a border of exactly one
non-empty block are part of a concave hull without dead-
ends. All concave hulls can now be found by using the block-
finding algorithm while ignoring all streets that are not part
of the concave hull.

4. Editing Operations Using Layers and Layout
Transformations

In this section we introduce our layering concept and explain
how most editing operations can be mapped to a combina-
tion of layers and the operators introduced above. All opera-
tions result in valid urban layouts.

Layering is well known in image processing tools, and
merging of layers is trivial in this domain. For urban layouts
this is more involved, therefore we use the operator M or
M;, described above for the merging of layers.

Layer definition. A layer L consists of one urban layout,
i.e., a street network and parcels. A scene can have a finite
number of layers (Ly,L,,...,L,). What is finally displayed,
exported, etc., in an interactive editing system is a merged

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

layer L,, which is iteratively defined using L, = L, and con-
tinues with Ly = My¢(L,—;,Lim),i = 1...n— 1, until all lay-
ers are included. This definition ensures that elements in lay-
ers with a higher number precede elements on lower layers.
If an artist wants to reduce the amount of layers, two layers
can be collapsed to one combined layer using M or Mj,.

4.1. Basic Editing Operations

Simple and soft selections. The basic editing workflow in-
volves selecting elements in an urban layout and transform-
ing them. Selections of elements are represented as a weight
€ [0,1] for every element. A user can select single elements
or a region using mouse clicks. This sets the weights for all
selected elements to 1 and the other ones to 0. We also pro-
vide a soft-selection tool: When the user clicks on a city part,
the weights of every city element are set according to the dis-
tance to the mouse position.

Geometric transformations. Affine transformations, de-
noted as A, like translation, rotation and scaling, can be ap-
plied to a selection. When the artist does not want topo-
logical changes to occur, this can be represented as a non-
topological transformation T (U,A, W) of an urban layout as
discussed in Section 3.2, where W represents the selection
weights.

Topological changes. If the artist wants to have topological
changes while still retaining cyclic editing capabilities, we
allow this using the following flexible and generic way: The
artist can delete the selected elements in L, and insert them
into a new layer L, and apply the transformations to Lj.
Now an arbitrary amount of cyclic editing operations can
be performed in L, as shown in Figure 2 and 3, without
modifying L, (except for the initial deletion of the selected
elements). Through the layering system, they will be merged
at the new position with the current layout, always giving a
valid urban layout as result.

—]

A7 A\ N/

IEZT 22

\

m

'

N

L
L
L
L

=

LS55 T/AN 2

Figure 9: Layering: An existing urban layout in layer Ly is
merged with a street on layer Ly and with a park on layer
Ly, resulting in the merged layer L.

0

Insertion and deletion. Inserting a new element (street,
parcel, ...) works by placing it on a new layer L,. Through
the definition of the layering system, L, will be automati-
cally merged with the existing layers to give a merged result
L (see Figure 9). Upon deletion, the selected elements are

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

simply removed from the urban layout. Since no new inter-
sections are created, the resulting layout is valid.

4.2. Further Examples of Direct Artistic Control Using
Layers and Merging

Persistent local changes. In procedural editing systems,
changing the input parameters to the procedural algorithm
usually causes a regeneration of parts of or the whole urban
layout. In order to protect local modifications to the urban
layout, the user can mark important elements with the key-
value pair protected = true. Now, before the regeneration
occurs, the system automatically copies all marked elements
into a new higher level layer. Then the urban layout in the
original layer is replaced with the newly generated one, and
the merging process ensures that the protected elements are
retained. Figure 10 shows an example of this process.

Figure 10: Left: The user marked the orange elements as
protected. Right: After a global layout change, the elements
are still preserved.

Merging assets. It does not matter if the urban layout in
a layer originates from a procedural creation algorithm or
was hand crafted by a designer. The layering system allows
merging content from different sources in a unified way. As
an additional benefit, a procedural algorithm does not need
to know anything about the layering system, and thus every
street generating algorithm can be employed.

Combining styles using flexible merging. When street
networks with different styles are defined in different lay-
ers, an assignment of priorities for the flexible merging can
be used to specify where a specific style should be used. An
example of this is shown in the accompanying video.

Tweaking in an advanced development stage. In the con-
text of computer games, moving gameplay-relevant urban
layout parts into a distinct layer allows moving them freely
around the city. This enables fine tuning during the whole
production process.

4.3. Artist Interaction

We will now explain how the introduced methods are actu-
ally presented to the artist in a graphical user interface, as
shown in Figure 11.

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

==y

<« layer
manager
interactive n
2D/3D view

g = . [tag editor

Figure 11: The user interface of our implementation.

A layer manager allows creation, arrangement and dele-
tion of layers. Using buttons, selected elements can be
copied or moved between layers. Importing of external as-
sets into layers as well as exporting of a merged result is
also supported.

In an interactive 2D/3D view, a real-time rendering of ei-
ther a single layer or the merged result is shown. A tool
bar provides standard selection and transformation opera-
tions like rotation, scale and translate. As a default, transfor-
mations on one layer are always non-topological. To ensure
this, and to maintain validity, transformations modifying the
topology of one layer are detected using intersection tests
and automatically undone. In order to perform a fopological
change, on a press of a button the current selection is moved
to a new layer. Transformations are then applied on the new
layer, and the merging ensures valid layouts. For every layer,
the user can specify if a flexible or hard merge should be per-
formed.

Finally, a tag editor allows direct key-value pair assign-
ments to selected objects. It is also used for the anchored
assignments introduced in the next section.

Advanced operations can also be performed with this user
interface: Merging of assets is achieved using the layer man-
ager, combining of styles using the layer manager and a pri-
ority assignment. To simplify persistent local changes, we
provide a shortcut that first marks all selected elements as
protected before a regenerated urban layout is imported.

5. Persistent Anchored Assignments

In a city modeling system, urban layouts can be refined by
assigning tags (key/value pairs) like building height to el-
ements in the layout. In previous work, this is either done
using global image maps [PMO1] or by directly modifying
tags of individual elements. However, when using our flexi-
ble editing operators, those methods would not be appropri-
ate: A global image map would not follow geometric trans-
formation, while direct assignments to elements would be
lost when the elements are deleted (for example caused by a
global regeneration), causing a persistence issue.

Therefore we introduce anchored assignments, which fol-
low geometric transformations and are persistent after ele-
ment deletions. An example is shown in Figure 13. In the

following sections we will first define them and then show
how they are used.

5.1. Definition of Anchored Assignments

An anchored assignment consists of tags, a target, a world
space position denoted as Pos, and an anchor.

Tags describe what key/value pairs to assign, and can rep-
resent properties like building height, type or style. They can
also point to specific 3d assets to be used, enabling the place-
ment of landmark buildings. Also priority assignments for
our flexible merge operator can be represented in tags.

The world space position is a simple vector representing
the global placement of the assignment in the city.

A target specifies to which elements the tags should be
assigned. It contains a list of element types that should be
affected, including minor/major streets, nodes, or parcels.
Further, it specifies if only the nearest element of given type
to Pos or a complete region centered at Pos should be af-
fected. For regions, it is also possible to specify a numerical
distribution, for example a radial falloff with respect to the
distance to Pos. This is especially useful to define priority
distributions for flexible merging.

An anchor describes how Pos should react to transforma-
tions of the layout. It contains a pointer to one specific el-
ement of the layout. When this element is transformed, the
same transformation is applied to Pos, essentially moving
the assignment relative to the element.

= //AN N\

e

Figure 13: Purple lines represent a color assignment an-
chored to the adjacent street, with a parcel as target. When
the orange street is moved, the anchored assignments stay
relative to the street, and apply to the nearest parcel.

5.2. Usage of anchored assignments

We will now show how to create anchored assignments, how
they maintain persistence, and how they are actually applied
to the layers.

Creation. For every layer, a user can add an arbitrary
amount of assignments. To add one assignment, we provide
a graphical assistant. Here, the user can input the key/value
pairs and specify the target properties. Then the user clicks
somewhere in the city to specify Pos. Finally, he clicks on a
specific element in the layer to set the anchor.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

Figure 12: Different editing stages for a city. From left to right: (1) The long street on the left, the park, the main city and the
city center on the right are on separate layers. (2) This is the result of moving the layers on top of each other. (3) Close-up of
the merged part. (4) The flexible merging operator was then used to incorporate a part from the street network layout of Rome.

Persistence. Every layer has a list of assignments, which
are stored separately from the urban layout. This ensures that
deletions of elements in the layout do not delete the assign-
ments, this way they are persistent. However, when an ele-
ment is deleted, we have to update every anchor that refer-
ences to this element. This is done by modifying the anchor
to point to the nearest element of the same type instead.

Application. The actual application of the assignments
to the elements is done during the layer merging process.
Recall that two layers are iteratively merged using L, =
My(Ly—i,Lm),i =1...n— 1. Now, every time before M is
called, we apply the assignments stored for layer L,,_; in the
following way:

For every assignment, (1) using the target specification,
we search for the elements € L,_; where the tags should
be applied, and add the tags to those elements. In case the
target specifies a region with a numerical distribution, the
tags are multiplied with those values before they are added
(of course multiplication is only performed when the values
are of numerical type). (2) In case the same key was already
defined in an element, our system keeps the previously spec-
ified value. This way assignments on higher levels precede
assignments on lower levels.

6. Results and Discussion

We have implemented our methods in a stand-alone C# ap-
plication. Urban layouts can be imported from and exported
to the CityEngine [Pro10]. To generate final city geometry,
the grammar system in the CityEngine is used, based on the
tags assigned to objects. In our case, the colors were used to
choose different building types. Figure 12 shows an example
urban layout with geometry created in the CityEngine.

Artist feedback. During the design of our interaction
methods, we consulted artists and programmers from a com-
puter game company on their ideas and needs for an urban
modeling tool. They noted that the lack of merging of hand-
crafted assets as well as the missing direct artistic control

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

was a major disadvantage in previous work. We conducted
an informal guided user session. The initial feedback is posi-
tive, especially the seamless integration of assets from multi-
ple sources using a layering system as well as flexible merg-
ing is intuitive from an artist’s point of view, and has promis-
ing potential to facilitate artist collaboration. They also ap-
preciated the predictability of M; when merging small city
parts.

Validity. Determining the validity of an urban layout is a
complex issue, because the definition of validity depends on
the application. For example, an urban planner may consider
a factory in a residential area as invalid, while a movie di-
rector could employ seemingly unexpected cities to increase
the dramatic effect. In urban planning, also higher level se-
mantics like symmetries, repetitions or context may be of
interest.

Our approach for validity definition is therefore a com-
promise trying to find the lowest common denominator for
different applications. We define validity based on intersec-
tions of elements in urban layouts. One advantage of this
low-level syntactical approach is that a validity test is simple
to implement. Further, an intersection-free layout should be
the basic requirement for most applications, making it intu-
itive for most users. The main disadvantage is that it is not
possible to automatically capture the previously mentioned
higher level semantics. Adding them would be an interesting
area for future work.

3D Terrains. In our current implementation, all operators
work on a two-dimensional plane. Cities with terrains repre-
sented as height fields have to be projected onto this plane
first. After the operators, the result can be projected back
onto the terrain. This has the disadvantage that steep roads
cannot be detected and removed using our operators. There-
fore it would be interesting future work to incorporate the
gradient of the terrain into our operators.

Performance. We achieve interactive frame rates of around
15fps (on an Intel Core2 Quad 6600) for moderately sized

M. Lipp & D. Scherzer & P. Wonka & M. Wimmer / Interactive Modeling of City Layouts using Layers of Procedural Content

cities of about 3,000 parcels and 560 streets on four layers,
when moving one layer and performing merging with M.
Using My, the frame rates are around 5fps. In our current
implementation, no spatial acceleration structures are em-
ployed for intersection calculations, therefore we think that
there is a high optimization potential.

Limitations. Our current implementation has no mecha-
nism to combine streets or crossings that are relatively near
to each other. This can result in very small parcels being
generated, which can cause overlaps when actual street ge-
ometry is generated. In future work this can probably be
solved by introducing a routine to combine nearby objects
after merging. Further, the minimal graph cut can sometimes
exhibit unintuitive and erratic changes. Especially when the
priorities of the two layers are very similarly small, layer
movements can cause the minimal cut to jump around a few
blocks. This can be observed in the accompanying video,
when the layer is moved over an important region in the
lower layer. In such a case, the hard merge can be more suit-
able.

7. Conclusion

This paper presents a city modeling system based on the con-
cept of valid urban layouts. We show that three basic oper-
ations, in combination with a layering system, can express
all important editing operations on urban layouts. The main
advantage of our method is that editing operations like drag-
ging, deletion and insertion, and merging of different layouts
from arbitrary sources (procedural or hand-crafted) always
produce a valid urban layout. This greatly reduces the cost
of editing procedural cities. In the future, we want to add an
error function to the flexible merging, with the goal of im-
proving the quality of the graph cut result. Also, we would
like to extend the system with convenient tools like merging
or snapping to nearby objects.

Acknowledgements. This research was supported by
the Austrian FIT-IT Visual Computing initiative, project
GAMEWORLD (no. 813387), and by the NSF, contract nos.
I1S 0915990, CCF 0643822, and IIS 0757623.

References

[ABVAO8] ALIAGA D. G., BENES B., VANEGAS C. A,
ANDRYSCO N.: Interactive reconfiguration of urban layouts.
IEEE Comput. Graph. Appl. 28, 3 (2008), 38-47. 3

[AVB08] ALIAGA D. G., VANEGAS C. A., BENES B.: Interac-
tive example-based urban layout synthesis. ACM Trans. Graph.
27 (2008), 160:1-160:10. 2, 3

[Cac09] CAccIOLA F.: 2D straight skeleton and polygon offset-
ting. In CGAL User and Ref. Manual, 3.5 ed. CGAL Editorial
Board, 2009. 4

[CEW*08] CHEN G., ESCH G., WONKA P., MULLER P.,
ZHANG E.: Interactive procedural street modeling. ACM Trans.
Graph. 27 (2008), 103:1-103:10. 2, 3

[CLDD09] CABRAL M., LEFEBVRE S., DACHSBACHER C.,
DRETTAKIS G.: Structure-preserving reshape for textured archi-
tectural scenes. Computer Graphics Forum 28, 2 (2009), 469—
480. 3

[EK72] EDMONDS J., KARP R.: Theoretical improvements in
algorithmic efficiency for network flow problems. J. ACM 19, 2
(1972), 248-264. 6

[FF62] FORD L., FULKERSON D.: Flows in Networks. Princeton
University Press, 1962. 3, 4

[GSMCO09] GAL R., SORKINE O., MITRA N. J., COHEN-OR
D.: iwires: an analyze-and-edit approach to shape manipulation.
ACM Trans. Graph. 28 (2009), 33:1-33:10. 3

[HF06] HORMANN K., FLOATER M. S.: Mean value coordinates
for arbitrary planar polygons. ACM Trans. Graph. 25, 4 (2006),
1424-1441. 4

[KMO7] KELLY G., MCCABE H.: Citygen: An interactive system
for procedural city generation. In Fifth International Conference
on Game Design and Technology (2007), pp. 8-16. 2, 3

[KSE*03] KWATRA V., SCHODL A., ESSAI. A., TURK G., Bo-
BICK A. F.: Graphcut textures: image and video synthesis using
graph cuts. ACM Trans. Graph. 22, 3 (2003), 277-286. 3, 5

[LWWO08] Lipp M., WONKA P., WIMMER M.: Interactive visual
editing of grammars for procedural architecture. ACM Trans.
Graph 27,3 (2008), 102:1-10. 1,2, 3

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
GooL L. V.: Procedural modeling of buildings. ACM Trans.
Graph. 25 (2006), 614-623. 2

[PL91] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorith-
mic Beauty of Plants. Springer Verlag, 1991. 2

[PMO1] PARISH Y. I. H., MULLER P.: Procedural modeling of
cities. In Proc. of ACM SIGGRAPH 2001 (2001), Fiume E., (Ed.),
ACM Press, pp. 301-308. 2, 8

[Prol0] PROCEDURAL INC.: Cityengine, www.procedural.com,
2010. 1,2,4,9

[SSO08] ScHMIDT R., SINGH K.: Sketch-based procedural sur-
face modeling and compositing using Surface Trees. Computer
Graphics Forum 27,2 (2008), 321-330. Proceedings of EG 2008.
3

[VABWO09] VANEGAS C. A., ALIAGA D. G., BENES B., WAD-
DELL P. A.: Interactive design of urban spaces using geometrical
and behavioral modeling. ACM Trans. Graph. 28 (2009), 111:1—
111:10. 2,3

[VAW*10] VANEGAS C., ALIAGA D., WONKA P., MULLER P.,
WADDELL P., WATSON B.: Modeling the appearance and be-
havior of urban spaces. Computer Graphics Forum 29, 1 (2010),
25-42.2

[WMWGO09] WEBER B., MULLER P., WONKA P., GROSS
M. H.: Interactive geometric simulation of 4d cities. Computer
Graphics Forum 28, 2 (2009), 481-492. 1, 2,3, 4

[ZHW*06] ZHouU K., HUANG X., WANG X., TONG Y., DES-
BRUN M., GUO B., SHUM H.: Mesh quilting for geometric tex-
ture synthesis. ACM Trans. Graph. 25 (2006), 690-697. 3

[Zim07] ZIMMERMANN M.: Procedural Construction of Streets.
Tech. rep., ETH, 2007. 2

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

