
Parallel Generation of Multiple L-Systems

Markus Lippa, Peter Wonkab, Michael Wimmera

aVienna University of Technology
bArizona State University

Abstract

This paper introduces a solution to compute L-systems on parallel architectures like GPUs and multi-core CPUs. Our
solution can split the derivation of the L-system as well as the interpretation and geometry generation into thousands
of threads running in parallel. We introduce a highly parallel algorithm for L-system evaluation that works on arbi-
trary L-systems, including parametric productions, context sensitive productions, stochastic production selection, and
productions with side effects. This algorithm is further extended to allow evaluation of multiple independent L-systems
in parallel. In contrast to previous work, we directly interpret the productions defined in plain-text, without requiring
any compilation or transformation step (e.g., into shaders). Our algorithm is efficient in the sense that it requires no
explicit inter-thread communication or atomic operations, and is thus completely lock free.

Keywords: L-systems, graphics hardware, parallel processing, real-time rendering

1. Introduction

Procedural modeling techniques to compute large and
detailed 3D models have become very popular in recent
years. This leads to the question of how to handle the
increasing memory requirements for such models. The
current trend is towards data amplification directly on
the GPU, for example tesselation of curved surfaces spec-
ified by a few control points. This results in low storage
costs and allows generating the complex model only when
needed (i.e., when it is visible), while also reducing mem-
ory transfer overheads. In the same vein, grammars can be
viewed not only as a modeling tool, but also as a method
for data amplification since a very short grammar descrip-
tion leads to a detailed model.

Figure 1: L-systems generated in real-time, at up to 198,000 modules
per millisecond: Hilbert 3D space-filling curve and 2D plant.

In this paper we investigate whether it is possible to
efficiently evaluate one of the most classical procedural

Email addresses: lipp@cg.tuwien.ac.at (Markus Lipp),
pwonka@gmail.com (Peter Wonka), wimmer@cg.tuwien.ac.at
(Michael Wimmer)

modeling primitives, L-systems, directly on parallel ar-
chitectures, exemplified by current GPUs and multi-core
CPUs. The main motivation is to enable interactive edit-
ing of large L-systems (examples are shown in Figure 1) by
designers, therefore it is important to speed up the compu-
tation of L-systems in order to achieve low response times.

Although L-systems are parallel rewriting systems,
derivation through rewriting leads to very uneven work-
loads. Furthermore, the interpretation of an L-system is an
inherently serial process. Thus, L-systems are not straight-
forwardly amenable to parallel implementation. Previ-
ous work has therefore focused on specialized types of L-
systems that do not allow side effects in productions, which
makes them very similar to scene graphs [3]. In contrast,
we deal directly with uneven workloads in L-system deriva-
tion, and we have identified two main sources of parallelism
in the interpretation of L-systems: (1) the associativity of
traversal in non-branching L-systems, and (2) the branch-
ing structure itself in branching L-systems.

The main contribution of this paper is a highly parallel
algorithm for L-system evaluation that

• works on arbitrary L-systems , including parametric
productions, context sensitive productions, stochas-
tic production selection, and productions with side
effects

• works directly on an input string and a plain-text
representation of the productions without requiring
any compilation or transformation step (e.g., into
shaders)

• is efficient in the sense that it requires no explicit
inter-thread communication or atomic operations,
and is thus completely lock free

Preprint submitted to Elsevier May 21, 2010

• parallelizes both within one L-system as well as
among a large number of L-systems

To our knowledge, this is the first L-system algorithm
that is highly parallel, i.e. utilizes thousands of threads
in an efficient manner. This is achieved by identifying
and exploiting the parallelism inherent in L-system deriva-
tion using parallel programming primitives like scanning
or work-queue management, and a novel algorithm to ex-
plicitly resolve the branching structure. We demonstrate
that our algorithm outperforms a well optimized single-
core CPU implementation on larger L-systems.

This paper is an extended version of [5], adding support
for multiple L-systems as described in Section 6.

Overview: First we will provide a background on L-
systems and parallel primitives in Section 2. An analysis
of the intrinsic parallelism of L-systems is provided in Sec-
tion 3. Then our system consisting of two major build-
ing blocks will be described: (1) The derivation step will
start with the axiom and generate a long string of modules
(Section 4). (2) The interpretation step takes the string
as input and generates the actual geometry (Section 5).
An extension to support multiple independent L-systems
in parallel is shown in Section 6.

1.1. Previous Work

General L-Systems: Prusinkiewicz and Linden-
mayer cover the basic L-system algorithm [9]. Multiple
extension to the basic approach were introduced [10, 11, 7].

Parallelizing L-Systems: Lacz and Hart showed
how to use manually written vertex and pixel shaders com-
bined with a render-to-texture loop to compute L-systems
[3]. This concept was later extended using automatically
generated geometry shaders [6]. Both methods require
a shader compilation step for the productions. Further
a transformation step of every production’s successor to
a set of successors is needed to allow independent par-
allel executions in a shader. For example, the produc-
tion L → aLf [+L]Lf [−L]L is transformed to the set
L → aL, af + L, afL, aff − L, aff − L, affL [3]. This
is only valid if the successor of L does not have any effect
on the traversal state, which is not generally the case.

An algorithm utilizing multiple processors (the results
show up to 8 CPUs) with distributed memory, commu-
nicating using the Message Passing Interface (MPI) was
introduced [14]. In their algorithm, the derivation of the
L-system is performed using two binary trees, a Growth-
State Tree (GST) and a Growth-Manner Tree (GMT). To
actually render the system, the GST is interpreted as a
scene graph. In order to get global scene-graph trans-
formation matrices needed for rendering in the individual
threads, the matrices are serially transfered from one pro-
cess to the next.

Parallel Computation in CUDA: In order to access
the parallel computing capabilities of GPUs we employ
the NVIDIA CUDA data-parallel programming framework
[2]. Recent work shows how to map computations having

a highly dynamic nature to CUDA. Most notably, algo-
rithms to efficiently implement workload balancing using a
compactation step were introduced in the context of KD-
trees [15], Reyes-style subdivision [8] and bounding vol-
ume hierarchies construction [4]. Generalized stream com-
paction was presented by Billeter et al. [1]. In the context
of tessellating parametric surfaces, scan operations were
used in order to scatter dynamically generated vertices to
a VBO [12]. We employ both work-load balancing and
vertex scattering in our work.

2. Background

Our work is based on L-systems and parallel processing
primitives. Both concepts will be explained in this section.

L-Systems. In our work, we use the formalism of paramet-
ric L-systems as introduced by Prusinkiewicz and Linden-
mayer [9]. Parametric L-systems operate on parametric
words, which are strings of modules consisting of letters
with associated actual parameters. An L-system consists
of a parametric word ω called the axiom, and a set of pro-
ductions describing how the current word is transformed.
A production consists of a letter possibly combined with
formal parameters, called the predecessor and a succes-
sor. The successor consists of a list of letters, where each
letter can have multiple arithmetic expressions containing
formal parameters. Formal parameters can be global or
local to one production rule. The real-valued actual pa-
rameters appearing in the words are calculated from the
arithmetic expressions of formal parameters. The prede-
cessor can also consist of several letters, in which case the
L-system is called context sensitive [9].

In the following example, F , A, and B are the letters
defining modules, gi are global parameters, l is a local
parameter, and the arrow separates the predecessor from
successor:

F (l)→ A(l ∗ g1)[B(l + g2)]

To actually generate geometry, two distinct phases are
performed: A derivation phase generating a string of mod-
ules, and an interpretation phase in which the string of
modules is interpreted in order to generate geometry.

Derivation: The derivation starts from the axiom.
For every module contained in the axiom, a matching pro-
duction is searched. A production matches a module m
if the letter of the predecessor matches the module let-
ter, and the number of actual parameters in the module
equals the number of formal parameters in the production.
We then apply the matching production to the module:
First, for every module in the successor, we calculate the
actual real-valued parameters from the arithmetic expres-
sion of the formal parameters. Then we rewrite the mod-
ule m with the modules of the successor. One iteration
consists in rewriting all modules in the string in parallel
using matching productions [9]. A user-defined amount of

2

iterations is performed in order to get the final string of
modules.

Interpretation: The interpretation is performed seri-
ally from the start of the string, performing modifications
of a turtle state based on predefined turtle commands asso-
ciated with specific letters [9]. The turtle state represents
the position and orientation of a virtual turtle. This state
can be represented with a 4x4 matrix. The turtle com-
mands associated to letters modify the turtle state, for
example ’F’ moves the turtle forward while drawing a line,
or ’+’ rotates the turtle. Most of these turtle commands
can also be expressed by a 4x4 matrix. A notable excep-
tion are the commands ’[’ and ’]’, which push and pop the
turtle state on a stack, allowing the creation of branching
(also called bracketed) L-systems [9].

Parallel Primitives. We extensively use the parallel scan
primitive in our work. Given an ordered set of values
[a0, a1, . . . , an] and an associative operator ◦ with the iden-
tity element I, an exclusive scan operation will result in
the ordered set [I, a0, a0 ◦a1, . . . , a0 ◦a1 ◦ . . .◦an−1] [13]. If
the operator is the addition, this results in a set of values
si with si =

∑i−1
j=0 aj . The main advantage of the scan

primitive is its capability to compute seemingly serial op-
erations very efficiently on highly parallel hardware, since
subsequences can be processed independently due to as-
sociativity. Unless noted otherwise, we always refer to an
exclusive scan on integral values using the addition oper-
ator when we use the term scan in our work.

3. Analysis of Parallelism in L-System

3.1. Derivation

As an L-system is by definition a module string rewrit-
ing system utilizing parallel module replacements, the do-
main of parallelization is obvious: We simply assign chunks
of the modules uniformly to multiple threads and perform
the rewriting in parallel. The rewritings themselves are in-
dependent and thus do not need inter-thread communica-
tion. However, the output strings need to be concatenated
again, which creates a dependency between the threads.
The major problem here is that the length of these strings
can vary greatly: for a chunk containing n modules, the
minimum expanded module amount is n. This case occurs
when no production can be applied and thus every module
is copied unmodified to the output. However, the maxi-
mum amount of modules is mn, when the production with
the maximum amount m of modules in the successor gets
applied to each module.

Therefore, a parallel implementation has to efficiently
cope with highly incoherent output module counts for
each chunk. Previous shader-based approaches rely on the
graphics pipeline to handle concatenation by load balanc-
ing (i.e. different output sizes of the geometry shader),
which is not ideal because it can lead to serialization, and
only works for special types of L-systems. In chapter 4 we

show a native parallel solution to this problem utilizing
the scan primitive.

3.2. Interpretation

The interpretation of a derived word is defined in a
serial manner: Starting with an initial turtle state from
the beginning of the module string, the position in the
module string is advanced one by one, while applying a
modification to the turtle state as defined by the letter of
the current module. Therefore, the turtle state of every
module string position is dependent on all previous turtle
states. While it may look like there is no parallelism to
exploit here, there are two inherent parallel concepts that
can be extracted, as shown next.

Associative Operations: As mentioned before, most
turtle commands and the turtle state can be represented
as 4x4 matrices, except the push and pop commands. Fur-
ther, as 4x4 matrix transformations can be combined, we
can represent the turtle state up to a specific module string
position using one matrix. The key point to parallelize the
interpretation is to exploit the associativity of those matrix
multiplications by accumulating matrices in each parallel
chunk locally and combining them in a separate pass using
a scan operation, as described in Section 5.1.

Inherent Branch Hierarchy: Since push and pop
commands cannot be represented as matrices, the matrix
approach cannot be applied for branching L-systems. For-
tunately, the push/pop commands create another type of
implicit parallelism that we can exploit: Every time a mod-
ule representing a push command is encountered, two in-
dependent interpretation branches are possible: the mod-
ule string directly following the push command, and the
module string following the corresponding pop command.
Thus we can split the work at this point into two threads,
as shown in Section 5.2.

3.3. Multiple L-Systems

Another possibility for parallelism is deriving and in-
terpreting multiple independent L-systems in parallel, for
example interpreting multiple trees in a forest. A trivial
approach to achieve this is to launch independent threads
for every L-system. However, there are two problems with
this approach: First, CUDA does not allow running dif-
ferent programs (also called kernels) in parallel. Every
thread has to use the same program with possibly differ-
ent input data. Therefore, in order to interpret different
L-Systems in parallel, we need one flexible program that is
able to handle all input L-systems. Second, we also want
to achieve work-load balancing between the different L-
system threads, so there has to be some communication
between them. In Section 6 we show how to solve those
problems in a data-parallel fashion.

4. Parallel Derivation

First we show how productions and module strings are
efficiently represented on the GPU. Then we introduce the

3

algorithm to perform one iteration of the derivation.

4.1. Efficient L-system Representations

4 2 A (2 * 0) [B (2 + 1)]

F l  Al∗g1[B lg2]

row 38
ASCII 'F'
nr. of
successor
modules

nr. of actual
parameters
in successor

production header
arithmetic expression of

formal parameters

unique
parameter ID

module letters

Figure 2: An example production of a parametric L-system packed
in a texture.

In order to allow fast and efficient access to the produc-
tions, we store them in a 2D texture in the GPU version.
The global parameters are also stored in a texture. For
the multi-core CPU version we use a 2D array.

The successor is stored in the row indexed by the
ASCII-value of the predecessor’s letter. To resolve col-
lisions of two productions that have the same predecessor
letter, we create collision chains similar to hash tables.

We perform two simple optimizations: First, we count
the number of modules and parameters occurring in the
successor for later reference. Those values are stored in a
designated header area. Second, in order to allow O(1) pa-
rameter value lookup during the derivation, we translate
every parameter to a unique numerical ID. To differenti-
ate between local and global parameters, we define that
all IDs over a certain threshold lt identify local variables.
This process is visualized for parametric L-systems in Fig-
ure 2. In order to store stochastic or context sensitive
productions, we extend the header area accordingly, by
adding the production probability or respectively the left
and right context letters.

Representing the Module String: A module string
contains n module letters. As every module may have
an arbitrary amount of parameters assigned, we use an
additional array of size n containing indices to an array
of actual parameters. One advantage of this separation
is that we can simply ignore the parameter array when
we have an unparameterized L-system, thus removing the
overhead of parameter storage. Figure 3 visualizes one
module string.

F [- F]
0 -1 3 4 -1

1.2 3.8 0.1 1.2 0.9

module letter
param. index

actual module
parameters

Figure 3: A module string represents a specific state during deriva-
tion. We store it as an array of module letters, a parameter index
and the actual parameters.

4.2. Derivation

First, we prepare the axiom module string on the CPU
side. In the GPU version we then upload it to the GPU.
This step is extremely fast, as the axiom usually consists
of just a few modules. For the desired iteration amount,
we perform one iteration after the other on the GPU or the
multi-core CPU. One iteration of the derivation takes the
current module string as input and creates an expanded
output module string. Between the iterations we swap the
pointer to the input module string with the output module
string.

The method to compute one iteration in parallel con-
sists of three passes (or “kernels” of the parallel program-
ming language) (see Figure 4):

pass 1: count required number of
output module letters and parameters

pass 2: scan amount of required
module letters and parameters

F + F - [F - F + F - F] F [- F + F]

9 6 6 9 6 6 5
4 2 2 4 2 2 2

0 9 15 21 30 36 42
0 4 6 8 12 14 16

pass 3: perform module rewriting
and parameter calculation, scatter

letters:
param.:

letters:
param.:

Figure 4: Three passes are performed during each iteration, trans-
forming an input module string to an output module string. For
better readability, we show only the letters of the input modules,
and omit the parameters.

1. Count. We launch a kernel with n threads. m =
inputSize/n subsequent modules from the input module
string are assigned to each thread. Each thread visits all
m assigned modules, and fetches the amounts of required
output module letters and parameters from the header sec-
tion of the corresponding production. Those amounts are
accumulated for all assigned modules, and finally written
to an array in global memory.

2. Scan. We perform a sum-scan operation on this ar-
ray, in order to calculate offset positions for the scattering
of the result.

3. Rewrite. Again, m threads are launched, but this
time the module replacement and parameter calculation
is actually performed. This is done by fetching for each
assigned module the matching production. If a produc-
tion is context-sensitive, we also compare the left and right
module letters of a module with the letters stored in the
production header in order to determine if the production
is applicable. There is no problem in performing a context
search across chunk boundaries, as the whole input mod-
ule string is stored in global GPU memory, and is thus
visible to all threads. For bracketed context sensitive L-
systems the context search is more involved, as we need to

4

take the push and pop commands into account. Therefore,
for those systems, we perform a parallel hierarchy extrac-
tion step as explained in Section 5.2 before we start one
iteration. For stochastic productions, we determine a ran-
dom value for every applicable production, using a texture
containing random values indexed by the position in the
module string. This value is multiplied with the probabil-
ity stored in the rule header. We then choose the rule with
the highest result of the multiplication.

After having decided which production to use, we eval-
uate the parameters for every module in the production’s
successor, and insert the resulting successor modules into
the result module string. The parameter evaluation based
on the arithmetic expression of formal parameters is con-
ducted by a simple mathematical expression parser in the
kernel. When no production is defined for a module, we
simply copy it unmodified to the output. As we have the
offset values to index the module string, every thread can
write its resulting modules without interference from the
other threads.

Alternative Method: Our algorithm requires three
passes for each iteration. An alternative approach is to
implement the module string as a linked-list of modules,
which is modified with atomic operations. This requires
only one pass. The amount of atomic operations can
be reduced by using batched linked lists, where each el-
ement contains multiple modules. However, when we im-
plemented this alternative approach it turned out to be
considerably slower than the three-pass approach, proba-
bly caused by the implicit serializations occurring on con-
current atomic operations.

Possible Enhancement: Our algorithm does not use
shared memory between threads on the same multipro-
cessor for communication. Maybe applying the shared-
memory aware compaction model presented by Billeter et
al. [1] could further improve performance.

5. Parallel Interpretation

The result of a derivation is a module string. This
needs to be converted into a geometric representation.
There are two cases allowing two different parallel algo-
rithms: non-branching and branching L-systems.

5.1. Non-Branching Module Strings

As explained in Section 3, most modules can be repre-
sented as associative matrix transformations. We can ex-
ploit this efficiently to interpret non-branching L-systems
by interpreting chunks independently. We present a three
pass algorithm (see Figure 5):

1. Matrix accumulation The string is split into m
chunks, each chunk is assigned to an independent thread.
In each chunk, we combine the matrices corresponding to
the modules in the chunk, resulting in one local transfor-
mation matrix. Further, we count the amount of geometry
generated in the modules. Both values are stored in an
global array.

pass 1: calculate matrix for each chunk,
count number of required geometric objects

F + F - B + B - A F F F - F + C D F + F

2 0 0 3 1 1 1
matrices:

objects:

pass 3: calculate transform for each geometric
object, scatter objects to VBO using offsets

VBO

pass 2: (i) scan using matrix multiplications
provides global transformations for chunks
(ii) scan on object counts delivers VBO offsets

0 2 2 2 5 6 7
matrices:

objects:

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Figure 5: By exploiting the associativity of modules representable
as matrix operations, we can efficiently interpret non-branching L-
systems with this algorithm.

2. Matrix scan. A parallel scan operation is performed
on the matrices, using 4x4 matrix multiplication as the op-
erator. The resulting array contains matrices representing
a global transformation of the turtle state to the start of
each chunk. Additionally, a scan using integer additions
on the objects array is performed to calculate offsets for
the geometry to be created.

3. Geometry generation. Finally, to get the global po-
sitions of each geometry object, we again operate on m
chunks in parallel as in 1. and accumulate module ma-
trices. But this time we do not start with the identity
matrix but with the matrix determined during the scan.
Furthermore, every time we encounter a geometry genera-
tion module, we calculate the global position of the object
and insert it into a vertex buffer object (VBO), using the
offsets determined during the object scan.

The idea to use a scan to determine VBO offsets for
tessellating parametric surfaces was introduced by Schwarz
and Stamminger [12].

5.2. Branching Module Strings

For branching L-systems, parallelization is achieved by
exploiting the branch hierarchy. Whenever a push com-
mand opening a new branch is encountered, two indepen-
dent new work items are generated: one for the branch and
one for the remaining string following the corresponding
pop command. The main problem is to find the pop com-
mand in an efficient (i.e., parallel) way. This information
is also necessary for fast context search in bracketed con-
text sensitive systems. We therefore first present a novel
parallel algorithm to extract the hierarchy, and then show
how the work items can be efficiently managed.

5.2.1. Parallel Hierarchy Extraction

One critical observation is that when looking only at a
particular hierarchy depth in the branch hierarchy, corre-
sponding push/pop pairs follow each other directly. The

5

main idea is therefore to extract the push and pop com-
mands from the module string and sort their positions into
buckets according to their depths. Each bucket will then
contain the positions of corresponding push/pop pairs.
These can then be easily traversed to store with each push
the position of the corresponding pop.

pass 1: add 1 for each [, subtract 1 for each]

pass 2: a scan results in the depth at
the start of each chunck

F [[F] F [F] - [- F] []]

pass 3: count to get depth of each [and]
count how often each depth occurs

depth 0
depth 1

pass 4: performing a scan on each row
results in the bucket offsets

2 -1 1 0 0 0 -2

0 2 1 2 2 2 2

1 0 0 0 0 0 1
1 1 1 2 0 2 1

0 1 1 1 1 1 1
0 1 2 3 5 5 7

depth 0
depth 1

2 20
3 5 7 10 12 16 17 19

bucket 0
bucket 1
every two consecutive elements index a push/pop pair!

get
depth
of
each
[and]

get
offsets
to
bucket
sort
array

pass 5: store the positions of each [and] in a
bucket sort array using determined offsets

+ + +

Figure 6: This algorithm allows efficient and parallel searching for
corresponding push and pop pairs.

We introduce an efficient parallel algorithm based on
this idea that does not require direct communication be-
tween the blocks. We assume that we know the maximum
depth of dmax of the branching hierarchy and allocate a
two-dimensional bucket sort array with dmax rows. The
complete algorithm is visualized in Figure 6, and consists
of 5 passes operating on uniform chunks in parallel:

1. Chunk depth calculation. Starting at zero, we add 1
for every push, and subtract 1 for every pop occurring in a
chunk. This results in the depth of the chunk end relative
to the chunk start.

2. Depth scan. Performing a scan of those values re-
sults in the absolute depths of the start of each chunk.

3. Depth-based push/pop count. Now, by starting at
the calculated absolute depth of the chunk start, we can
determine the absolute depth of every push and pop oc-
curring in the chunk. We use this to to determine the
offsets for the bucket sort array by counting the amount
of push and pop commands mi in each depth j in the fol-
lowing way: cj =

∑
mi | di = j. We store the values for

cj | 0 < j < dmax in a global array.
4. Scan push/pop counts. The scan of the cj arrays

results in the bucket offsets oj each thread has to use in
order to allow conflict-free writing to buckets.

5. Write push/pop locations. Again, we visit every
push and pop command mi of every chunk. But this time
we write the absolute input module string position of the
module mi in the bucket di using the offset positions de-
termined previously. This ultimately leads to a bucket
sort array where every two consecutive elements in a row
correspond to a push and pop pair.

Analogously to the matrix interpretation algorithm, we
also calculate VBO offsets needed to scatter the geometry.
In our implementation, this process is combined with pass
1, and the VBO offsets are stored as a parameter of push
commands.

Memory Footprint: In order to reduce the mem-
ory footprint of the bucket sort array, we actually use a
one-dimensional array instead of two dimensions. This al-
lows us to pack the bucket arrays for the individual depths
without empty spaces tightly together. In the worst case,
when every module in the module string is a push or pop
module, the number of required memory elements is then
equal to the amount of modules. The offsets needed for
the 2D to 1D packing can simply be calculated form the
values obtained in iteration 4: cj + oj of the last chunk
equals the total amount of elements in a specific bucket.
When we perform a scan operation of those values for each
bucket we get the offsets to map the 2D bucket arrays into
a 1D array.

Integration into Module String: As a last step,
we use the information bucket arrays to write the position
of corresponding push and pop modules directly into the
module string to allow fast access during interpretation.
This is a simple parallel algorithm: We evenly assign the
1D bucket array to multiple threads. Every even element
in this array contains the position of a push command,
every odd element references a pop command. Thus we
need to write the position stored at every odd element as a
parameter to the push module referenced by the preceding
even element.

5.2.2. Work Queue-based Interpretation

As a result of the previously explained algorithm, every
push module has a parameter indexing the position of the
corresponding pop module, as well as a VBO offset param-
eter. With this information, we use a parallel work-queue
approach [15, 4, 8]:

First, we define a work item as a tuple (M, i) where M
is a 4x4 matrix representing the turtle state, and i is the ar-
ray index of a module in the module string. The interpre-
tation is started with the work-queue item (I, 0), where I
represents the identity matrix. Then, one thread starts se-
rially interpreting the module string using this work item.
When a push-module is encountered, the thread creates
two work items (M, i1) and (M, i2), where M is the cur-
rent turtle state, i1 is the current module index and i2
is the index of the corresponding pop command. Then
it puts (M, i1) on a thread local work stack and continues
with (M, i2). Directly continuing with (M, i2) is important

6

for good performance, as it induces a breadth-first traver-
sal (with respect to the branch hierarchy) which enables
faster spreading of the work items to multiple threads.

To actually distribute the work items between threads,
we use parallel work queue management [15] [4] [8] in the
following adapted way: When the local work stack of a
thread is full, we write the contained items to a work item
array in global memory. Each thread is assigned a unique
offset to this array. When all threads are finished, we cre-
ate a compact array of indices to the work item array using
scan operations. These indices are then evenly distributed
to threads, which execute the tasks as described previ-
ously. The process is iterated until no more work items
are left.

Alternative approach: In our approach each thread
has an independent local work item queue. During kernel
execution, no intra-block distribution of work is performed
using the shared memory. We have also implemented and
tested a version utilizing shared block local memory to
distribute threads. However, this method turned out to
be slower, probably the overhead of the multiple required
intra-block synchronization points is higher than the pos-
sible gain achieved through faster work distribution.

6. Multiple L-systems

The algorithms presented in the previous sections al-
ways work on one L-system at a time. However, it would
be beneficial to derive multiple L-systems with different
parameter sets in parallel at the same time. An example
application for this is designing procedural forests using
L-systems, as shown in Figure 7. Therefore we introduce
extensions to the previously introduced algorithms, allow-
ing the derivation of multiple L-systems in parallel while
still retaining work-load balancing between threads.

Figure 7: Here multiple different L-systems with unique parameters
are shown. The derivation and interpretation can still be performed
interactively.

6.1. Representation of Multiple L-systems

For every L-system Li with the unique identifier i, we
need to define a unique set of productions, global parame-

ters and an initial turtle state Ti. In Section 4.1 we showed
how one L-system production and global parameter set is
stored in a texture. In order to store multiple L-systems,
a unique offset Oi into this texture is assigned to every
L-system. The offsets can be trivially calculated by sum-
ming the amounts of productions and parameters of every
L-system, and ensuring that the values stored in the tex-
ture do not overlap.

In order to access this representation during derivation,
a lookup table from Li to Oi and Ti is created and stored
in global memory.

6.2. Derivation of Multiple L-systems

Before the derivation algorithm is started, we connect
the axioms of every L-system to one combined axiom. At
the start of every axiom a delimiter symbol (we have ar-
bitrarily chosen ‘M’) is inserted. In order to keep track
of which letter belongs to which L-system during deriva-
tion, the following algorithm is performed before every
derivation iteration: First we assign the letters uniformly
to threads. Then every thread counts the amount of de-
limiter symbols in its assigned chunk. In a second pass,
an additive scan is performed on those values, resulting in
the L-system index of the first letter for each chunk. This
algorithm is outlined in Figure 8.

pass 1: count delimiters 'M'

pass 2: scan yields L-system
index at chunk start

M A - [B] M A + F M A - [B] MC D E

1 0 1 1 0 1 0

0 1 1 2 2 2 3

Start derivation and use offsets
during texture fetches

delimiters:

L-system
index:

delimiters

Figure 8: In order to determine which L-system a letter belongs to,
this algorithm is performed before every derivation iteration.

Afterwards the derivation is performed. Every time a
rule or parameter needs to be fetched, we determine the
texture offset from the look up table using the L-system
index. When a delimiter symbol is encountered, the index
is increased by one. In the last pass of the derivation, we
also write the positions of the delimiter symbols in the
module string to a global array.

Different Iteration Amounts:. In order to support differ-
ent numbers of iterations for the L-systems, the number
of iterations to be performed is also stored in the look up
table. This value is compared with the current iteration
number during the derivation. When it is higher, no rule
replacement is performed for this L-system.

7

6.3. Interpretation of Multiple L-systems

For non-branching L-systems, the algorithm in Section
5.1 needs to be modified. Instead of a scan of all matrices,
a segmented scan of the matrices needs to be performed.
The segments are defined by the delimiter symbols. The
matrix of the first letter after a delimiter symbol is set to
the initial turtle state stored in the lookup table.

As we know the string positions of each delimiter sym-
bol after the derivation, the adaptation of the branch-
ing interpretation algorithm described in Section 5.2.2 is
straightforward. We simply create a work item for every
delimiter symbol. In every work item the L-system index
is stored, and the turtle state is set to the one in the look
up table. Then the interpretation algorithm is performed
as described in Section 5.2.2.

7. Results

We implemented our parallel algorithms for GPUs
utilizing CUDA and for multi-core CPUs using POSIX

threads. In CUDA, up to 1920 threads are utilized (60
blocks of 32 threads), the multi-core CPU version uses
4 threads. We compare those implementations against a
highly optimized single-core CPU version, created with the
help of performance profilers to detect and remove bot-
tlenecks. This version has the advantage that no kernel
or thread launch overheads occur, and that no scan or
multi-pass operations are necessary. The main low-level
optimizations include the complete avoidance of advanced
C++ features like virtual functions and dynamic memory
allocations during runtime. Those optimizations resulted
in a speedup of multiple orders of magnitude compared to
our initial single-core CPU implementation. The test plat-
form was an Intel Core 2 Quad Q6600 2.4GHZ PC with a
Geforce GTX 280 graphics card.

L-system b
ra

ck
et

ed

p
ar

am
et

ri
c

st
o
ch

as
ti

c

co
n
te

x
t

se
n

s.

Hilbert 3D, pg. 20
Koch curve, pg. 10 (d)
row of trees, pg. 48 X
2D plant, pg. 25 (c) X
3D tree, pg. 60 (b) X X
plant stochastic, pg. 28 X X
p. ctx. sens., pg. 35 (b) X X

Table 1: Property matrix of the L-systems shown in our results. The
page numbers refer to the L-system definitions by Prusinkiewicz and
Lindenmayer [9].

Test Scenes: We used seven test scenes to demon-
strate several aspects of our system. In order to ensure
repeatability and comparability of our results, all our L-
system productions are directly taken from Prusinkiewicz

and Lindenmayer [9] for our performance measurements.
In Table 1 we classify the test scenes according to the
properties of the used production set.

Rendering: Our implementation creates a VBO con-
taining lines. For our figures we use a geometry shader
during rendering, creating cylinders from the lines. All
our performance measurements do not contain the render-
ing times, as the rendering times are the same both for
the CUDA and the CPU versions. Neither do the mea-
surements contain the CPU-GPU memory transfer times
required by the CPU versions, which we measured in the
range from 20–40ms, making the CPU versions very hard
to use in a real-time rendering setting.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200
400
600
800

1000
1200
1400
1600

specific derivation iterationm
od

ul
es

 g
en

. p
er

 m
ic

ro
se

co
nd Koch curve

CUDA
4 cores
1 core

row of trees
CUDA
4 cores
1 core

3d tree
CUDA
4 cores
1 core

Figure 9: Scalability analysis of the derivation step. For every itera-
tion, we calculate the number of modules generated per microsecond.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

nr. of derivation iterations performed prior to interp.m
od

ul
es

 in
t.

pe
r m

ic
ro

se
co

nd

Koch curve
CUDA
4 cores
1 core

row of
trees
CUDA
4 cores
1 core

3d tree
CUDA
4 cores
1 core

Figure 10: Scalabilty analysis of the interpretation step. We per-
formed a specific amount of derivation steps before the interpretation
was performed.

Scalability: We evaluated how our derivation and in-
terpretation scale with the number of iterations. For all
our test scenes, we measured how long one specific itera-
tion i of the derivation takes, and calculated the number
of modules generated per microsecond during each itera-
tion i. The results for three L-systems are shown in Fig-
ure 9. For the interpretation, a specific amount of deriva-
tion iterations was performed prior to the interpretation,
the interpretation time was measured, and the amount
of modules interpreted per microsecond was calculated.
The results are shown in Figure 10. For readability only
three L-systems are shown, but all results show a simi-
lar pattern: As expected the initial iterations incur some
overhead in the parallel implementation on the GPU and
the multi-core CPU, because the amount of parallelism is

8

total derivation times total interpretation times total speedup
ms rel. speedup ms rel. speedup deriv.+interpr.

L-system, i modules 1 core 4 cores CUDA 1 core 4 cores CUDA df if 4 cores CUDA
Hilbert 3D, 6 1,266,864 4.70 3.76× 2.92× 31.50 1.23× 6.61× 5 5 1.35× 5.68×
Koch curve, 7 915,049 3.45 3.26× 3.20× 22.56 0.70× 2.99× 6 6 0.78× 3.02×
row of trees, 10 815,545 10.21 3.29× 3.15× 77.04 4.25× 10.84× 8 7 4.11× 8.43×
2D plant, 7 813,169 3.31 3.04× 3.15× 22.45 1.27× 1.21× 6 7 1.37× 1.31×
3D tree, 16 622,334 8.53 1.40× 1.17× 31.44 2.78× 3.87× 13 13 2.30× 2.59×
plant stoch., 11 835,481 6.45 1.75× 3.23× 14.70 0.09× 0.24× 9 ? 0.13× 0.33×
p. ctx. sens., 30 25,174 0.73 0.39× 0.03× 0.11 0.43× 0.11× ? ? 0.39× 0.03×
multi L-sys., 10 2,751,022 30.51 1.48× 1.31× 29.12 1.65× 2.22× 4 4 1.56× 1.64×

Table 2: Performance measurements. i shows the amount of iterations performed. The single-core CPU times are absolute values in
milliseconds, the multi-core CPU and CUDA values are relative speedups compared to the single-core CPU values. df denotes the first
iteration where CUDA is faster compared to the single-core CPU version during derivation, if is analogous for interpretation.

limited, and the overhead of launching CUDA-kernels or
POSIX threads is a significant factor. This makes parallel
versions slower on the first few iterations. For the later
iterations the parallel implementations are several times
faster, because a high amount of threads can be utilized.
For all L-systems, we list the first derivation iteration df
where CUDA is faster compared to the single-core CPU
version, as well as the first interpretation of a string gen-
erated with if iterations where CUDA is faster in Table 2.
The total performance including the cases where CUDA is
slower will be discussed in the next two paragraphs.

Total Derivation Performance: The CUDA and
the multi-core CPU version are very similar in performance
and are significantly faster than the single-core CPU ver-
sion in most cases. There are two notable exceptions:
First, the 3D tree is only marginally faster. Second, the
context sensitive plant is considerably slower. Both cases
can be attributed to the following observation: The corre-
sponding L-systems are growing rather slowly, compared
to the other test cases. For the 3D tree 622,334 mod-
ules are created in 16 iterations, while the plant creates
only 25,174 modules in 30 iterations. All other tested L-
systems create more modules with a lower iteration count.
Therefore the other L-systems have less relative thread
launch overhead. To sum it up, during the derivation the
parallel implementations are significantly faster when the
L-systems grow relatively fast. Another important thing
to note is that the results for the stochastic system vary
with the random seed, our measurements were in a range
of about +/- 20% for different seeds.

Total Interpretation Performance: The three
tested non-bracketed (serial) L-systems are significantly
faster in CUDA compared to the other versions, proba-
bly because the parallel matrix interpretation makes good
use of the high arithmetic density of the GPU. On the
other hand, the multi-core CPU version performs rather
bad on those L-systems (with the exception of the row of
trees L-system), probably the matrix multiplications and
the memory bandwidth are the limiting factors here.

The results for the branching L-systems vary. The first
thing to note is that the five-pass hierarchy extraction step

requires considerably less time than the actual interpreta-
tion. For reference, a hierarchy extraction takes 3.3ms on
one CPU core and 1.97ms in CUDA for the 2D plant. Our
interpretation of the varying results is that the L-systems
have different branching structures, which directly affect
how effective our work-queue interpretation is: The 3D
tree (Figure 11) has very regular branching, and is consid-
erably faster to interpret with the parallel versions, while
the 2D plant (Figure 1) exhibits more irregular branch-
ing, resulting in only a small speedup. The stochastic
plant contains only a few long branches with many small
ones attached (Figure 11), making it hard to spread the
work to multiple threads. The context sensitive plant is
even harder for the parallel algorithms to interpret, as the
amount of modules is very low compared to the other cases.
In summary, the non-bracketed L-systems are considerably
faster in CUDA, while the bracketed L-systems create var-
ied results based on the branching structure.

Figure 11: L-systems generated in real-time: 3D tree and stochastic
plant.

Total Speedups: The combined derivation and inter-
pretation speedups are shown in the last two columns of
Table 2. In all but the context sensitive and multiple L-
system case, the interpretation time is much higher than
the derivation time, therefore the combined speedups are
mainly dependent on the interpretation speedups.

Multiple L-Systems: The performance of multiple
L-systems is tested using a scene consisting of 38 2D plants
with 4 iterations and 12 3D trees with 10 iterations, similar
as shown in Figure 7. The results are shown in the last row
of Table 2. While the multi thread versions consistently

9

show a speedup of up to 2.22 times, it is not as high as
we had expected. It is important to note that we did not
optimize the multiple L-system implementation, while the
single-core version is highly optimized. We believe that
there is still room for improvement.

8. Discussion

Comparison to Previous Work: The main advan-
tage over the previous GPU-based methods [3, 6] is that
we make explicit use of parallel primitives and do not rely
on the graphics pipeline to deal with data amplification
and other issues. We fully support productions having
side-effects and thus do not need to rely on the specific
side effect-free turtle commands presented by Lacz and
Hart [3]. Furthermore, we can directly use the produc-
tions without requiring a compilation or transformation
step. Compared to the multi-CPU based method pro-
posed by Yang et al. [14] our algorithm does not need
an intermediate scene-graph representation of the module
string. Furthermore our algorithm can utilize thousands of
threads, which is significantly higher than what was shown
in the multi-CPU version.

Memory Transfer to Graphics Hardware: One
important advantage of our CUDA version is that the re-
sulting geometry already resides in GPU memory, so there
is no need for a copy operation. The CPU versions, on the
other hand, needs to perform a copy from the main system
memory to the GPU. We measured copy times of about
20–40ms for the tested L-systems – this is very high com-
pared to the generation times, increasing the total speedup
of CUDA significantly, and showing that a GPU implemen-
tation is highly desirable. All our results do not include
those transfer times.

Intra-Block Thread Divergence: In CUDA, when
different execution paths are taken within a sub-block of
threads (called warp), those execution paths are serial-
ized, reducing the utilization of the intrinsic SIMD capa-
bilities. In our algorithm, the following situations lead to
divergence in the code: (1) If two productions produce a
successor of different length during derivation. This diver-
gence is directly caused by the varying data amplification,
and can probably not be avoided. (2) During interpreta-
tion, the matrix notation helps in maintaining thread co-
herence, as we can perform the multiplications coherently
after each thread decides which matrix to use based on the
associated commands. However, when some threads either
have no command to perform or have a geometry gener-
ation command, SIMD can not be fully utilized. (3) In
the work-queue algorithm, the number of elements in a lo-
cal work queue can vary, leading to divergence. As pointed
out, in an alternative approach we removed this divergence
by enabling intra-block work item sharing, which turned
out to be slower than having divergence. (4) The length
of one work item can vary, leading to divergence. Unless
we would further split work items into sub work items, we
can probably not avoid this divergence.

Limitations: The varying results of the work-queue
approach indicate that there may be future work necessary
in creating more consistent speedups, maybe a more elab-
orate work-queue management can achieve this. As for the
tested context sensitive L-system, the high iteration counts
result in a low performance of the CUDA approach, mak-
ing the use of the CPU version more appropriate in this
case. Stochastic productions can be used to simulate bio-
logical plant-internal signals [9], maybe there is a way to
abstract this simulation that is more amenable to parallel
interpretation.

9. Conclusion

In this paper we introduced a solution to generate L-
systems on a parallel architecture. We make two ma-
jor contributions. First, we show how parallel primitives
can be employed to handle the varying data amplifica-
tion during derivation. Second, we introduce an algorithm
to match the push and pop stack operations to obtain a
parallel implementation of L-system interpretation. The
system can work with a broad set of rules, including para-
metric rules, stochastic rules, and context-sensitive rules.
It can parallelize a single L-system as well as multiple inde-
pendent L-systems. We have demonstrated that our par-
allel L-system outperforms a highly optimized single-core
CPU implementation in many test cases, while there are
some cases where the single-core version is faster. The ad-
vantage of our GPU version gets more pronounced when
taking into account CPU-GPU memory transfer times re-
quired by the CPU versions.

Future Work: We would like to integrate the paral-
lel derivation of L-systems in a rendering engine to render
large-scale environments. We plan to combine the deriva-
tion of L-systems with occlusion queries and memory man-
agement algorithms so that we can render environments
several times the size of graphics card memory in real
time. Also, it would be interesting to extend the work
to procedurally generated architecture, and more complex
L-system concepts.

Acknowledgements: This research was supported by
the Austrian FIT-IT Visual Computing initiative, project
GAMEWORLD (no. 813387), and by the NSF, contract
nos. IIS 0612269, CCF 0643822, and IIS 0757623.

References

[1] M. Billeter, O. Olsson, and U. Assarsson. Efficient stream com-
paction on wide simd many-core architectures. In HPG ’09:
Proceedings of the Conference on High Performance Graphics
2009, pages 159–166, NY, USA, 2009. ACM.

[2] NVIDIA CORPORATION. Cuda: Compute unified device ar-
chitecture. http://developer.nvidia.com/. 2007.

[3] P. Lacz and J.C. Hart. Procedural geometry synthesis on the
gpu. In Workshop on General Purpose Computing on Graphics
Processors, pages 23–23, NY, USA, 2004. ACM.

[4] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha. Fast bvh construction on gpus. Computer Graph-
ics Forum, 28(2):375–384, 2009.

10

[5] M. Lipp, P. Wonka, and M. Wimmer. Parallel generation of
l-systems. In Proceedings of the Vision, Modeling, and Visual-
ization Workshop 2009, pages 205–214, 2009.

[6] M. Magdics. Real-time generation of l-system scene models
for rendering and interaction. In Spring Conf. on Computer
Graphics, pages 77–84. Comenius Univ., 2009.

[7] Y.I.H. Parish and P. Müller. Procedural modeling of cities. In
SIGGRAPH ’01, pages 301–308, NY, USA, 2001. ACM.

[8] A. Patney and J.D. Owens. Real-time reyes-style adaptive sur-
face subdivision. ACM Trans. Graph., 27(5):1–8, 2008.

[9] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty
of plants. Springer-Verlag, Inc., NY, USA, 1990.

[10] P. Prusinkiewicz, M.J., and Radomı́r Mêch. Synthetic topiary.
In SIGGRAPH ’94, pages 351–358, NY, USA, 1994. ACM.

[11] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane.
The use of positional information in the modeling of plants. In
SIGGRAPH ’01, pages 289–300, NY, USA, 2001. ACM.

[12] M. Schwarz and M. Stamminger. Fast gpu-based adaptive tes-
sellation with cuda. Computer Graphics Forum, 28(2):365–374,
2009.

[13] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D.
Owens. Scan primitives for gpu computing. In Graphics Hard-
ware, pages 97–106, NY, USA, 2007. ACM.

[14] T. Yang, Z. Huang, X. Lin, J. Chen, and J. Ni. A parallel algo-
rithm for binary-tree-based string rewriting in l-system. In Proc.
of the Second International Multi-symposiums of Computer and
Computational Sciences, pages 245–252, Los Alamitos, Califor-
nia, 2007. IEEE Computer Society Press.

[15] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree con-
struction on graphics hardware. ACM Trans. Graph., 27(5):1–
11, 2008.

11

