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Abstract

This paper introduces a solution to compute L-
systems on parallel architectures like GPUs and
multi-core CPUs. Our solution can split the deriva-
tion of the L-system as well as the interpretation and
geometry generation into thousands of threads run-
ning in parallel. We introduce a highly parallel al-
gorithm for L-system evaluation that works on arbi-
trary L-systems, including parametric productions,
context sensitive productions, stochastic production
selection, and productions with side effects. Fur-
ther we directly interpret the productions defined
in plain-text, without requiring any compilation or
transformation step (e.g., into shaders). Our algo-
rithm is efficient in the sense that it requires no ex-
plicit inter-thread communication or atomic opera-
tions, and is thus completely lock free.

1 Introduction

Procedural modeling techniques to compute large
and detailed 3D models have become very popular
in recent years. This leads to the question of how
to handle the increasing memory requirements for
such models. The current trend is towards data am-
plification directly on the GPU, for example tesse-
lation of curved surfaces specified by a few control
points. This results in low storage costs and allows
generating the complex model only when needed
(i.e., when it is visible), while also reducing mem-
ory transfer overheads. In the same vein, grammars
can be viewed not only as a modeling tool, but also
as a method for data amplification since a very short
grammar description leads to a detailed model.

In this paper we investigate whether it is possible
to efficiently evaluate one of the most classical pro-
cedural modeling primitives, L-systems, directly on
parallel architectures, exemplified by current GPUs
and multi-core CPUs. The main motivation is to

Figure 1: L-systems generated in real-time, at up
to 198,000 modules per millisecond: Hilbert 3D
space-filling curve and 2D plant.

enable interactive editing of large L-systems (exam-
ples are shown in Figure 1) by designers, therefore
it is important to speed up the computation of L-
systems in order to achieve low response times.
Although L-systems are parallel rewriting sys-
tems, derivation through rewriting leads to very un-
even workloads. Furthermore, the interpretation of
an L-system is an inherently serial process. Thus,
L-systems are not straightforwardly amenable to
parallel implementation. Previous work has there-
fore focused on specialized types of L-systems that
do not allow side effects in productions, which
makes them very similar to scene graphs [2]. In
contrast, we deal directly with uneven workloads
in L-system derivation, and we have identified two
main sources of parallelism in the interpretation of
L-systems: (1) the associativity of traversal in non-
branching L-systems, and (2) the branching struc-
ture itself in branching L-systems.
The main contribution of this paper is a highly
parallel algorithm for L-system evaluation that
e works on arbitrary L-systems , including para-
metric productions, context sensitive produc-
tions, stochastic production selection, and pro-
ductions with side effects
e works directly on an input string and a plain-
text representation of the productions without
requiring any compilation or transformation
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step (e.g., into shaders)

e is efficient in the sense that it requires no ex-
plicit inter-thread communication or atomic
operations, and is thus completely lock free

To our knowledge, this is the first L-system algo-

rithm that is highly parallel, i.e. utilizes thousands
of threads in an efficient manner. This is achieved
by identifying and exploiting the parallelism inher-
ent in L-system derivation using parallel program-
ming primitives like scanning or work-queue man-
agement, and a novel algorithm to explicitly resolve
the branching structure. We demonstrate that our
algorithm outperforms a well optimized single-core
CPU implementation on larger L-systems.
Overview: First we will provide a background
on L-systems and parallel primitives in Section 2.
An analysis of the intrinsic parallelism of L-systems
is provided in Section 3. Then our system consist-
ing of two major building blocks will be described:
(1) The derivation step will start with the axiom and
generate a long string of modules (Section 4). (2)
The interpretation step takes the string as input and
generates the actual geometry (Section 5).

1.1 Previous Work

General L-Systems: Prusinkiewicz and Linden-
mayer cover the basic L-system algorithm [7]. Mul-
tiple extension to the basic approach were intro-
duced [8, 9, 5].

Parallelizing L-Systems: Lacz and Hart showed
how to use manually written vertex and pixel
shaders combined with a render-to-texture loop
to compute L-systems [2]. This concept was
later extended using automatically generated ge-
ometry shaders [4]. Both methods require
a shader compilation step for the productions.
Further a transformation step of every produc-
tion’s successor to a set of successors is needed
to allow independent parallel executions in a
shader.  For example, the production L —
aLf[+L|Lf[—L]L is transformed to the set L —
aL,af + L,afL,aff — L,aff — L,affL [2].
This is only valid if the successor of L does not have
any effect on the traversal state, which is not gener-
ally the case.

An algorithm utilizing multiple processors (the
results show up to 8 CPUs) with distributed mem-
ory, communicating using the Message Passing In-
terface (MPI) was introduced [12]. In their algo-
rithm, the derivation of the L-system is performed

using two binary trees, a Growth-State Tree (GST)
and a Growth-Manner Tree (GMT). To actually ren-
der the system, the GST is interpreted as a scene
graph. In order to get global scene-graph transfor-
mation matrices needed for rendering in the individ-
ual threads, the matrices are serially transfered from
one process to the next.

Parallel Computation in CUDA: In order to ac-
cess the parallel computing capabilities of GPUs we
employ the NVIDIA CUDA data-parallel program-
ming framework [1]. Recent work shows how to
map computations having a highly dynamic nature
to CUDA. Most notably, algorithms to efficiently
implement workload balancing using a compacta-
tion step were introduced in the context of KD-trees
[13], Reyes-style subdivision [6] and bounding vol-
ume hierarchies construction [3]. In the context
of tessellating parametric surfaces, scan operations
were used in order to scatter dynamically generated
vertices to a VBO [10]. We employ both work-load
balancing and vertex scattering in our work.

2 Background

Our work is based on L-systems and parallel pro-
cessing primitives. Both concepts will be explained
in this section.

L-Systems In our work, we use the formal-
ism of parametric L-systems as introduced by
Prusinkiewicz and Lindenmayer [7]. Parametric L-
systems operate on parametric words, which are
strings of modules consisting of letters with asso-
ciated actual parameters. An L-system consists
of a parametric word w called the axiom, and a
set of productions describing how the current word
is transformed. A production consists of a letter
called the predecessor and a successor. The suc-
cessor consists of a list of letters, where each letter
can have multiple arithmetic expressions containing
formal parameters. The predecessor can also con-
sist of several letters, in which case the L-system is
called context sensitive [7].

To actually generate geometry, two distinct
phases are performed: A derivation phase generat-
ing a string of modules, and an interpretation phase
in which the string of modules is interpreted in or-
der to generate geometry.

Derivation: The derivation starts from the ax-
iom. For every module contained in the axiom,



a matching production is searched. A production
matches a module m if the letter of the predeces-
sor matches the module letter. We then apply the
matching production to the module: First, for ev-
ery module in the successor, we calculate the ac-
tual real-valued parameters from the arithmetic ex-
pression. Then we rewrite the module m with the
modules of the successor. One iteration consists in
rewriting all modules in the string in parallel using
matching productions [7].

Interpretation: The interpretation is performed
serially from the start of the string, performing
modifications of a turtle state based on predefined
turtle commands associated with specific letters [7].
The turtle state represents the position and orienta-
tion of a virtual turtle. This state can be represented
with a 4x4 matrix. The turtle commands associ-
ated to letters modify the turtle state, for example
’F’ moves the turtle forward while drawing a line,
or '+’ rotates the turtle. Most of these turtle com-
mands can also be expressed by a 4x4 matrix. A no-
table exception are the commands ’[* and ’]’, which
push and pop the turtle state on a stack, allowing
the creation of branching (also called bracketed) L-
systems [7].

Parallel Primitives We extensively use the paral-
lel scan primitive in our work. Given an ordered
set of values [ao,a1,...,an] and an associative
operator o with the identity element I, an exclu-
sive scan operation will result in the ordered set
[I,a0,a00a1,...,a00a10...0an—1][11]. Un-
less noted otherwise, we always refer to an exclu-
sive scan on integral values using the addition oper-
ator when we use the term scan in our work.

3 Analysis of Parallelism in L-System

3.1 Derivation

As an L-system is by definition a module string
rewriting system utilizing parallel module replace-
ments, the domain of parallelization is obvious: We
simply assign chunks of the modules uniformly to
multiple threads and perform the rewriting in par-
allel. The rewritings themselves are independent
and thus do not need inter-thread communication.
However, the output strings need to be concatenated
again, which creates a dependency between the
threads. The major problem here is that the length

of these strings can vary greatly: for a chunk con-
taining n modules, the minimum expanded module
amount is n. This case occurs when no produc-
tion can be applied and thus every module is copied
unmodified to the output. However, the maximum
amount of modules is m™, when the production
with the maximum amount m of modules in the
successor gets applied to each module.

Therefore, a parallel implementation has to ef-
ficiently cope with highly incoherent output mod-
ule counts for each chunk. Previous shader-based
approaches rely on the graphics pipeline to han-
dle concatenation by load balancing (i.e. different
output sizes of the geometry shader), which is not
ideal because it can lead to serialization, and only
works for special types of L-systems. In chapter 4
we show a native parallel solution to this problem
utilizing the scan primitive.

3.2 Interpretation

The interpretation of a derived word is defined in
a serial manner: Starting with an initial turtle state
from the beginning of the module string, the posi-
tion in the module string is advanced one by one,
while applying a modification to the turtle state as
defined by the letter of the current module. There-
fore, the turtle state of every module string position
is dependent on all previous turtle states. While it
may look like there is no parallelism to exploit here,
there are two inherent parallel concepts that can be
extracted, as shown next.

Associative Operations: As mentioned before,
most turtle commands and the turtle state can be
represented as 4x4 matrices, except the push and
pop commands. Further, as 4x4 matrix transforma-
tions can be combined, we can represent the turtle
state up to a specific module string position using
one matrix. The key point to parallelize the in-
terpretation is to exploit the associativity of those
matrix multiplications by accumulating matrices in
each parallel chunk locally and combining them in
a separate pass using a scan operation, as described
in Section 5.1.

Inherent Branch Hierarchy: Since push and
pop commands cannot be represented as matrices,
the matrix approach cannot be applied for branch-
ing L-systems. Fortunately, the push/pop com-
mands create another type of implicit parallelism
that we can exploit: Every time a module represent-
ing a push command is encountered, two indepen-



dent interpretation branches are possible: the mod-
ule string directly following the push command, and
the module string following the corresponding pop
command. Thus we can split the work at this point
into two threads, as shown in Section 5.2.

4 Parallel Derivation

First we show how productions and module strings
are efficiently represented on the GPU. Then we in-
troduce the algorithm to perform one iteration of the
derivation.

4.1 Efficient L-system Representations
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Figure 2: An example production of a parametric
L-system packed in a texture.

In order to allow fast and efficient access to the
productions, we store them in a 2D texture in the
GPU version. For the multi-core CPU version we
use a 2D array. The successor is stored in the row
indexed by the ASCII-value of the predecessor’s let-
ter. To resolve collisions of two productions that
have the same predecessor letter, we create collision
chains similar to hash tables.

We perform two simple optimizations: First, we
count the number of modules and parameters oc-
curring in the successor for later reference. Those
values are stored in a designated header area. Sec-
ond, in order to allow O(1) parameter value lookup
during the derivation, we translate every parameter
to a unique numerical ID. This process is visualized
for parametric L-systems in Figure 2. In order to
store stochastic or context sensitive productions, we
extend the header area accordingly, by adding the
production probability or respectively the left and
right context letters.

Representing the Module String: A module
string contains 7 module letters. As every mod-
ule may have an arbitrary amount of parameters as-

signed, we use an additional array of size n contain-
ing indices to an array of actual parameters Figure
3 visualizes one module string.

module letter ||F |[ |-
param. index ||0_|-1]3

actual module
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Figure 3: A module string represents a specific state
during derivation. We store it as an array of module
letters, a parameter index and the actual parameters.

4.2 Derivation

First, we prepare the axiom module string on the
CPU side. In the GPU version we then upload it to
the GPU. This step is extremely fast, as the axiom
usually consists of just a few modules. For the de-
sired iteration amount, we perform one iteration af-
ter the other on the GPU or the multi-core CPU. One
iteration of the derivation takes the current module
string as input and creates an expanded output mod-
ule string.

The method to compute one iteration in parallel
consists of three passes (or “kernels” of the parallel
programming language) (see Figure 4):
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- [(IF[-[F[+IF[-[F[T]FTL]- [FI+[FT1]

pass 1: count required number of
output module letters and parameters

letters: 9 6 6 9 6 6 | 5
param.: 4 2 2 4 2 2 2

pass 2: scan amount of required
module letters and parameters

letters: 0 9 15 | 21 | 30 | 36 |42
param.: 0 4 6 8 12 | 14 | 16

‘ pass 3: perform module rewriting ‘
and parameter calculation, scatter

Figure 4: Three passes are performed during each
iteration, transforming an input module string to
an output module string. For better readability, we
show only the letters of the input modules, and omit
the parameters.

1. Count. We launch a kernel with n threads.
m = inputSize/n subsequent modules from the



input module string are assigned to each thread.
Each thread visits all m assigned modules, and
fetches the amounts of required output module let-
ters and parameters from the header section of the
corresponding production. Those amounts are ac-
cumulated for all assigned modules, and finally
written to an array in global memory.

2. Scan. We perform a sum-scan operation on
this array, in order to calculate offset positions for
the scattering of the result.

3. Rewrite. Again, m threads are launched,
but this time the module replacement and param-
eter calculation is actually performed. This is done
by fetching for each assigned module the matching
production. If a production is context-sensitive, we
also compare the left and right module letters of
a module with the letters stored in the production
header in order to determine if the production is ap-
plicable. For bracketed context sensitive L-systems
the context search is more involved, as we need
to take the push and pop commands into account.
Therefore, for those systems, we perform a parallel
hierarchy extraction step as explained in Section 5.2
before we start one iteration. For stochastic produc-
tions, we determine a random value for every appli-
cable production, using a texture containing random
values indexed by the position in the module string.
This value is multiplied with the probability stored
in the rule header. We then choose the rule with the
highest result of the multiplication.

After having decided which production to use,
we evaluate the parameters for every module in
the production’s successor, and insert the result-
ing successor modules into the result module string.
The parameter evaluation is conducted by a sim-
ple mathematical expression parser in the kernel.
When no production is defined for a module, we
simply copy it unmodified to the output. As we
have the offset values to index the module string,
every thread can write its resulting modules with-
out interference from the other threads.

5 Parallel Interpretation

The result of a derivation is a module string. This
needs to be converted into a geometric representa-
tion. There are two cases allowing two different
parallel algorithms: non-branching and branching
L-systems.

5.1 Non-Branching Module Strings

As explained in Section 3, most modules can be
represented as associative matrix transformations.
We can exploit this efficiently to interpret non-
branching L-systems by interpreting chunks inde-
pendently. We present a three pass algorithm (see
Figure 5):
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Figure 5: By exploiting the associativity of mod-
ules representable as matrix operations, we can effi-
ciently interpret non-branching L-systems with this
algorithm.

1. Matrix accumulation The string is split into
m chunks, each chunk is assigned to an indepen-
dent thread. In each chunk, we combine the matri-
ces corresponding to the modules in the chunk, re-
sulting in one local transformation matrix. Further,
we count the amount of geometry generated in the
modules. Both values are stored in an global array.

2. Matrix scan. A parallel scan operation is per-
formed on the matrices, using 4x4 matrix multipli-
cation as the operator. The resulting array contains
matrices representing a global transformation of the
turtle state to the start of each chunk. Additionally,
a scan using integer additions on the objects array
is performed to calculate offsets for the geometry to
be created.

3. Geometry generation. Finally, to get the
global positions of each geometry object, we again
operate on m chunks in parallel as in 1. and accu-
mulate module matrices. But this time we do not
start with the identity matrix but with the matrix de-
termined during the scan. Furthermore, every time
we encounter a geometry generation module, we
calculate the global position of the object and in-



sert it into a vertex buffer object (VBO), using the
offsets determined during the object scan.

The idea to use a scan to determine VBO offsets
for tessellating parametric surfaces was introduced
by Schwarz and Stamminger [10].

5.2 Branching Module Strings

For branching L-systems, parallelization is
achieved by exploiting the branch hierarchy.
Whenever a push command opening a new branch
is encountered, two independent new work items
are generated: one for the branch and one for
the remaining string following the corresponding
pop command. The main problem is to find the
pop command in an efficient (i.e., parallel) way.
This information is also necessary for fast context
search in bracketed context sensitive systems. We
therefore first present a novel parallel algorithm to
extract the hierarchy, and then show how the work
items can be efficiently managed.

5.2.1 Parallel Hierarchy Extraction

One critical observation is that when looking only at
a particular hierarchy depth in the branch hierarchy,
corresponding push/pop pairs follow each other di-
rectly. The main idea is therefore to extract the
push and pop commands from the module string
and sort their positions into buckets according to
their depths. Each bucket will then contain the po-
sitions of corresponding push/pop pairs. These can
then be easily traversed to store with each push the
position of the corresponding pop.

We introduce an efficient parallel algorithm
based on this idea that does not require direct com-
munication between the blocks. We assume that we
know the maximum depth of d,.. of the branch-
ing hierarchy and allocate a two-dimensional bucket
sort array with dpmq. rows. The complete algorithm
is visualized in Figure 6, and consists of 5 passes
operating on uniform chunks in parallel:

1. Chunk depth calculation. Starting at zero, we
add 1 for every push, and subtract 1 for every pop
occurring in a chunk. This results in the depth of
the chunk end relative to the chunk start.

2. Depth scan. Performing a scan of those values
results in the absolute depths of the start of each
chunk.

3. Depth-based push/pop count. Now, by starting
at the calculated absolute depth of the chunk start,
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[2]1 1 Jo Jo Jo [2]
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‘ pass 2: a scan results in the depth at ‘ depth
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pass 4: performing a scan on each row to
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pass 5: store the positions of each [and ] in a
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every two consecutive elements index a push/pop pair!

Figure 6: This algorithm allows efficient and paral-
lel searching for corresponding push and pop pairs.

we can determine the absolute depth of every push
and pop occurring in the chunk. We use this to to
determine the offsets for the bucket sort array by
counting the amount of push and pop commands m;
in each depth j in the following way: ¢; = Y m; |
d; = j. We store the values for ¢; | 0 < j < dmax
in a global array.

4. Scan push/pop counts. The scan of the c; ar-
rays results in the bucket offsets o; each thread has
to use in order to allow conflict-free writing to buck-
ets.

5. Write push/pop locations. Again, we visit ev-
ery push and pop command m; of every chunk. But
this time we write the absolute input module string
position of the module m; in the bucket d; using
the offset positions determined previously. This ul-
timately leads to a bucket sort array where every
two consecutive elements in a row correspond to a
push and pop pair.

Analogously to the matrix interpretation algo-
rithm, we also calculate VBO offsets needed to scat-
ter the geometry. In our implementation, this pro-
cess is combined with pass 1, and the VBO offsets
are stored as a parameter of push commands.

Memory Footprint: In order to reduce the mem-
ory footprint of the bucket sort array, we actually



use a one-dimensional array instead of two dimen-
sions. This allows us to pack the bucket arrays for
the individual depths without empty spaces tightly
together. In the worst case, when every module in
the module string is a push or pop module, the num-
ber of required memory elements is then equal to
the amount of modules. The offsets needed for the
2D to 1D packing can simply be calculated form
the values obtained in iteration 4: c; + o; of the
last chunk equals the total amount of elements in a
specific bucket. When we perform a scan operation
of those values for each bucket we get the offsets to
map the 2D bucket arrays into a 1D array.

Integration into Module String: As a last step,
we use the information bucket arrays to write the
position of corresponding push and pop modules
directly into the module string to allow fast access
during interpretation. This is a simple parallel al-
gorithm: We evenly assign the 1D bucket array to
multiple threads. Every even element in this array
contains the position of a push command, every odd
element references a pop command. Thus we need
to write the position stored at every odd element as
a parameter to the push module referenced by the
preceding even element.

5.2.2 Work Queue-based Interpretation

As a result of the previously explained algorithm,
every push module has a parameter indexing the po-
sition of the corresponding pop module, as well as
a VBO offset parameter. With this information, we
use a parallel work-queue approach [13, 3, 6]: One
thread starts serially interpreting the module string.
When a push-module is encountered, the thread cre-
ates two work items: One pointing to the module
string following the push, and one pointing to the
module string following the pop. The work items
are then distributed to other threads using the previ-
ously introduced parallel methods [13, 3, 6].

6 Results

We implemented our parallel algorithms for GPUs
utilizing CUDA and for multi-core CPUs using
POSIX threads. In CUDA up to 1920 threads are
utilized (60 blocks of 32 threads), the multi-core
CPU version uses 4 threads. We compare those
implementations against a highly optimized single-
core CPU version. This version has the advantage

that no kernel or thread launch overheads occur, and
that no scan or multi-pass operations are necessary.
The test platform was an Intel Core 2 Quad Q6600
2.4GHZ PC with a Geforce GTX 280 graphics card.
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Hilbert 3D, pg. 20

Koch curve, pg. 10 (d)
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3D tree, pg. 60 (b) v |V
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Table 1: Property matrix of the L-systems shown in
our results. The page numbers refer to the L-system
definitions by Prusinkiewicz and Lindenmayer [7].

Test Scenes: We used seven test scenes to
demonstrate several aspects of our system. In or-
der to ensure repeatability and comparability of our
results, all our L-system productions are directly
taken from Prusinkiewicz and Lindenmayer [7] for
our performance measurements. In Table 1 we clas-
sify the test scenes according to the properties of the
used production set.

Rendering: Our implementation creates a VBO
containing lines. For our figures we use a geome-
try shader during rendering, creating cylinders from
the lines. All our performance measurements do
not contain the rendering times, as the rendering
times are the same both for the CUDA and the CPU
versions. Neither do the measurements contain the
CPU-GPU memory transfer times required by the
CPU versions, which we measured in the range
from 20-40ms, making the CPU versions very hard
to use in a real-time rendering setting.

Scalability: We evaluated how our derivation
and interpretation scale with the number of itera-
tions. For all our test scenes, we measured how long
one specific iteration ¢ of the derivation takes, and
calculated the number of modules generated per mi-
crosecond during each iteration 7. The results for
three L-systems are shown in Figure 7. For the in-
terpretation, a specific amount of derivation itera-
tions was performed prior to the interpretation, the
interpretation time was measured, and the amount



total derivation times total interpretation times

ms rel. speedup ms rel. speedup
L-system, ¢ modules | 1core | 4cores CUDA | lcore | 4cores CUDA | df iy
Hilbert 3D, 6 1,266,864 4.70 3.76 292 | 31.50 1.23 6.61 5 5
Koch curve, 7 915,049 3.45 3.26 3.20 | 22.56 0.70 2.99 6 6
row of trees, 10 815,545 | 10.21 3.29 3.15 | 77.04 4.25 10.84 8 7
2D plant, 7 813,169 3.31 3.04 3.15 | 2245 1.27 1.21 6 7
3D tree, 16 622,334 8.53 1.40 1.17 | 31.44 2.78 387 | 13 13
plant stoch., 11 835,481 6.45 1.75 323 | 14.70 0.09 0.24 9 ?
p. ctx. sens., 30 25,174 0.73 0.39 0.03 0.11 0.43 0.11 ? ?

Table 2: Performance measurements. ¢ shows the amount of iterations performed. The single-core CPU
times are absolute values in milliseconds, the multi-core CPU and CUDA values are relative speedups
compared to the single-core CPU values. dy denotes the first iteration where CUDA is faster compared to
the single-core CPU version during derivation, 7 is analogous for interpretation.
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Figure 7: Scalabilty analysis of the derivation step.
For every iteration, we calculate the number of
modules generated per microsecond.

of modules interpreted per microsecond was calcu-
lated. The results are shown in Figure 8. For read-
ability only three L-systems are shown, but all re-
sults show a similar pattern: As expected the initial
iterations incur some overhead in the parallel imple-
mentation on the GPU and the multi-core CPU, be-
cause the amount of parallelism is limited, and the
overhead of launching CUDA-kernels or POSIX
threads is a significant factor. This makes parallel
versions slower on the first few iterations. For the
later iterations the parallel implementations are sev-
eral times faster, because a high amount of threads
can be utilized. For all L-systems, we list the first
derivation iteration dy where CUDA is faster com-
pared to the single-core CPU version, as well as the
first interpretation of a string generated with 7y it-
erations where CUDA is faster in Table 2. The to-
tal performance including the cases where CUDA is
slower will be discussed in the next two paragraphs.
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Figure 8: Scalabilty analysis of the interpretation
step. We performed a specific amount of derivation
steps before the interpretation was performed.

Total Derivation Performance: The CUDA and
the multi-core CPU version are very similar in
performance and are significantly faster than the
single-core CPU version in most cases. There are
two notable exceptions: First, the 3D tree is only
marginally faster. Second, the context sensitive
plant is considerably slower. Both cases can be
attributed to the following observation: The cor-
responding L-systems are growing rather slowly,
compared to the other test cases. For the 3D tree
622,334 modules are created in 16 iterations, while
the plant creates only 25,174 modules in 30 itera-
tions. All other tested L-systems create more mod-
ules with a lower iteration count. Therefore the
other L-systems have less relative thread launch
overhead. To sum it up, during the derivation
the parallel implementations are significantly faster
when the L-systems grow relatively fast. Another
important thing to note is that the results for the



stochastic system vary with the random seed, our
measurements were in a range of about +/- 20% for
different seeds.

Total Interpretation Performance: The three
tested non-bracketed (serial) L-systems are signifi-
cantly faster in CUDA compared to the other ver-
sions, probably because the parallel matrix inter-
pretation makes good use of the high arithmetic
density of the GPU. On the other hand, the multi-
core CPU version performs rather bad on those L-
systems (with the exception of the row of trees L-
system), probably the matrix multiplications and
the memory bandwidth are the limiting factors here.

The results for the branching L-systems vary.
The first thing to note is that the five-pass hierar-
chy extraction step requires considerably less time
than the actual interpretation. For reference, a hier-
archy extraction takes 3.3ms on one CPU core and
1.97ms in CUDA for the 2D plant. Our interpre-
tation of the varying results is that the L-systems
have different branching structures, which directly
affect how effective our work-queue interpretation
is: The 3D tree (Figure 9) has very regular branch-
ing, and is considerably faster to interpret with the
parallel versions, while the 2D plant (Figure 1) ex-
hibits more irregular branching, resulting in only a
small speedup. The stochastic plant contains only a
few long branches with many small ones attached
(Figure 9), making it hard to spread the work to
multiple threads. The context sensitive plant is even
harder for the parallel algorithms to interpret, as
the amount of modules is very low compared to
the other cases. In summary, the non-bracketed L-
systems are considerably faster in CUDA, while the
bracketed L-systems create varied results based on
the branching structure.

Figure 9: L-systems generated in real-time: 3D tree
and stochastic plant.

7 Discussion

Comparison to Previous Work: The main advan-
tage over the previous GPU-based methods [2, 4]
is that we make explicit use of parallel primitives
and do not rely on the graphics pipeline to deal
with data amplification and other issues. We fully
support productions having side-effects and thus
do not need to rely on the specific side effect-free
turtle commands presented by Lacz and Hart [2].
Furthermore, we can directly use the productions
without requiring a compilation or transformation
step. Compared to the multi-CPU based method
proposed by Yang et al. [12] our algorithm does not
need an intermediate scene-graph representation of
the module string. Furthermore our algorithm can
utilize thousands of threads, which is significantly
higher than what was shown in the multi-CPU ver-
sion.

Memory Transfer to Graphics Hardware:
One important advantage of our CUDA version is
that the resulting geometry already resides in GPU
memory, so there is no need for a copy operation.
The CPU versions, on the other hand, needs to per-
form a copy from the main system memory to the
GPU. We measured copy times of about 20-40ms
for the tested L-systems — this is very high com-
pared to the generation times, increasing the total
speedup of CUDA significantly, and showing that
a GPU implementation is highly desirable. All our
results do not include those transfer times.

Intra-Block Thread Divergence: In CUDA,
when different execution paths are taken within a
sub-block of threads (called warp), those execution
paths are serialized, reducing the utilization of the
intrinsic SIMD capabilities. In our algorithm, the
following situations lead to divergence in the code:
(1) If two productions produce a successor of differ-
ent length during derivation. This divergence is di-
rectly caused by the varying data amplification, and
can probably not be avoided. (2) During interpreta-
tion, the matrix notation helps in maintaining thread
coherence, as we can perform the multiplications
coherently after each thread decides which matrix
to use based on the associated commands. How-
ever, when some threads either have no command to
perform or have a geometry generation command,
SIMD can not be fully utilized. (3) The length of
one work item can vary, leading to divergence. Un-
less we would further split work items into sub work



items, we can probably not avoid this divergence.

Limitations: The varying results of the work-
queue approach indicate that there may be fu-
ture work necessary in creating more consistent
speedups, maybe a more elaborate work-queue
management can achieve this. As for the tested con-
text sensitive L-system, the high iteration counts re-
sult in a low performance of the CUDA approach,
making the use of the CPU version more appropri-
ate in this case.

8 Conclusion

In his paper we introduced a solution to generate
L-systems on a parallel architecture. We make two
major contributions. First, we show how parallel
primitives can be employed to handle the varying
data amplification during derivation. Second, we
introduce an algorithm to match the push and pop
stack operations to obtain a parallel implementation
of L-system interpretation. The system can work
with a broad set of rules, including parametric rules,
stochastic rules, and context-sensitive rules. We
have demonstrated that our parallel L-system out-
performs a highly optimized single-core CPU im-
plementation in many test cases, while there are
some cases where the a single-core version is faster.
The advantage of our GPU version gets more pro-
nounced when taking into account CPU-GPU mem-
ory transfer times required by the CPU versions.

Future Work: We would like to integrate the
parallel derivation of L-systems in a rendering en-
gine to render large-scale environments. We plan
to combine the derivation of L-systems with occlu-
sion queries and memory management algorithms
so that we can render environments several times
the size of graphics card memory in real time. Also,
it would be interesting to extend the work to proce-
durally generated architecture, and more complex
L-system concepts.
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