
18	 May/June 2008	 Published by the IEEE Computer Society� 0272-1716/08/$25.00 © 2008 IEEE

Procedural Methods for Urban Modeling Tutorial

Procedural Urban Modeling
in Practice
Benjamin Watson ■ North Carolina State University

Pascal Müller ■ Procedural Inc.

Peter Wonka ■ Arizona State University

Chris Sexton ■ Johns Hopkins University

Oleg Veryovka and Andy Fuller ■ Electronic Arts

Procedural modeling is finally going main-
stream. Until recently it was a boutique
solution, used only when no other options

existed. Now procedural modeling is often the
cost-effective solution, used because the alterna-

tives are too expensive. In film,
games, and other applications,
consumers expect richer, higher-
quality digital content for their
dollar. Because budgets won’t al-
low content producers to increase
cost significantly, they have only
one choice: they must improve
their tools. Procedural model-
ing is the primary ingredient in
these tools.

One of the main drivers of
these trends is urban content.
Cities are huge, richly detailed
artifacts often required in digital
productions. Modeling them with
existing, nonprocedural tools can

take hundreds of man-years. Several researchers are
creating procedural techniques specifically for auto-
mating city modeling.

A brief history
Computer graphics practitioners have long used
procedural modeling to generate nonurban con-
tent. L-system grammars generate plants,1 while
agent-based particle systems model fuzzy objects

such as fire and smoke2—most famously the “Gen-
esis effect” in Star Trek. Perlin’s noise3 simulates
clouds and natural textures, while Reynolds’
boids4 apply agent-based methods to animate
flocks, schools, and herds, including stampeding
wildebeests in The Lion King. Genetic techniques
similar to those described by Sims5 will soon see
use in Spore, a game from Electronic Arts (EA).

Synthesizing natural landscapes has a similarly
long research history, but since cities sit on landscapes
this approach applies more directly to urban problems
than the techniques discussed previously. Fournier
and colleagues use stochastic, fractal techniques in-
spired by Mandelbrot.6 Musgrave and colleagues ex-
tend these techniques to model erosion effects.7 More
recently, Zhou and colleagues applied texture syn-
thesis—used to make large, unique textures from
small source patches—to create natural terrain that
respects artist constraints.8 Planetside’s Terragen, a
commercial software package widely used in film
and games, implements many of these techniques.

Synthesizing urban terrain
Procedural techniques dedicated to urban synthe-
sis have only begun to appear more recently. Par-
ish and Müller use L-systems to model extensive
street layouts and buildings.9 Given input maps
of geography, population density, and layout con-
straints, their system generates streets, subdivides
land, and creates skyscrapers. Figure 1 shows an
example of road generation.

Film and game studios can no
longer meet audience demand
for visual content by increasing
production budgets. Instead
they are turning to procedural
modeling, particularly for
modeling cities. The authors
review procedural modeling,
examine the CityEngine
tool, and study the use of
procedural urban modeling
in Electronic Arts’ Need for
Speed games.

	 IEEE Computer Graphics and Applications� 19

Lechner and colleagues use agent-based technol-
ogy to build transportation networks, subdivide
land, allocate use, and manage population den-
sity.10 Their agents adapt to their environment,
letting artists steer development interactively to
meet specific application constraints. A recent ex-
tension to their work by Sexton and Watson vec-
torizes the gridded simulation output, producing
realistic, smoothed, urban terrains that you can
import into various geographic information sys-
tem (GIS) tools for further analysis.11

Esch and colleagues support interactive modifica-
tion of street layouts through 2D tensor fields (ten-
sors are a generalization of vectors).12 Artists can
change layouts indirectly by manipulating the tensor
field or directly by reshaping the roads themselves.

In gaming and other interactive applications,
the ability to synthesize urban content in real
time would be especially useful. Greuter and col-
leagues describe a first pass at this problem, laying
out cities using a simple grid, and creating simple
skyscrapers from input footprints on the fly.13 To
meet real-time constraints, they pay particular at-
tention to caching and limiting computation out-
side the view frustum.

Synthesizing buildings and other structures
In 1971, the architect Stiny introduced shape
grammars to bring a new formalism and rigor
to designing and analyzing architecture.14 Many
designers adopted shape grammars, but they re-
mained largely conceptual tools, synthesizing only
conceptual mass models of buildings and other
structures. Wonka as well as Müller and colleagues
took the next step, introducing split grammars for
synthesizing detailed building facades,15 building
a shape grammar called CGA Shape for creating
entire building exteriors,16 and creating the City-
Engine integrated modeling environment. More
recently, they have used computer vision to auto-
matically generate grammars describing facades.17
Aliaga and colleagues describe a similar system
that facilitates authoring grammars for texturing
building exteriors.18

Merrell generates buildings (and many other
shapes) using a texture-synthesis-inspired tech-
nique.19 The artist partitions a small example
model into parts using a 3D grid. This partition
then generates a set of constraints: two parts might
only be adjacent in the output model if they were
adjacent in the example model. Merrell uses opti-
mized search in this constrained space to generate
output models

Many structures such as bridges and train sta-
tions are best characterized by the layout of their

supporting beams and infrastructure. Pottmann
and colleagues synthesize the quadrilateral, pen-
tagonal, and hexagonal meshes that characterize
many beam layouts.20 They can find layouts for
almost any curved surface. Smith and colleagues
automate the design of the truss structures that
support buildings, bridges, and many other struc-
tures.21 Their method accommodates the real-life
engineering constraints that relate geometry to
mass and stress.

Floor plans describe building interiors and of-
ten dictate the appearance of building exteriors,
especially in homes. Harada and colleagues apply
optimization algorithms to the design of 2D ar-
chitectural floor plans,22 while Martin devises a
grammar that constructs graphs in which nodes
represent rooms and links connections between
rooms.23 He then translates these graphs into in-
terior and exterior building geometry. Hahn and
colleagues generate building floor plans and cor-
responding 3D interiors in real time by randomly
dividing rectangular floors into rectangular rooms
and hallways.24 The division respects several basic
architectural constraints such as connecting ad-
jacent hallways and ensuring that small private
rooms are immediately accessible from public
spaces. Like many researchers, Hahn and col-
leagues store and reuse random seeds during real-
time generation, ensuring that a given floor has
the same floor plan at each viewing.

Synthesizing other urban content
Urban content is more than building placement
and shape. Legakis and colleagues synthesize “cel-
lular” textures of brick, tile, and masonry for
buildings and other structures.25 Textures respect
component (such as brick) shape, commonly
used tiling patterns, and structure geometry. For
example, brick textures on each side of a corner
reflect the fact that the same 3D bricks occupy
both textures.

Figure 1.
Examples of
procedural
road synthesis.9

©
 2

0
01

 A
C

M

20	 May/June 2008

Procedural Methods for Urban Modeling Tutorial

Weathering and wear are important elements
of urban realism. Dorsey and colleagues model
the weathering of stone, including oxidation and
erosion.26 Chen and colleagues simulate weather’s
effects on additional materials and model other
types of weathering, including moss, rust, and dirt
accumulation.27

Without people, cities are ghost towns. Thomas
and Donikian populate cities with cars and pedes-
trians, each with matching behaviors and anima-
tions.28 Maïm and colleagues apply the CityEngine
to generate an annotated city model and interpret
these semantics to automatically populate the
scene and trigger special behaviors in the crowd,
depending on the characters’ location.29

CityEngine applications
One of the most mature procedural modeling
tools available is the CityEngine. Effective use of
the CityEngine, and indeed almost any urban-
modeling tool, requires familiarity with architec-
ture. You should begin by acquiring a good un-
derstanding of basic building elements such as
windows, doors, columns, pilasters, quoins, gates,
roofs, cornices, arches, walls, and ornaments. We
recommend examining one to three architecture
books with labeled illustrations of these elements.
One of the best is by Köpf and Binding, but unfor-
tunately it’s available only in German.30 A similar
book is a Visual Dictionary of Architecture (John
Wiley & Sons, 1996).

The next step is to create grammar rules for
combining these basic elements. Unfortunately,
the existing architectural literature describes these
rules ambiguously; formal and procedural meth-
ods aren’t widely used in architecture and have
little tradition in the field. Typically, modelers
must therefore derive rules and structure without
relying strongly on the existing literature.

How difficult is using the CityEngine? In the
three example projects we describe, we collaborated
with archeologists, urban planners, and artists to
produce their models and found that shape gram-
mars are as easy to learn as scripting languages.
Users unfamiliar with scripting generated gram-
mars without difficulty using the CityEngine’s vi-
sual interface or its image-based methods. Soon
the market will render its own judgment: Proce-
dural Inc. plans to release the CityEngine in the
second quarter of 2008.

Workflow
Workflow in the CityEngine typically begins

with a specific idea stemming from a photograph,
a drawing, an architectural figure, or a new de-
sign concept (see Figure 2).9,31 The next step is to
analyze the design and find the most important
parameters.

For example, consider Le Corbusier’s Cruciform
Skyscraper. Le Corbusier designed several detailed
variations of the skyscraper between 1920 and
1930, with the most famous incarnations appear-
ing in the master plans for his Contemporary City
(1922) or the Plan Voisin (1925). The enormous
(for that time) 60-story skyscrapers were built on
steel frames and encased in huge curtain walls of
glass. They housed both offices and the flats of the
wealthiest urban inhabitants and were set in large,
rectangular, park-like green spaces.

Figure 3 shows a sketch of the skyscraper design
and a visual analysis showing its simplified struc-
ture. During analysis you must name individual
elements and identify important design parame-
ters. Here we choose the names core, spine, wing,
and tooth. We also start with seven parameters
for the main mass of the building: overall height,
ground floor height, platform height, wing width,
small-wing width, teeth width, and the distance
between two teeth. During this analysis, we also
model detailed textures and individual building el-
ements, such as window geometry. (After several
design projects, you can reuse many previously
created building elements.)

We then encode shape grammar rules for as-
sembling the skyscraper’s crude mass model out
of basic solids (mainly boxes) and for construct-
ing its facades. After confirming that the resulting
proportions match a specific sketch, we carefully
start randomizing parameters to create stochas-
tic rules that generate a whole city. It’s important
to begin with one working instance and then add
randomness gradually, because too much random-
ness creates chaotic, uninteresting designs.

We recommend that new CityEngine users gain

Design idea/concept

Analyze design and parameters

Create elements and textures

Encode design rules

Add stochastic behavior

Generate models

Figure 2. The
workflow
for a typical
architectural
procedural-
modeling
project.

	 IEEE Computer Graphics and Applications� 21

experience with this procedure by building several
simple buildings. Just a few well-modeled stochas-
tic buildings can populate a complete city. For ex-
ample, Parish and Müller’s model of New York had
only six different building types.9

A cultural heritage application
Experts and laymen study historical structures
closely. Digital models of these elements of our
cultural heritage are valuable tools for analysis,
reconstruction, and virtual display. While the fo-
cus of cultural heritage digitization is still on 3D
modeling of important major monuments such as
the Parthenon, there’s often additional demand
for modeling larger settlements. Such settlements
might be interesting or might only form the con-
text for a monument.

While archeologists have detailed architectural
knowledge of the monuments and settlements they
study, they have little formal training in CAD or
computer graphics modeling packages. Procedural-
modeling tools such as the CityEngine can bridge
this gap, providing a user-friendly, high-level in-
terface and filling in detail where the archeologi-
cal record is incomplete.

In close collaboration with archaeologists from
Bonn, we recently reconstructed the ancient Ma-
yan city of Xkipche in Mexico. We describe this
project elsewhere.16 Excavations provided detailed
locations and descriptions of buildings, which
were built primarily in one specific architectural
style. Following the workflow we just described,

we began analyzing the building and identified the
most important parameters. While we could rely
on some drawings and assistance from our archeo-
logical collaborators, we had no formal design de-
scription for the Xkipche style. So, we performed
most of the analysis ourselves, with continual re-
view and comment from archeologists, producing
a building model encoded with 39 shape-grammar
rules and 32 control parameters.

To reconstruct the whole site, archaeologists im-
ported their GIS data (footprints with metadata
such as building height) into the CityEngine and
selected buildings for 3D reconstruction. Archeol-
ogists then interactively defined the 32 parameters
of those buildings while examining a 3D build-
ing preview. When the archeologists were satis-
fied with their reconstruction, they stored each
building’s parameters in the GIS database. The
complete city can be generated and stored on disk
at any time. Figure 4 shows a building model that
we created with our system.

Spine

Tooth

Core

Wing

Figure 3. Top:
Views of Le
Corbusier’s
Cruciform
Skyscraper and
the simplified
design
structure.
Bottom: 3D
depictions
generated with
the CityEngine,
including
mass model
variations
created by
changing
parameters
and a building
with a facade
applied.

Figure 4. A
Mayan building
from Xkipche
in Mexico
generated with
the CityEngine
for a cultural
heritage
project.

22	 May/June 2008

Procedural Methods for Urban Modeling Tutorial

Use in urban planning
Urban master planning regulates, directs, and
projects future development in cities. Long be-
fore any of the structures they envision are built,
planners must produce impressive visualizations
of them, which are used both in design competi-
tions and in political decision making. Not only
can procedural modeling simplify the production
of such visualizations, it can also illustrate the re-
maining artistic possibilities through stochastic,
procedural variation.

Urban plans must conform to numerous zoning
regulations, the most important of which is the
building envelope, which defines the volume wherein
a building must be designed. Sometimes the enve-
lope is the extruded property line, but setbacks in
the form of angles at the line or distances from
the line are common. Density is controlled using
floor-area ratios: total floor area divided by prop-
erty area. (Taller buildings will have higher ratios.)
With the percentage of covered area on each enve-
lope surface, regulations can ensure consistent fa-
cade alignments. Lighting rules limit the shadows
buildings cast. For example, buildings over a certain
height might not be permitted to cast a shadow on
adjacent housing for more than 2 hours.

We implemented a simple prototype to visualize

a master plan for the Dubai World Islands. Figure 5
shows some output from this prototype. We created
rules by analyzing building sketches provided by ur-
ban planners who, like our archeologist collabora-
tors, loaded the 2D plan into the CityEngine and
interactively redefined buildings until they were
satisfied. Ultimately, we would like to incorporate
zoning regulations into the CityEngine as rules, so
that all generated models will conform to them.

The CityEngine in film
The traditional production pipeline in the movie
industry is broken down into clearly separated, se-
quential stages. The overall control lies with the
director and producer. The art director supervises
the first stage, preproduction, which develops ini-
tial drawings and 3D models. The second stage, if
live action is included, is filming, which the direc-
tor of photography supervises. The visual-effects
supervisor leads postproduction, the last stage.
Postproduction refines preproduction concepts and
combines them with footage from filming to pro-
duce composited frames. Most computer graphics
work occurs in postproduction and includes the
creation of the final 3D textured models, anima-
tions, and lighting.

Because digital effects have become more preva-
lent, pre- and postproduction have become more
integrated. Procedural modeling can strengthen
this integration by providing a single, flexible,
digital representation, saving both time and cost.
For example, in preproduction, artists might de-
scribe initial designs using coarse urban layouts
and 3D building mass models, augmented with
a few detailed facade designs to convey overall
appearance. As the designs mature, even major
adjustments to building layout and shape can be
made without losing facade detail and the work
that defined it, because rules are defined within
the context of larger-scale designs. Figure 6 shows
how the CityEngine supported such changes dur-
ing movie production.

Procedural urban modeling
in racing games
Demand for procedural technology in game de-
velopment is unique. Over the last decade, video
games have grown into a large and lucrative sec-
tor of the software development and entertainment
industries. The visual complexity of games released
for modern game consoles such as Sony’s Play
Station 3 and Microsoft’s Xbox 360 now rivals the
visual complexity of computer-generated films. This
generates content demand with elements similar to
and distinct from content demand for film. Here

Figure 5. Some
results from
the Dubai
World Islands
urban planning
project.

	 IEEE Computer Graphics and Applications� 23

we look at racing games, a genre that has a vora-
cious appetite for new urban content, and how pro-
cedural modeling is meeting this demand. We focus
on EA’s Need for Speed (NFS) racing games, as one
of the most significant examples of this genre.

Recent NFS games include more than 100 miles
of roads in dense urban, suburban, and rural set-
tings (see Figure 7). Environments vary from real
race tracks and famous world locations to fictional
locations designed to provide a fun driving expe-
rience. NFS worlds are filled with thousands of
unique elements or artistic assets such as architec-
tural buildings, objects, signs, lights, and organics
such as trees, bushes, and grass.

Real-time display requirements (at least 30
frames per second) force game assets to conform
to strict budgets, measured in the number of poly-
gons, materials, draw calls, shader complexity, and
texture sizes. The challenge of maintaining high
visual complexity while conforming to these bud-
gets is daunting, and differentiates video game
production from film.

Procedural-modeling techniques offer tools that
can speed up development of game assets. Game
artists aren’t looking for a one-button procedural
solution. Instead, they’re interested in procedural
methods that help with tedious tasks and provide
results that adjust to gaming constraints. Proce-
dural methods should free artists to spend time
creating and polishing, rather than performing
mundane, repetitive, and time-consuming tasks.

Fitting procedural modeling to game development
workflow
Procedural techniques must fit into established
workflow and production processes. The process
for EA’s NFS games contains three primary stages:
road, terrain, and building development.

With roads, artists are limited to a few unique
tileable textures. Road geometry requires regu-
lar tessellation and UV mapping that guarantees
constant pixel density for all road elements: base
surface, road lines, and details such as grime,
potholes, and cracks. Maintaining pixel density
is particularly challenging at intersections because
roads change shape, require turns, and then wid-
en. Our NFS road tool automates road creation

Figure 6. Some designs for a movie that used the CityEngine in pre- and
postproduction. Top: overall city design. Bottom: Sketches for individual
buildings and procedural building models derived from the design
sketches. Conceptual images by Filip Krnja.

Figure 7. The
world in the
Need for
Speed racing
games includes
visually
complex
and detailed
models of
hundreds
of miles of
roads in city,
suburban, and
rural settings.

24	 May/June 2008

Procedural Methods for Urban Modeling Tutorial

and lets artists lay out roads quickly, add tessel-
lation, and apply UV mapping. Roads can change
many times during production. They remain ed-
itable and retain UV mapping no matter how
many modifications are made. Authoring sharp
transitions from the road’s edge to dirt or the sur-
rounding environment using repeatable texture is
particularly challenging. Unfortunately, existing
procedural techniques are limited in this area and
don’t yet offer acceptable solutions.

Procedural methods for authoring natural ter-
rains are well established and widely used. Au-
thoring terrain in urban gaming environments
remains difficult and includes these challenges:

providing correct shapes, locations, and sizes of
foundations for buildings;
minimizing polygon density to meet memory
budgets;
minimizing unique textures; and
having a uniform UV mapping across the entire
terrain, including building footprints.

Artists populate the terrain with objects including
trees and organics, road signs, light posts, foun-
tains, waterfalls, and buildings. Some objects,
such as shortcuts and hiding spots, involve game-
play, while others are only for viewing and aren’t
interactive.

Authoring buildings is one of the most time-
consuming elements of the NFS production pipe-
line. Artists construct architectural models using
large polygons and texture atlases with tileable and
reusable textures (see Figure 8). They use surface
materials to add unique shading properties such
as reflections. They must generate normal and off-
set maps accurately for hundreds of buildings and
objects. EA’s artists currently have no procedural
assistance for this work.

A wish list of procedural tools for game development
Procedural methods for placing world objects
would be extremely helpful. To respect asset bud-
gets, such tools must be smart enough to increase
the density of objects close to the car camera and

■

■

■

■

decrease the density of objects far from the car
camera. Artists might want to eliminate parts of
buildings that players will never see.

While organic objects such as trees greatly en-
hance the look and feel of racing games, rendering
them is expensive. Existing procedural methods for
modeling convincing trees require high-resolution
textures and many polygons and can’t meet game
asset budgets. Constructing highly optimized organ-
ic objects by hand is tedious and time-consuming.
Game artists are looking for procedural methods
for modeling organic objects that meet asset bud-
gets and yet remain convincing.

Many games are released on multiple hardware
platforms and must reuse digital content. Each
platform has unique strengths and weaknesses;
accordingly, asset budgets differ widely across plat-
forms. Procedural methods can improve content
reusability by automating control of both model
complexity and local model frequency. For exam-
ple, a procedural tool might place highly detailed
models close to a road and more coarsely detailed
models farther from it.

Procedural urban modeling is becoming increas-
ingly important in industrial practice but can

still improve its fit to industrial workflows. Pos-
sible improvements include these:

Automated grammar learning. One of the most
challenging aspects of using grammar-based
procedural modelers is producing the rules that
generate the desired models. We’ve cited some
initial work in automating this process,17 but
further work is required.
Visual-grammar interfaces. Grammars are widely
used in procedural urban modeling, but textual
grammar interfaces aren’t well suited for artists
and designers who aren’t fluent in scripting.
Rule libraries. Modifying an existing rule set
(such as a grammar) to meet new requirements
is much simpler than analyzing a design and cre-
ating a new set from scratch. Creating libraries
of useful rule sets representing complete analy-
ses could lower this “bootstrapping barrier.”
Site and structure integration. Buildings are de-
signed to fit their site, and sites are designed to
fit buildings. Most procedural methods focus on
sites or buildings in isolation.
Structure and shading integration. Urban struc-
tures are built from certain common materials
(such as paint and asphalt) and are used in a
specific manner (for example, by pedestrians
and cars). Integrating this information into

■

■

■

■

■

(a) (b)

Figure 8. 	
(a) Architectural
model. 	
(b) Reusable
and tileable
textures used
in architectural
modeling.

	 IEEE Computer Graphics and Applications� 25

grammars and rule sets should make procedural
approaches much more powerful.
Procedural detail control. Especially for interac-
tive applications such as games, procedural tech-
niques should respect detail constraints such as
asset budgets by adapting to parameters such as
precomputed and real-time visibility.

Further research in these directions will help realize
the full potential of procedural urban modeling.�

References
P. Prusinkiewicz, A. Lindenmayer, and J. Hanan,
“Development Models of Herbaceous Plants for
Computer Imagery Purposes,” Proc. Siggraph, ACM
Press, 1988, pp. 141–150.
W.T. Reeves, “Particle Systems—A Technique for
Modeling a Class of Fuzzy Objects,” Proc. Siggraph,
ACM Press, 1983, pp. 359–375.
K. Perlin, “An Image Synthesizer,” Proc. Siggraph,
ACM Press, 1985, pp. 287–296.
C.W. Reynolds, “Flocks, Herds and Schools: A
Distributed Behavioral Model,” Proc. Siggraph, ACM
Press, 1987, pp. 25–34.
K. Sims, “Evolving Virtual Creatures,” Proc. Siggraph,
ACM Press, 1994, pp. 15–22.
A. Fournier, D. Fussell, and L. Carpenter, “Computer
Rendering of Stochastic Models,” Comm. ACM, vol.
25, no. 6, 1982, pp. 371–384.
F.K. Musgrave, C.E. Kolb, and R.S. Mace, “The
Synthesis and Rendering of Eroded Fractal Terrains,”
Proc. Siggraph, ACM Press, 1989, pp. 41–50.
H. Zhou et al., “Terrain Synthesis from Digital
Elevation Models,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 4, 2007, pp. 834–848.
Y.I.H. Parish and P. Müller, “Procedural Modeling
of Cities,” Proc. Siggraph, ACM Press, 2001, pp.
301–308.
T. Lechner et al., Procedural Modeling of Land Use in
Cities, tech. report NWU-CS-04-38, Dept. Computer
Science, Northwestern Univ., 2004.
C. Sexton and B. Watson, “Vectorization of Gridded
Urban Land Use Data,” ACM Siggraph Posters, ACM
Press, 2007, p. 71.
G. Esch et al., Interactive Procedural Street Modeling,
tech. report CS07-10-01, Dept. Computer Science,
Oregon State Univ., 2007.
S. Greuter et al., “Real-Time Procedural Generation
of ‘Pseudo Infinite’ Cities,” Proc. 1st Int’l Conf.
Computer Graphics and Interactive Techniques in
Australasia and South East Asia (Graphite 03), ACM
Press, 2003, pp. 87–94.
G. Stiny and J. Gips, “Shape Grammars and the
Generative Specification of Painting and Sculpture,”

■

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Proc. IFIP Congress 71, North-Holland, 1972, pp.
1460–1465.
P. Wonka et al., “Instant Architecture,” ACM Trans.
Graphics (Proc. Siggraph), vol. 22, no. 3, 2003, pp.
669–677.
P. Müller et al., “Procedural 3D Reconstruction of
Puuc Buildings in Xkipche,” Proc. Eurographics Symp.
Virtual Reality, Archaeology and Cultural Heritage
(VAST 06), Eurographics, 2006, pp. 139–146.
P. Müller et al., “Image-Based Procedural Modeling
of Facades,” ACM Trans. Graphics (Proc. Siggraph),
vol. 26, no. 3, 2007, article no. 85.
D. Aliaga, P.A. Rosen, and D.R. Bekins, “Style Grammars
for Interactive Visualization of Architecture,” IEEE
Trans. Visualization and Computer Graphics, vol. 13,
no. 4, 2007, pp. 786–797.
P. Merrell, “Example-Based Model Synthesis,” Proc.
2007 Symp. Interactive 3D Graphics and Games (I3D
07), ACM Press, 2007, pp. 105–112.
H. Pottmann et al., “Geometry of Multi-Layer Freeform
Structures for Architecture,” ACM Trans. Graphics
(Proc. Siggraph), vol. 26, no. 3, 2007, article no. 65.
J. Smith et al., “Creating Models of Truss Structures
with Optimization,” Proc. Siggraph, ACM Press,
2002, pp. 295–301.
M. Harada, A. Witkin, and D. Baraff, “Interactive
Physically-Based Manipulation of Discrete/Continuous
Models,” Proc. Siggraph, ACM Press, 1995, pp. 199–208.
J. Martin, “Procedural House Generation: A Method
for Dynamically Generating Floor Plans,” Proc.
Symp. Interactive 3D Graphics and Games: Posters,
ACM Press, 2006.
E. Hahn, P. Bose, and A. Whitehead, “Persistent
Realtime Building Interior Generation,” Proc. 2006
ACM Siggraph Symp. Videogames, ACM Press, 2006,
pp. 179–186.
J. Legakis, J. Dorsey, and S. Gortler, “Feature-Based
Cellular Texturing for Architectural Models,” Proc.
Siggraph, ACM Press, 2001, pp. 309–316.
J. Dorsey et al., “Modeling and Rendering of
Weathered Stone,” Proc. Siggraph, ACM Press, 1999,
pp. 225–234.
Y. Chen et al., “Visual Simulation of Weathering
by Y-Ton Tracing,” ACM Trans. Graphics (Proc.
Siggraph), vol. 24, no. 3, 2005, pp. 1127–1133.
G. Thomas and S. Donikian, “Modelling Virtual Cities
Dedicated to Behavioural Animation,” Computer
Graphics Forum, vol. 19, no. 3, 2000, pp. 71–80.
J. Maïm et al., “Populating Ancient Pompeii with
Crowds of Virtual Romans,” Proc. Eurographics Symp.
Virtual Reality, Archaeology and Cultural Heritage
(VAST 07), Eurographics, 2007, pp. 109–116.
H. Köpf and G. Binding, Bildwörterbuch der
Architektur (Gebundene Ausgabe) [Visual Dictionary
of Architecture], Kröner, 2005 (in German).

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

26	 May/June 2008

Procedural Methods for Urban Modeling Tutorial

P. Müller et al., “Procedural Modeling of Buildings,”
ACM Trans Graphics (Proc. Siggraph), 2006, vol. 25,
no. 3, pp. 614–623.

Benjamin Watson is an associate
professor of computer science at
North Carolina State University.
His Design Graphics Lab focuses on
the creation of meaning in imagery
and spans the intersections between
graphics and perception, design, and

interaction. His work has been applied in digital enter-
tainment, computer security, financial analysis, educa-
tion, and medical assessment. Watson earned a doctorate
in computer science at the Georgia Institute of Technol-
ogy. He cochaired the Graphics Interface 2001, IEEE VR
2004, and ACM I3D 2006 conferences and was copro-
gram chair of I3D 2007. He’s an ACM and senior IEEE
member. Contact him at bwatson@ncsu.edu.

Pascal Müller is cofounder and
CEO of Procedural Inc., a compa-
ny specialized in software for the
efficient creation of 3D buildings
and cities. His main interests are
procedural and image-based mod-
eling, visual effects production,

31. generative design, and architecture. During his PhD
thesis at the Computer Vision Laboratory at ETH Zur-
ich, Muller developed the CityEngine and published sev-
eral scientific papers. Contact him at pascal.mueller@
procedural.com.

Peter Wonka is an assistant pro-
fessor in the Department of Com-
puter Science and Engineering of
Arizona State University. His re-
search interests include real-time
rendering, procedural urban mod-
eling, and the application of com-

puter graphics and visualization to various urban
planning problems. Wonka received a PhD in com-
puter science and an MS in urban planning from the
Vienna University of Technology. He’s a member of the
Partnership in Research and Spatial Modeling lab.
Contact him at pwonka@gmail.com.

Chris Sexton is a researcher at
the Johns Hopkins University Ap-
plied Physics Laboratory. His re-
search interests center on urban
modeling and capture. Sexton re-
ceived an MS in computer science
from North Carolina State Uni-

versity. Contact him at cgsexton@gmail.com.

Oleg Veryovka is a technical direc-
tor at Electronic Arts. He leads de-
velopment of computer graphics
software and tools for the best-
selling Need for Speed series of
computer games. His research areas
are texture control in image half-

toning, nonphotorealistic and stylized rendering, pres-
ervation of image detail, and image quality measures.
Veryovka received a PhD in computer graphics from the
University of Alberta. Contact him at olegv@ea.com.

Andy Fuller is an associate com-
puter graphics supervisor at Elec-
tronic Arts. He has worked full
time in the computer game develop-
ment industry since 1994 (includ-
ing porting the original Need for
Speed onto the Sega Saturn). Fuller

received a two-year civil engineering degree from Bell-
ingham Technical College and studied at the Seattle Art
Institute. Contact him at afuller@ea.com.

For further information on this or any other comput-
ing topic, please visit our Digital Library at http://
www.computer.org/csdl.

