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Procedural modeling is finally going main-
stream. Until recently it was a boutique 
solution, used only when no other options 

existed. Now procedural modeling is often the 
cost-effective solution, used because the alterna-

tives are too expensive. In film, 
games, and other applications, 
consumers expect richer, higher-
quality digital content for their 
dollar. Because budgets won’t al-
low content producers to increase 
cost significantly, they have only 
one choice: they must improve 
their tools. Procedural model-
ing is the primary ingredient in 
these tools.

One of the main drivers of 
these trends is urban content. 
Cities are huge, richly detailed 
artifacts often required in digital 
productions. Modeling them with 
existing, nonprocedural tools can 

take hundreds of man-years. Several researchers are 
creating procedural techniques specifically for auto-
mating city modeling.

A brief history
Computer graphics practitioners have long used 
procedural modeling to generate nonurban con-
tent. L-system grammars generate plants,1 while 
agent-based particle systems model fuzzy objects 

such as fire and smoke2—most famously the “Gen-
esis effect” in Star Trek. Perlin’s noise3 simulates 
clouds and natural textures, while Reynolds’ 
boids4 apply agent-based methods to animate 
flocks, schools, and herds, including stampeding 
wildebeests in The Lion King. Genetic techniques 
similar to those described by Sims5 will soon see 
use in Spore, a game from Electronic Arts (EA).

Synthesizing natural landscapes has a similarly 
long research history, but since cities sit on landscapes 
this approach applies more directly to urban problems 
than the techniques discussed previously. Fournier 
and colleagues use stochastic, fractal techniques in-
spired by Mandelbrot.6 Musgrave and colleagues ex-
tend these techniques to model erosion effects.7 More 
recently, Zhou and colleagues applied texture syn-
thesis—used to make large, unique textures from 
small source patches—to create natural terrain that 
respects artist constraints.8 Planetside’s Terragen, a 
commercial software package widely used in film 
and games, implements many of these techniques.

Synthesizing urban terrain
Procedural techniques dedicated to urban synthe-
sis have only begun to appear more recently. Par-
ish and Müller use L-systems to model extensive 
street layouts and buildings.9 Given input maps 
of geography, population density, and layout con-
straints, their system generates streets, subdivides 
land, and creates skyscrapers. Figure 1 shows an 
example of road generation.

Film and game studios can no 
longer meet audience demand 
for visual content by increasing 
production budgets. Instead 
they are turning to procedural 
modeling, particularly for 
modeling cities. The authors 
review procedural modeling, 
examine the CityEngine 
tool, and study the use of 
procedural urban modeling 
in Electronic Arts’ Need for 
Speed games. 
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Lechner and colleagues use agent-based technol-
ogy to build transportation networks, subdivide 
land, allocate use, and manage population den-
sity.10 Their agents adapt to their environment, 
letting artists steer development interactively to 
meet specific application constraints. A recent ex-
tension to their work by Sexton and Watson vec-
torizes the gridded simulation output, producing 
realistic, smoothed, urban terrains that you can 
import into various geographic information sys-
tem (GIS) tools for further analysis.11

Esch and colleagues support interactive modifica-
tion of street layouts through 2D tensor fields (ten-
sors are a generalization of vectors).12 Artists can 
change layouts indirectly by manipulating the tensor 
field or directly by reshaping the roads themselves.

In gaming and other interactive applications, 
the ability to synthesize urban content in real 
time would be especially useful. Greuter and col-
leagues describe a first pass at this problem, laying 
out cities using a simple grid, and creating simple 
skyscrapers from input footprints on the fly.13 To 
meet real-time constraints, they pay particular at-
tention to caching and limiting computation out-
side the view frustum.

Synthesizing buildings and other structures
In 1971, the architect Stiny introduced shape 
grammars to bring a new formalism and rigor 
to designing and analyzing architecture.14 Many 
designers adopted shape grammars, but they re-
mained largely conceptual tools, synthesizing only 
conceptual mass models of buildings and other 
structures. Wonka as well as Müller and colleagues 
took the next step, introducing split grammars for 
synthesizing detailed building facades,15 building 
a shape grammar called CGA Shape for creating 
entire building exteriors,16 and creating the City-
Engine integrated modeling environment. More 
recently, they have used computer vision to auto-
matically generate grammars describing facades.17 
Aliaga and colleagues describe a similar system 
that facilitates authoring grammars for texturing 
building exteriors.18

Merrell generates buildings (and many other 
shapes) using a texture-synthesis-inspired tech-
nique.19  The artist partitions a small example 
model into parts using a 3D grid. This partition 
then generates a set of constraints: two parts might 
only be adjacent in the output model if they were 
adjacent in the example model. Merrell uses opti-
mized search in this constrained space to generate 
output models 

Many structures such as bridges and train sta-
tions are best characterized by the layout of their 

supporting beams and infrastructure. Pottmann 
and colleagues synthesize the quadrilateral, pen-
tagonal, and hexagonal meshes that characterize 
many beam layouts.20 They can find layouts for 
almost any curved surface. Smith and colleagues 
automate the design of the truss structures that 
support buildings, bridges, and many other struc-
tures.21 Their method accommodates the real-life 
engineering constraints that relate geometry to 
mass and stress.

Floor plans describe building interiors and of-
ten dictate the appearance of building exteriors, 
especially in homes. Harada and colleagues apply 
optimization algorithms to the design of 2D ar-
chitectural floor plans,22 while Martin devises a 
grammar that constructs graphs in which nodes 
represent rooms and links connections between 
rooms.23 He then translates these graphs into in-
terior and exterior building geometry. Hahn and 
colleagues generate building floor plans and cor-
responding 3D interiors in real time by randomly 
dividing rectangular floors into rectangular rooms 
and hallways.24 The division respects several basic 
architectural constraints such as connecting ad-
jacent hallways and ensuring that small private 
rooms are immediately accessible from public 
spaces. Like many researchers, Hahn and col-
leagues store and reuse random seeds during real-
time generation, ensuring that a given floor has 
the same floor plan at each viewing.

Synthesizing other urban content
Urban content is more than building placement 
and shape. Legakis and colleagues synthesize “cel-
lular” textures of brick, tile, and masonry for 
buildings and other structures.25 Textures respect 
component (such as brick) shape, commonly 
used tiling patterns, and structure geometry. For 
example, brick textures on each side of a corner 
reflect the fact that the same 3D bricks occupy 
both textures.

Figure 1. 
Examples of 
procedural 
road synthesis.9
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Weathering and wear are important elements 
of urban realism. Dorsey and colleagues model 
the weathering of stone, including oxidation and 
erosion.26 Chen and colleagues simulate weather’s 
effects on additional materials and model other 
types of weathering, including moss, rust, and dirt 
accumulation.27

Without people, cities are ghost towns. Thomas 
and Donikian populate cities with cars and pedes-
trians, each with matching behaviors and anima-
tions.28 Maïm and colleagues apply the CityEngine 
to generate an annotated city model and interpret 
these semantics to automatically populate the 
scene and trigger special behaviors in the crowd, 
depending on the characters’ location.29

CityEngine applications
One of the most mature procedural modeling 
tools available is the CityEngine. Effective use of 
the CityEngine, and indeed almost any urban- 
modeling tool, requires familiarity with architec-
ture. You should begin by acquiring a good un-
derstanding of basic building elements such as 
windows, doors, columns, pilasters, quoins, gates, 
roofs, cornices, arches, walls, and ornaments. We 
recommend examining one to three architecture 
books with labeled illustrations of these elements. 
One of the best is by Köpf and Binding, but unfor-
tunately it’s available only in German.30 A similar 
book is a Visual Dictionary of Architecture (John 
Wiley & Sons, 1996).

The next step is to create grammar rules for 
combining these basic elements. Unfortunately, 
the existing architectural literature describes these 
rules ambiguously; formal and procedural meth-
ods aren’t widely used in architecture and have 
little tradition in the field. Typically, modelers 
must therefore derive rules and structure without 
relying strongly on the existing literature.

How difficult is using the CityEngine? In the 
three example projects we describe, we collaborated 
with archeologists, urban planners, and artists to 
produce their models and found that shape gram-
mars are as easy to learn as scripting languages. 
Users unfamiliar with scripting generated gram-
mars without difficulty using the CityEngine’s vi-
sual interface or its image-based methods. Soon 
the market will render its own judgment: Proce-
dural Inc. plans to release the CityEngine in the 
second quarter of 2008.

Workflow
Workflow in the CityEngine typically begins 

with a specific idea stemming from a photograph, 
a drawing, an architectural figure, or a new de-
sign concept (see Figure 2).9,31 The next step is to 
analyze the design and find the most important 
parameters.

For example, consider Le Corbusier’s Cruciform 
Skyscraper. Le Corbusier designed several detailed 
variations of the skyscraper between 1920 and 
1930, with the most famous incarnations appear-
ing in the master plans for his Contemporary City 
(1922) or the Plan Voisin (1925). The enormous 
(for that time) 60-story skyscrapers were built on 
steel frames and encased in huge curtain walls of 
glass. They housed both offices and the flats of the 
wealthiest urban inhabitants and were set in large, 
rectangular, park-like green spaces.

Figure 3 shows a sketch of the skyscraper design 
and a visual analysis showing its simplified struc-
ture. During analysis you must name individual 
elements and identify important design parame-
ters. Here we choose the names core, spine, wing, 
and tooth. We also start with seven parameters 
for the main mass of the building: overall height, 
ground floor height, platform height, wing width, 
small-wing width, teeth width, and the distance 
between two teeth. During this analysis, we also 
model detailed textures and individual building el-
ements, such as window geometry. (After several 
design projects, you can reuse many previously 
created building elements.) 

We then encode shape grammar rules for as-
sembling the skyscraper’s crude mass model out 
of basic solids (mainly boxes) and for construct-
ing its facades. After confirming that the resulting 
proportions match a specific sketch, we carefully 
start randomizing parameters to create stochas-
tic rules that generate a whole city. It’s important 
to begin with one working instance and then add 
randomness gradually, because too much random-
ness creates chaotic, uninteresting designs.

We recommend that new CityEngine users gain 

Design idea/concept

Analyze design and parameters

Create elements and textures

Encode design rules

Add stochastic behavior

Generate models

Figure 2. The 
workflow 
for a typical 
architectural 
procedural-
modeling 
project.
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experience with this procedure by building several 
simple buildings. Just a few well-modeled stochas-
tic buildings can populate a complete city. For ex-
ample, Parish and Müller’s model of New York had 
only six different building types.9

A cultural heritage application
Experts and laymen study historical structures 
closely. Digital models of these elements of our 
cultural heritage are valuable tools for analysis, 
reconstruction, and virtual display. While the fo-
cus of cultural heritage digitization is still on 3D 
modeling of important major monuments such as 
the Parthenon, there’s often additional demand 
for modeling larger settlements. Such settlements 
might be interesting or might only form the con-
text for a monument.

While archeologists have detailed architectural 
knowledge of the monuments and settlements they 
study, they have little formal training in CAD or 
computer graphics modeling packages. Procedural-
modeling tools such as the CityEngine can bridge 
this gap, providing a user-friendly, high-level in-
terface and filling in detail where the archeologi-
cal record is incomplete.

In close collaboration with archaeologists from 
Bonn, we recently reconstructed the ancient Ma-
yan city of Xkipche in Mexico. We describe this 
project elsewhere.16 Excavations provided detailed 
locations and descriptions of buildings, which 
were built primarily in one specific architectural 
style. Following the workflow we just described, 

we began analyzing the building and identified the 
most important parameters. While we could rely 
on some drawings and assistance from our archeo-
logical collaborators, we had no formal design de-
scription for the Xkipche style. So, we performed 
most of the analysis ourselves, with continual re-
view and comment from archeologists, producing 
a building model encoded with 39 shape-grammar 
rules and 32 control parameters.

To reconstruct the whole site, archaeologists im-
ported their GIS data (footprints with metadata 
such as building height) into the CityEngine and 
selected buildings for 3D reconstruction. Archeol-
ogists then interactively defined the 32 parameters 
of those buildings while examining a 3D build-
ing preview. When the archeologists were satis-
fied with their reconstruction, they stored each 
building’s parameters in the GIS database. The 
complete city can be generated and stored on disk 
at any time. Figure 4 shows a building model that 
we created with our system.

Spine

Tooth

Core

Wing

Figure 3. Top: 
Views of Le 
Corbusier’s 
Cruciform 
Skyscraper and 
the simplified 
design 
structure. 
Bottom: 3D 
depictions 
generated with 
the CityEngine, 
including 
mass model 
variations 
created by 
changing 
parameters 
and a building 
with a facade 
applied. 

Figure 4. A 
Mayan building 
from Xkipche 
in Mexico 
generated with 
the CityEngine 
for a cultural 
heritage 
project.
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Use in urban planning
Urban master planning regulates, directs, and 
projects future development in cities. Long be-
fore any of the structures they envision are built, 
planners must produce impressive visualizations 
of them, which are used both in design competi-
tions and in political decision making. Not only 
can procedural modeling simplify the production 
of such visualizations, it can also illustrate the re-
maining artistic possibilities through stochastic, 
procedural variation.

Urban plans must conform to numerous zoning 
regulations, the most important of which is the 
building envelope, which defines the volume wherein 
a building must be designed. Sometimes the enve-
lope is the extruded property line, but setbacks in 
the form of angles at the line or distances from 
the line are common. Density is controlled using 
floor-area ratios: total floor area divided by prop-
erty area. (Taller buildings will have higher ratios.) 
With the percentage of covered area on each enve-
lope surface, regulations can ensure consistent fa-
cade alignments. Lighting rules limit the shadows 
buildings cast. For example, buildings over a certain 
height might not be permitted to cast a shadow on 
adjacent housing for more than 2 hours.

We implemented a simple prototype to visualize 

a master plan for the Dubai World Islands. Figure 5 
shows some output from this prototype. We created 
rules by analyzing building sketches provided by ur-
ban planners who, like our archeologist collabora-
tors, loaded the 2D plan into the CityEngine and 
interactively redefined buildings until they were 
satisfied. Ultimately, we would like to incorporate 
zoning regulations into the CityEngine as rules, so 
that all generated models will conform to them.

The CityEngine in film
The traditional production pipeline in the movie 
industry is broken down into clearly separated, se-
quential stages. The overall control lies with the 
director and producer. The art director supervises 
the first stage, preproduction, which develops ini-
tial drawings and 3D models. The second stage, if 
live action is included, is filming, which the direc-
tor of photography supervises. The visual-effects 
supervisor leads postproduction, the last stage. 
Postproduction refines preproduction concepts and 
combines them with footage from filming to pro-
duce composited frames. Most computer graphics 
work occurs in postproduction and includes the 
creation of the final 3D textured models, anima-
tions, and lighting.

Because digital effects have become more preva-
lent, pre- and postproduction have become more 
integrated. Procedural modeling can strengthen 
this integration by providing a single, flexible, 
digital representation, saving both time and cost. 
For example, in preproduction, artists might de-
scribe initial designs using coarse urban layouts 
and 3D building mass models, augmented with 
a few detailed facade designs to convey overall 
appearance. As the designs mature, even major 
adjustments to building layout and shape can be 
made without losing facade detail and the work 
that defined it, because rules are defined within 
the context of larger-scale designs. Figure 6 shows 
how the CityEngine supported such changes dur-
ing movie production.

Procedural urban modeling  
in racing games
Demand for procedural technology in game de-
velopment is unique. Over the last decade, video 
games have grown into a large and lucrative sec-
tor of the software development and entertainment 
industries. The visual complexity of games released 
for modern game consoles such as Sony’s Play
Station 3 and Microsoft’s Xbox 360 now rivals the 
visual complexity of computer-generated films. This 
generates content demand with elements similar to 
and distinct from content demand for film. Here 

Figure 5. Some 
results from 
the Dubai 
World Islands 
urban planning 
project.
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we look at racing games, a genre that has a vora-
cious appetite for new urban content, and how pro-
cedural modeling is meeting this demand. We focus 
on EA’s Need for Speed (NFS) racing games, as one 
of the most significant examples of this genre.

Recent NFS games include more than 100 miles 
of roads in dense urban, suburban, and rural set-
tings (see Figure 7). Environments vary from real 
race tracks and famous world locations to fictional 
locations designed to provide a fun driving expe-
rience. NFS worlds are filled with thousands of 
unique elements or artistic assets such as architec-
tural buildings, objects, signs, lights, and organics 
such as trees, bushes, and grass.

Real-time display requirements (at least 30 
frames per second) force game assets to conform 
to strict budgets, measured in the number of poly-
gons, materials, draw calls, shader complexity, and 
texture sizes. The challenge of maintaining high 
visual complexity while conforming to these bud-
gets is daunting, and differentiates video game 
production from film.

Procedural-modeling techniques offer tools that 
can speed up development of game assets. Game 
artists aren’t looking for a one-button procedural 
solution. Instead, they’re interested in procedural 
methods that help with tedious tasks and provide 
results that adjust to gaming constraints. Proce-
dural methods should free artists to spend time 
creating and polishing, rather than performing 
mundane, repetitive, and time-consuming tasks.

Fitting procedural modeling to game development 
workflow
Procedural techniques must fit into established 
workflow and production processes. The process 
for EA’s NFS games contains three primary stages: 
road, terrain, and building development.

With roads, artists are limited to a few unique 
tileable textures. Road geometry requires regu-
lar tessellation and UV mapping that guarantees 
constant pixel density for all road elements: base 
surface, road lines, and details such as grime, 
potholes, and cracks. Maintaining pixel density 
is particularly challenging at intersections because 
roads change shape, require turns, and then wid-
en. Our NFS road tool automates road creation 

Figure 6. Some designs for a movie that used the CityEngine in pre- and 
postproduction. Top: overall city design. Bottom: Sketches for individual 
buildings and procedural building models derived from the design 
sketches. Conceptual images by Filip Krnja. 

Figure 7. The 
world in the 
Need for 
Speed racing 
games includes 
visually 
complex 
and detailed 
models of 
hundreds 
of miles of 
roads in city, 
suburban, and 
rural settings.
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and lets artists lay out roads quickly, add tessel-
lation, and apply UV mapping. Roads can change 
many times during production. They remain ed-
itable and retain UV mapping no matter how 
many modifications are made. Authoring sharp 
transitions from the road’s edge to dirt or the sur-
rounding environment using repeatable texture is 
particularly challenging. Unfortunately, existing 
procedural techniques are limited in this area and 
don’t yet offer acceptable solutions.

Procedural methods for authoring natural ter-
rains are well established and widely used. Au-
thoring terrain in urban gaming environments 
remains difficult and includes these challenges:

providing correct shapes, locations, and sizes of 
foundations for buildings;
minimizing polygon density to meet memory 
budgets;
minimizing unique textures; and
having a uniform UV mapping across the entire 
terrain, including building footprints.

Artists populate the terrain with objects including 
trees and organics, road signs, light posts, foun-
tains, waterfalls, and buildings. Some objects, 
such as shortcuts and hiding spots, involve game-
play, while others are only for viewing and aren’t 
interactive.

Authoring buildings is one of the most time-
consuming elements of the NFS production pipe-
line. Artists construct architectural models using 
large polygons and texture atlases with tileable and 
reusable textures (see Figure 8). They use surface 
materials to add unique shading properties such 
as reflections. They must generate normal and off-
set maps accurately for hundreds of buildings and 
objects. EA’s artists currently have no procedural 
assistance for this work.

A wish list of procedural tools for game development
Procedural methods for placing world objects 
would be extremely helpful. To respect asset bud-
gets, such tools must be smart enough to increase 
the density of objects close to the car camera and 

■

■

■

■

decrease the density of objects far from the car 
camera. Artists might want to eliminate parts of 
buildings that players will never see.

While organic objects such as trees greatly en-
hance the look and feel of racing games, rendering 
them is expensive. Existing procedural methods for 
modeling convincing trees require high-resolution 
textures and many polygons and can’t meet game 
asset budgets. Constructing highly optimized organ-
ic objects by hand is tedious and time-consuming. 
Game artists are looking for procedural methods 
for modeling organic objects that meet asset bud-
gets and yet remain convincing.

Many games are released on multiple hardware 
platforms and must reuse digital content. Each 
platform has unique strengths and weaknesses; 
accordingly, asset budgets differ widely across plat-
forms. Procedural methods can improve content 
reusability by automating control of both model 
complexity and local model frequency. For exam-
ple, a procedural tool might place highly detailed 
models close to a road and more coarsely detailed 
models farther from it.

Procedural urban modeling is becoming increas-
ingly important in industrial practice but can 

still improve its fit to industrial workflows. Pos-
sible improvements include these:

Automated grammar learning. One of the most 
challenging aspects of using grammar-based 
procedural modelers is producing the rules that 
generate the desired models. We’ve cited some 
initial work in automating this process,17 but 
further work is required.
Visual-grammar interfaces. Grammars are widely 
used in procedural urban modeling, but textual 
grammar interfaces aren’t well suited for artists 
and designers who aren’t fluent in scripting.
Rule libraries. Modifying an existing rule set 
(such as a grammar) to meet new requirements 
is much simpler than analyzing a design and cre-
ating a new set from scratch. Creating libraries 
of useful rule sets representing complete analy-
ses could lower this “bootstrapping barrier.”
Site and structure integration. Buildings are de-
signed to fit their site, and sites are designed to 
fit buildings. Most procedural methods focus on 
sites or buildings in isolation.
Structure and shading integration. Urban struc-
tures are built from certain common materials 
(such as paint and asphalt) and are used in a 
specific manner (for example, by pedestrians 
and cars). Integrating this information into 

■

■

■

■

■

(a) (b)

Figure 8. 	
(a) Architectural 
model. 	
(b) Reusable 
and tileable 
textures used 
in architectural 
modeling.
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grammars and rule sets should make procedural 
approaches much more powerful.
Procedural detail control. Especially for interac-
tive applications such as games, procedural tech-
niques should respect detail constraints such as 
asset budgets by adapting to parameters such as 
precomputed and real-time visibility.

Further research in these directions will help realize 
the full potential of procedural urban modeling.�
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