Eurographics Symposium on Rendering (2005)
Kavita Bala, Philip Dutré (Editors)

Fast Exact From-Region Visibility in Urban Scenes

Jiri BittnerT, Peter Wonkai, Michael Wimmer!

Vienna University of Technology
¥ Arizona State University

Abstract

We present a fast exact from-region visibility algorithm for 2.5D urban scenes. The algorithm uses a subdivision
of line space for identifying visibility interactions in a 2D footprint of the scene. Visibility in the remaining vertical
dimension is resolved by testing for the existence of lines stabbing sequences of virtual portals. Our results show
that exact analytic from-region visibility in urban scenes can be computed at times comparable or even superior

to recent conservative methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

Visibility calculation methods aim to identify the objects vis-
ible either from a point or from a region in space (called view
cell). A typical application for these methods is to accelerate
rendering by sending only visible primitives to the graphics
hardware [COCSDO02]. Of particular interest are from-region
visibility algorithms, because they can be computed in a pre-
process or lazily parallel to the rendering process.

Unfortunately, the from-region visibility problem is
highly complex even in 2.5D scenes. Recent advances in vis-
ibility research have lead to exact solutions for 3D scenes,
albeit at a computational effort that is not justified for many
practical—especially urban—scenes. Other algorithms cal-
culate a conservative potentially visible set (PVS), which
might include significantly more objects than actually vis-
ible from the view cell. These algorithms build on various
heuristics and simplifications: omission or simplification of
complex visibility interactions (often in the form of miss-
ing occluder fusion), approximations due to discretization,
limitations on the size, shape and placement of view cells,
overestimation of the occludee sizes, approximate ordering
of occluders, etc.

In this paper, we show a new exact solution to the 2.5D
from-region visibility problem that is both fast and suffers

none of these shortcomings:

(© The Eurographics Association 2005.

Figure 1: Snapshot of a scene with IM occluders with a
PVS calculated using our new method. The buildings which
form the PVS are shown in blue. The sightlines are shown
in green. The PVS for the given view cell contained 1171
occludees and took 1.98 seconds to compute.

e Its speed is comparable to or faster than previous conser-
vative methods.

e It is exact, i.e., it accounts for all types of occluder fu-
sion (unlike [DDTP00,SDDS00, WWS00,BWWO01]), and
does not rely on discretization (like [KCCOO01, LSCO03,
WWSO00]), avoiding the need for excessive occluder
shrinking.

e It poses no restriction on the size or shape of the view cell
or occluders.

J. Bittner, P. Wonka, and M. Wimmer / Fast Exact From-Region Visibility in Urban Scenes

The main contribution of this paper is that it provides the
first exact and practical solution of an important and widely
researched topic, 2.5D from-region visibility. Visibility com-
putations are needed in many different fields. It is very dif-
ficult for a practitioner to judge which of the many existing
methods employs simplifications in a way that it is still accu-
rate or flexible enough for a particular visibility problem. To
give an example, an architect using a commercial GIS sys-
tem is not likely to have the time nor the knowledge to find
out how to approximate a desired view cell with squares, or
how to set up parameters like discretization resolution so that
his desired accuracy is achieved.

2.5D visibility is an important and easily identifiable sub-
problem, and therefore we believe that there is a high value
in a solution that “just works”, while at the same time being
fast enough for practical usage. To demonstrate this point,
we will show in Section 6 how simplifications commonly
used in conservative methods can lead to non-intuitive re-
sults, which can be significantly worse than those obtained
by the exact method.

Our method uses a subdivision of line space in order to
find sequences of potential occluders for a given object in
a 2D footprint of the scene. Visibility of the object is com-
puted by interpreting the vertical extensions of the potential
occluders as 3D portals and testing for the existence of a
stabbing line through the portal sequence [Tel92b].

2. Related work

Visibility is a widely researched topic covered in a number
of thorough surveys [Dur99, BW03, COCSDO02]. We focus
here on previous from-region visibility methods.

Visibility algorithms for indoor scenes typically exploit a
cells-and-portals subdivision. Visibility from a cell is com-
puted by checking sequences of portals for possible sight-
lines. To solve this task, Airey [ARB90] used ray shooting,
and Teller et al. [TS91, Tel92b] used stabbing line computa-
tions, which are also used as a part of our new algorithm.

For outdoor scenes, Wonka et al. [WWSO00] use occluder
shrinking and point sampling to calculate visibility in 2.5D
scenes with the help of a hardware accelerated z-buffer.
Koltun et al. [KCCOO01] transform the 2.5D problem to a se-
ries of 2D visibility problems. The 2D problems are solved
using dual ray space and the z-buffer algorithm. They also
show an analytic method which is exact for a restricted 2D
problem, but which turns out to be only conservative in the
general 2.5D case. Leyvand et al. [LSCOO03] use a differ-
ent discretization of line space, and also relax the 2.5D con-
straint in some cases. All of these algorithms rely on dis-
cretization in graphics hardware, which limits their precision
and scalability. Bittner et al. [BWWO1] use a line space sub-
division maintained by a BSP tree to calculate the PVS. This
method forms the basis of our new algorithm.

For general 3D scenes, Durand et al. [DDTPOO] pro-
posed extended projections and an occlusion sweep to
calculate conservative from-region visibility. Schaufler et
al. [SDDSO00] used blocker extensions to compute conser-
vative visibility in scenes represented as volumetric data.
Bittner [Bit02] proposed an algorithm using Pliicker co-
ordinates and BSP trees to calculate exact from-region
visibility. A similar method was published by Nirenstein
et al. [NBGO2]. While these methods can handle general
scenes, they are also significantly slower than dedicated
methods for 2.5D scenes, and the conservative methods rely
on discretization and other simplifications. Recently, Niren-
stein et al. [NB04] advocate aggressive visibility algorithms,
that provide a smaller PVS than the exact one at the cost of
image errors.

The remainder of the paper is organized as follows: Sec-
tion 3 gives an overview of the algorithm. In Section 4 we
discuss the line space subdivision. In Section 5 we describe
the stabbing line computation. In Section 6, we evaluate the
proposed method and show some examples for its applica-
tion.

3. Overview

Our method calculates exact from-region visibility for 2.5D
scenes, i.e., scenes that can be represented as a polygonal
height field (a piece-wise linear function f : Q — R, where
Q is a 2D domain). It can be shown that visibility of such
scenes is equivalent to the visibility of the contained edges.
Therefore, in our algorithm occluders and view cell faces
are represented by general 3D edges and their vertical exten-
sions to the ground. The algorithm computes (typically in
a preprocess) an exact potentially visible set (PVS) in three
interleaved steps:

Hierarchical scene traversal. The occluders and the scene
geometry are stored in a spatial hierarchy (we use a kD-
tree). For each face of a given view cell, the spatial hier-
archy is traversed to obtain an approximate front-to-back
order of occluders. The processing of occluders is inter-
leaved with visibility tests of the currently processed kD-
tree node. If a node is invisible, the subtree rooted at the
node and all contained occluders are culled. If it is visible,
the algorithm recursively continues testing visibility of its
descendants.

2D line space subdivision. To resolve visibility in the hori-
zontal direction, the algorithm incrementally builds a sub-
division of line space, maintained by a 2D BSP tree.
When an occluder is processed, a line space blocker poly-
gon is constructed from its footprint and inserted into
the tree. A blocker polygon is split according to the BSP
leaves it intersects, each of which has a sequence of po-
tential occluders associated.

Portal visibility test. Final visibility of an occluder is re-
solved using the occluder sequences identified by the line
space subdivision. For each occluder in such a sequence,

(© The Eurographics Association 2005.

J. Bittner, P. Wonka, and M. Wimmer / Fast Exact From-Region Visibility in Urban Scenes

Sup

]
. [
]
'

Su 2 . . Y
Seps 2 v’ Sep . * F S
o ep, soot . ! 2 . S ‘i
o) g . I . ‘ DY
a 1 A . . - . »
[. AN . P .’ . \
. . T, .~ 1
(DY Y - R
. ’ . .
' X Y & Jg
LA DY PR Mo
'oe S 9 A M .' 1 St
1 A} i \}
v, v, v Y Sttt TN
° [> .’ v L Y
view cell view cell view cell view cell view cell

Oa
v, Vv, l f :
\ Ob
(@ (b)

(c)

(d) (e)

Figure 2: Primal space (top) and line space (bottom). (a), (b) View cell and occluder endpoints map to lines in line space. (c)
The resulting line space blocker polygon and its corresponding funnel of lines in primal space. (d) Another blocker polygon (e)
The cell C in the line space subdivision corresponds to a funnel F in primal space.

we construct a semi-infinite vertical portal. Then we test
for the existence of a line stabbing all portals in the se-
quence. Thus we reduce the 2.5D visibility problem to
the well-known portal visibility problem. Visible occluder
fragments update the line space subdivision accordingly.
Since the exact portal visibility test is quite costly, we
introduce an efficient acceleration based on penumbra
wedges that works in the majority of cases.

In practice, scenes will often not be given as height fields
directly. As in previous 2.5D visibility algorithms, occluders
are typically synthesized from the original 3D input model
(how this should be done depends on the scene and is be-
yond the scope of this paper), whereas visibility tests for
the original objects are performed using separate occludees,
for example their bounding boxes. Note that to provide ex-
act results in the case of separate occludees, they need to be
clipped against the height field in order to guarantee a 2.5D
input structure.

4. Line Space Subdivision

Our algorithm makes use of line space, a dual space where
each point corresponds to a line in primal space. The 2D
portion is based on an algorithm by Bittner et al. [BWWO1,
BPS03] and similarly uses Pliicker coordinates to parame-
terize line space. The rays that emanate from the view cell
and intersect an occluder correspond to a polygon in line
space, the so-called blocker polygon. These polygons induce
a 2D subdivision of line space into polygonal line space
cells. Each line space cell C is associated with a sequence
of blocker polygons ordered by the distance of occluders to
the given view cell. Each line space cell corresponds to a
funnel F in primal space; the funnel bounds all rays inter-
secting the sequence of occluders associated with the cell
(see Figure 2).

(© The Eurographics Association 2005.

The line space subdivision is created incrementally by us-
ing an occlusion tree, a BSP tree where nodes correspond to
edges of blocker polygons. For each occluder O, we identify
the line space cells that are intersected by the correspond-
ing blocker polygon. For each such cell, visibility of O is
determined by the portal visibility test. If O is occluded, no
changes are necessary. If O is visible in the whole cell, it is
inserted into the sequence of occluders for the cell. Other-
wise, the cell is further subdivided according to visible parts
of O.

5. Portal visibility computation

The portal visibility test is the core of our exact visibility al-
gorithm. The goal is to classify visibility of a blocker poly-
gon (belonging to an occluder O) in a line space cell C.

We construct 3D virtual portals in primal space for the
given view cell face, the new occluder (O), and for each
occluder associated with C. For the view cell face and O,
the virtual portal is bound by the top edge and two vertical
half-lines directed downwards. For the other occluders, it is
bound by the top edge and two vertical half-lines directed
upwards (see Figure 3).

5.1. Stabbing line computation

The portal visibility test of O in C is based on a stabbing
line computation [Tel92b] which tests the existence of a
ray which leaves the virtual view cell portal, passes through
the virtual portals of all occluders in between (i.e., it is not
blocked by these occluders, see Figure 3), and hits the vir-
tual portal of O. If such a ray exists, O is visible in the line
space cell C (and its corresponding primal space funnel F).

The actual stabbing line computation is carried out in 5D

J. Bittner, P. Wonka, and M. Wimmer / Fast Exact From-Region Visibility in Urban Scenes

Figure 3: Stabbing line computation. The view cell face is
shown in red, two occluders identified by the line space sub-
division in blue, and the currently processed occluder O in
yellow. The portals extend above the top edges of the occlud-
ers and below the top edges of the view cell and O.

line space. Each line of each portal in primal space cor-
responds to a halfspace bounded by a hyperplane in line
space. A line in primal space that stabs all the portals corre-
sponds to a point in line space which (1) is in the intersection
of all these halfspaces, and (2) lies on the Pliicker quadric
(see [Tel92a]). If there is no such point, we conclude that
there is no stabbing line and hence O is not visible with re-
spect to the given occluder sequence. The intersection of 5D
halfspaces is calculated using polyhedra enumeration tech-
niques [AF96].

5.2. Updating the line space subdivision

In order to update the line space subdivision, more detailed
information about the visibility of O is gathered by making
use of the antipenumbra [Tel92a] (this is only necessary for
occluders, not for occludees). The antipenumbra is the set of
3D rays corresponding to all the stabbing lines found by the
5D halfspace intersection. By reconstructing the antipenum-
bra induced by the given set of virtual portals and intersect-
ing it with O, we determine the exact visible part of O in the
funnel F. This leads to three possible results:

e (O is completely occluded. In this case, O does not con-
tribute to the line space cell C.

e The top edge of O is visible across the whole funnel. In
this case, it is simply added to the sequence of relevant
occluders for C.

e (is visible in only a part of the funnel. This means that a
change of visibility due to the height structure of occlud-
ers occurs inside the funnel F.

Only this last case requires the line space subdivision to be
updated: The endpoints of the visible parts of O are mapped
to one or more edges in line space, which are used to sub-
divide the original line space cell C. In the newly created

cells where a part of O is visible it is added to the associated
sequence of occluders.

5.3. Acceleration using penumbra wedges

The 5D halfspace intersection necessary for the portal test
is a rather costly algorithm with a high constant cost and
asymptotic time complexity 0(n2), where n is the number of
halfspaces [Tel92a]. Fortunately, we can apply conservative
tests that quickly decide if the new occluder is either defi-
nitely visible or definitely invisible. As a result, the higher-
dimensional algorithm is invoked very rarely in practice. The
conservative tests are based on the construction of penumbra
wedges, which bound the penumbra of the view cell with re-
spect to an occluder and a funnel.

First, we select all occluders associated with the line space
cell C. For each occluder, the penumbra wedge is calculated
as the region bounded by the four shadow planes defined by
its top edge and the top edge of the view cell. Some typical
penumbra wedges are shown in Figure 4.

Figure 4: Penumbra wedges for two different view cell
face/occluder configurations. (left) Non-parallel edges in-
duce penumbra wedge with non-zero volume. (right) The
viewcell face and the occluder are parallel, but due to the
tilted occluder edge the penumbra wedge expands.

To determine visibility of O with respect to F, we first clip
it against the two lower shadow planes of each penumbra
wedge. If O is completely below any two such planes, it is
definitely invisible.

An occludee can be trivially accepted as visible in C if any
part of its edge lies above all upper shadow planes. If this is
not the case, or if we are dealing with an occluder, the upper
shadow planes are used to compute the number of penumbra
wedges that intersect the clipped occluder edge. If the edge
intersects at most one penumbra wedge, it is visible (this
happens if there is no or only one “relevant” occluder for O)
and we calculate the visible part of O by clipping against the
lower shadow planes. However if the edge intersects several
wedges, the umbra is defined by a quadratic EEE event sur-
face due to penumbra fusion (see Figure 5). Only in this case
do we invoke the exact stabbing line computation described
above.

(© The Eurographics Association 2005.

J. Bittner, P. Wonka, and M. Wimmer / Fast Exact From-Region Visibility in Urban Scenes

Figure 5: A EEE event surface due to the cumulative effect of
two occluders. The yellow region would be falsely classified
as visible if only the penumbra wedges of the two occluders
were used.

6. Results and Discussion

We have implemented the presented algorithms and run
some tests on a 2GHz Opteron PC. We will analyze the ver-
satility, scalability and efficiency of our method on 4 differ-
ent test scenes with different view cell sizes (test 1 and 2).
We also compare aspects of our method against three dif-
ferent previous methods to show the effects of discretiza-
tion [WWSO00, LSCOO03] (test 3) and to prove the perfor-
mance advantage over exact 3D visibility evaluation [Bit02]
(test 4).

6.1. Tests for different scenes

In a first test, we illustrate the versatility of our method by
running it on four different test scenes with varying visibil-
ity properties: a model of the city of Vienna, which is a typ-
ical European city with dense occlusion; a model of the city
of Atlanta, which has a much lower building density like
most American cities, and therefore features visibility inter-
actions that extend far from the view cell; a computer gener-
ated model of a large city with complex building shapes; and
of a randomly generated 2.5D scene with slanting top edges,
which makes the complex EEE events appear more often.
All values in the following tables represent averages over a
number of randomly placed view cells. Table 1 summarizes
some model statistics. For the Vienna model, occludees con-
sisted of bounding boxes containing a total of 8M polygons,
whereas in the other models, the occluders also served as oc-
cludees. Note that in our experiments, we concentrate on the
number of actual 2.5D occluders in the scene. As discussed
in Section 3, these occluders typically represent significantly
more complex 3D input scenes.

Snapshots of the PVS computed for one view cell in At-
lanta, for view cells at different heights in the random scene,

(© The Eurographics Association 2005.

and a PVS at the City scene are depicted in Figures 7, 8,
and 9. Figure 1 shows results for a very big scene, showing
the scalability of the algorithm. The memory requirements
for representing the line space subdivision for our the At-
lanta scene are as follows: the subdivision consisted on av-
erage of 2312 cells for the larger view cells and 565 cells for
the smaller view cells. There were 1.54 occluders associated
per line space cell for the large view cells and 1.66 for the
smaller view cells. This number expresses the average num-
ber of occluders visible above each other in a funnel (for a
2D scene it would equal 1.0).

Vienna Atlanta City Random
Triangles 8,123,675 181,678 2,153,382 42,801
Occluders 15,243 90,839 1,018,350 42,801
Occludees 7,731 90,839 1,018,350 42,801
Area 8 km? 32 km? 40 km? 1 km?

Table 1: Model statistics.

Table 2 shows the behavior of the algorithm when the
view cell size varies. The algorithm is output sensitive, i.e.,
the running time increases when the complexity of visibil-
ity interaction increases for larger view cells (possibly faster
than linearly), but is practically independent of the size of the
scene. The output-sensitive behavior is mainly achieved due
to the two hierarchies in the algorithm, the scene hierarchy
and the hierarchical line-space subdivision.

view cell PVS size | time
perim. height [s]
Vienna 36m | 2m 84 0.013

535m | 2m 235 0.060
Atlanta 17m | 2m 279 0.055
4m | 2m 890 0.298
89m | 2m 1053 0.488
177m | 2m 1328 0.918
City 13m 2m 1041 2.263
569m | 2m 7050 70.2
Random 36 m 2m 113 0.156
36 m | 4m 194 0.438

Table 2: Results for different view cells.

The efficiency of the different stages of the algorithm is
shown in Table 3. It can be seen that the penumbra accel-
eration succeeds in resolving visibility in the vast majority
of cases, which explains the high speed of the algorithm.
The remaining cases are run through the exact portal test,
which classifies about 10-20% of the remaining occluders as
visible, while not taking more than 25% of the total running
time. This suggests that the EEE events—which are the most
difficult visibility events to compute—are already very well
approximated by the underlying 2D algorithm in conjunc-
tion with the penumbra wedge optimization.

J. Bittner, P. Wonka, and M. Wimmer / Fast Exact From-Region Visibility in Urban Scenes

Portal Penumbra Stab. Stab.

tests succ. culls time
Vienna 11,293 99.7% 8.7% 30%
Atlanta 51,704 99.99% 6% 5%
City 12,083,009 99.99% 10% 7%
Random 26,026 99.5% 11.6% | 28%

Table 3: Algorithm efficiency, showing how often the penum-
bra wedge acceleration succeeded in determining visibility,
how many of the remaining occluders were culled by the ex-
act portal test, and the total time used by the exact portal
test. For the statistics we used the most complex set of view
cells defined for each model.

6.2. Simulating conservative behavior

In a second test, we used our algorithm to simulate a typical
conservative algorithm that only uses one penumbra wedge
per occluder to approximate regions where EEE events oc-
cur. The resulting PVS increased by more than 47% for the
Random scene for 2 m view cells, and more than 76% for
4 m view cells. This shows not only the effectiveness of our
new exact algorithm especially in complicated visibility sit-
uations, but also its utility to analyze such situations.

6.3. Simulating discretization

In a third test, we used our method as a reference method
to demonstrate the effects of the two kinds of discretization
typically used in previous visibility algorithms: object space
discretization [SDDS00, WWS00] and image [DDTP0O] or
line space discretization [KCCOO01, LSCOO03]. For object
space discretization, we have applied Wonka et al.’s discrete
hardware-accelerated approach to the Vienna model for the
same view cells as our exact method. Occluders were conser-
vatively discretized to a global 1400x1400 pixel grid (yield-
ing cells of about 2x2m), which led to an overestimation of
the PVS of 17% on average, while the running time was
comparable. This method works well if the scene contains
a sufficient number of larger occluders, while for the exact
algorithm, the size of occluders is irrelevant. Note that for
the Atlanta scene, the grid would already have to contain
4000x2000 pixels.

Line space discretization works differently: an occluder
needs to block the whole funnel represented by a sample in
the discretization in order to have any effect on the computa-
tion. This means that occluders near the view cell are treated
with higher accuracy. We show this effect by simulating the
distance-dependent occluder shrinking required by the line
space method of Leyvand et al. [LSCOO03]. Table 4 summa-
rizes the results for several line-space resolutions with view
cells similar to those used before.

Especially for the Atlanta scene, where many occluders
are distant, a very high line-space resolution (more than

16000x16000) is required to achieve acceptable results. An-
other reason for these values is that due to the conserva-
tive discretization in line space, gaps appear between for-
merly connected occluders. These results indicate that there
is a larger class of urban models where discretization-based
methods are no longer competitive. For scenes where the
occluders become smaller and move further away from the
view cell the exact method will significantly outperform the
discretization-based ones in terms of speed (due to high res-
olution requirements) and quality of the PVS (due to shrink-
ing). .

Gridres. | 512 1024 2048 | 16384 | exact
Vienna 633 535 489 455 235
Atlanta 50744 | 25751 | 10082 | 2656 | 1152

Table 4: PVS sizes for different line-space grid resolutions
for Leyvand et al. [LSCO03] compared to the exact solution.

6.4. Comparison to 3D method

In a fourth test, we prove the value of an exact 2.5D solution
vs. a full 3D implementation. We ran an output-sensitive ex-
act 3D visibility algorithm [Bit02] for the same view cells as
our 2.5D algorithm. For the Vienna and Atlanta scenes, the
3D method took about 15 times as long to compute the same
result as our 2.5D method, whereas in the Random scene it
took almost 25 times as long. This means that for all applica-
tions that do not require a full 3D visibility solution (which
are numerous), our exact 2.5D method offers all the advan-
tages of an exact method, but at the low computational effort
of a conservative 2.5D method.

We should also point out that even though our algorithm
is exact, our current implementation is ultimately limited by
floating point accuracy. Numerical robustness is an issue that
is not trivial to solve. In our method, we have used normal-
ization and epsilon-thresholds in order to deal with this is-
sue, and found this to affect the visibility decision of a few
polygons. The use of the BSP tree as the main data structure
actually helps here, since the required binary splitting of 2D
polygons can be implemented very robustly. The more prob-
lematic halfspace intersection is used primarily as an accep-
tance/rejection classifier, which significantly limits the prop-
agation of numerical errors.

6.5. Complexity analysis

An accurate theoretical complexity analysis of the method
is a difficult issue. First, it is hard to provide an accu-
rate combinatorial model of real urban scenes; second, the
method is based on several heuristics, the behavior of which
is hard to analyze (kD-tree, hierarchical line space subdivi-
sion, penumbra wedges acceleration). We therefore present
an analysis under an assumption about scene visibility which
is also backed up by experimental measurements.

(© The Eurographics Association 2005.

J. Bittner, P. Wonka, and M. Wimmer / Fast Exact From-Region Visibility in Urban Scenes

Let n denote the total number of occluders and k the
number of visible occluders. A reasonable assumption about
scene visibility in urban scenes is that the average number of
occluders influenced (i.e., partially occluded) by each visi-
ble occluder is O(1) (in both horizontal and vertical direc-
tions). Thus, each blocker polygon may be split O(1) times
due to the corresponding visibility events. Assuming that
the resulting O(k) blocker polygon fragments are uniformly
distributed, the expected size of the line space BSP tree is
O(klogk) (this follows from an analysis of randomized BSP
construction for line segments in the plane [BKOS97]). Con-
sequently, each leaf of the BSP tree is associated with O(1)
visible occluders. Inserting an occluder or testing its visibil-
ity is O(logk) in time (we traverse O(1) paths from the root
to the leafs).

To take into account the hierarchical visibility tests for
all occluders (and occludees), let us assume that at each
kD-tree leaf, there are (1) occluders. It can be shown
that the number of kD-tree nodes tested for visibility is be-
tween O(k+logn) and O(klogn) [Bit02]. The visibility test
using the kD-tree node takes between O(logk) and O(k).
The first case corresponds to traversing a single path from
the root to the leaf, the second case to the traversal of the
whole tree. So in total, the algorithm complexity is between
O(klogk +logklogn) and O(k*logn).

We provide experimental evidence about the derived com-
plexity bounds by measuring the dependence of the the size
of the line space BSP tree and the total number of funnel vis-
ibility tests on the number of visible occluders for the scenes
and tests presented in Table 2. The measurements are de-
picted in Figure 6. The figure shows that both the size of the
BSP tree and the number of funnel visibility tests roughly
correspond to the derived complexity bounds. The only test
which exhibits faster growth is the second City test (large
view cells). We explain this mainly by the fact that the size
of the view cells is so large that the assumption of partial oc-
clusion of O(1) in horizontal direction does no longer hold.

7. Conclusions and Future Work

In this paper, we have introduced the first exact solution to
the 2.5D from-region visibility problem that achieves run-
ning times comparable to previous conservative methods. It
combines a subdivision of 2D line space and an exact 3D
portal visibility test in order to deal with all possible visibil-
ity interactions.

The main contribution of this paper is a solution to the
2.5D visibility problem that is fast and “just works”. It is
exact and does not rely on any heuristic or simplification.
In particular, it does not use discretization, neither of the
scene nor of line space. We have shown possible conse-
quences of such simplifications, where especially discretiza-
tion methods have exhibited significant weaknesses in some
situations. Also, no tuning of parameters is required, and the

(© The Eurographics Association 2005.

BSP nodes
1le+06 T
O(k logk) ——
100000 £ Vienna <&
Atlanta XA\
10000 Gy &+
Random
1000 F
100 ¢
10
1 10 100 1000 10000

visible occluders
funnel tests

le+10 _ ‘
O(kogk)— Vienna &

I Atlanta XA i
le+08 City & + ﬁé’
1le+06 - 4
10000 1

100 b
1 L L L
1 10 100 1000 10000

visible occluders

Figure 6: Experimental evaluation of alghorithm complex-
ity for all measured tests. (top) The size of the line space
BSP tree in dependence on the number of visible occluders.
(bottom) The total number of funnel visibility tests in depen-
dence on the number of visible occluders. For better clarity
both the graphs are shown in log-log scale.

method works well for different sizes of occluders, no mat-
ter what distance they are located. All of this is important for
practitioners from many fields who cannot easily judge how
some simplification impacts their particular requirements for
a visibility solution.

For future work, we plan to tackle the 3D visibility prob-
lem by decomposing ray space into subsets that can be ana-
lyzed with 2.5D visibility queries. The method could also be
modified to efficiently handle non-urban 2.5D scenes, such
as terrains.

Acknowledgments

We would like to thank Pascal Miiller for creating the City
scene. This work was supported by the GameTools IST
project no. IST-2-004363 and the Kontakt OE/CZ grant no.
2004-20.

J. Bittner, P. Wonka, and M. Wimmer / Fast Exact From-Region Visibility in Urban Scenes

|

Figure 7: (left) A PVS computed in the Atlanta scene. The buildings which form the PVS are shown in blue. The green planes
correspond to lower penumbra wedges, the red line segments are visible parts of occluder top edges. (middle) A closeup of the
view cell neighborhood. (right) Visualization of lines bounding the funnels of the line space subdivision (in yellow). Note the

gray regions culled by hierarchical visibility tests.

References

[AF96] Avis D., FUKUDA K.: Reverse search for enumeration.
Discrete Applied Math. 6 (1996), 21-46.

[ARB90] AIREY J. M., ROHLF J. H., BROOKS, JR. F. P.: To-
wards image realism with interactive update rates in complex vir-
tual building environments. In 71990 Symposium on Interactive
3D Graphics (Mar. 1990), ACM SIGGRAPH, pp. 41-50.

[Bit02] BITTNER J.: Hierarchical Techniques for Visibility Com-
putations. PhD thesis, Czech Technical University in Prague,
Oct. 2002.

[BKOS97] BERG M., KREVELD M., OVERMARS M.,
SCHWARZKOPF O.: Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, Heidelberg, New
York, 1997.

[BPS03] BITTNER J., PRIKRYL J., SLAVIK P.: Exact regional
visibility using line space partitioning. Computers & Graphics
27,4 (2003), 569-580.

[BWO03] BITTNER J., WONKA P.: Visibility in computer graph-
ics. Environment and Planning B: Planning and Design 30, 5
(sep 2003), 729-756.

[BWWO1] BITTNER J., WONKA P., WIMMER M.: Visibility
preprocessing for urban scenes using line space subdivision. In
Proceedings of Pacific Graphics (PG’01) (Tokyo, Japan, 2001),
IEEE Computer Society, pp. 276-284.

[COCSD02] COHEN-OR D., CHRYSANTHOU Y., SILVA C., DU-
RAND F.: A survey of visibility for walkthrough applications.

IEEE Transactions on Visualization and Computer Graphics.
(2002).

[DDTP00] DURAND F., DRETTAKIS G., THOLLOT J., PUECH
C.: Conservative visibility preprocessing using extended projec-
tions. In Computer Graphics (Proceedings of SIGGRAPH 2000)
(2000), pp. 239-248.

[Dur99] DURAND F.: 3D Visibility: Analytical Study and Appli-
cations. PhD thesis, Universite Joseph Fourier, Grenoble, France,
July 1999.

[KCCOO01] KOLTUN V., CHRYSANTHOU Y., COHEN-OR D.:
Hardware-accelerated from-region visibility using a dual ray
space. In Proceedings of the 12th EUROGRAPHICS Workshop
on Rendering (2001).

[LSCO03] LEYVAND T., SORKINE O., COHEN-OR D.: Ray
space factorization for from-region visibility. ACM Transactions
on Graphics (TOG) 22, 3 (2003), 595-604.

[NBO4] NIRENSTEIN S., BLAKE E.: Hardware accelerated ag-
gressive visibility preprocessing using adaptive sampling. In
Rendering Techngiues 2004: Proceedings of the 15th symposium
on Rendering (2004), Eurographics Association, pp. 207-216.

[NBG02] NIRENSTEIN S., BLAKE E., GAIN J.: Exact From-
Region visibility culling. In Proceedings of EUROGRAPHICS
Workshop on Rendering (2002), pp. 199-210.

[SDDS00] SCHAUFLER G., DORSEY J., DECORET X., SILLION
F. X.: Conservative volumetric visibility with occluder fusion. In
Computer Graphics (Proceedings of SIGGRAPH 2000) (2000),
pp. 229-238.

[Tel92a] TELLER S. J.: Computing the antipenumbra of an area
light source. In Computer Graphics (Proceedings of SSIGGRAPH
’92) (July 1992), pp. 139-148.

[Tel92b] TELLER S. J.: Visibility Computations in Densely Oc-
cluded Polyhedral Environments. PhD thesis, CS Division, UC
Berkeley, Oct. 1992. Tech. Report UCB/CSD-92-708.

[TS91] TELLER S. J., SEQUIN C. H.: Visibility preprocessing
for interactive walkthroughs. In Proceedings of SIGGRAPH 91
(July 1991), pp. 61-69.

[WWS00] WONKA P., WIMMER M., SCHMALSTIEG D.: Vis-
ibility preprocessing with occluder fusion for urban walk-
throughs. In Proceedings of EUROGRAPHICS Workshop on
Rendering (2000), pp. 71-82.

(© The Eurographics Association 2005.

J. Bittner, P. Wonka, and M. Wimmer / Fast Exact From-Region Visibility in Urban Scenes

Figure 8: A PVS computed in the random scene at different heights (left) 2 m, 72 visible objects, (middle) 4.6 m, 173 visible
objects, (right) 7.2 m, 1554. visible objects.

Figure 9: (left) Overview of the City scene. (middle) A relatively large view cell inside the City scene used for our tests. Note
that the view cell is located at a challenging position from which a large part of the city is visible. (right) Snapshot of a PVS
computed in the City scene.

(© The Eurographics Association 2005.

