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1 Visualization
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1.1 Literature

• distill.pub article on Feature Visualization - amazing polish and visual quality

• Deep Visualization Toolbox Code Repository - try out things yourself

5

https://distill.pub/2017/feature-visualization/
https://github.com/yosinski/deep-visualization-toolbox


1.2 Fancy 3D renderings

• Beautiful 3D visualization by Denis Dmitriev

• Looks great

• Hard to see what is going on
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https://www.youtube.com/watch?v=3JQ3hYko51Y


1.3 Tone Mapping and Range Mapping

• Visualizing arrays of values in the range [mi n,max] needs Tone Mapping or Range
Mapping

• Mapping mi n to 0 and max to 1 (popular)

• Map values < 0 to 0 and value > 1 to 1

• Warning: results can look quite different when the range mapping changes

• Example: values are in a small range, e.g. [−ε,+ε], but values are mapped to the
complete visible range [0,1]

• Example: values are far outside the visible range, e.g. [−100,100] but are mapped
inside the visible range
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1.4 Visualizing Filters Directly as RGB images

• Works great for filters with size W ×H ×3

• typically first layer CONV filters

• Does not work great for small filters (e.g. 3×3)

• Does not work great for filters in later layers

• Does not work great for filters with many channels (e.g. 3×3×512)
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1.5 Visualizing Filters as Collection of Grayscale Images

• Filters of size W ×H ×Ci n with Ci n > 3 can be visualized as Ci n grayscale images

• For one layer there will be Cout ×Ci n grayscale images

• Discussion: hard to interpret

• Example visualization for one layer of a smaller network:

• 20 filters or size 7×7×16
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1.6 Visualizing Activation Tensors

• Each channel of a tensor (activation map) can be shown as grayscale image

• A W ×H ×C tensor gives C grayscale images of size W ×H .
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• Example shows an activation map that seems to correspond to faces

• Video: youtube: Deep Visualization Toolbox, 4 min
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https://youtu.be/AgkfIQ4IGaM


1.7 Maximally Activating Patches

• For a channel of a tensor, find the k (e.g. 9) image patches that produce the maximal
response (at any pixel).

• e.g. conv5 is AlexNet is 13×13×128, pick one of the 128 channels

• Run many images through the network and find the k largest activation values

• Crop the patches from the input images that correspond to the receptive field / field
of view of largest value
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• Upper examples are from an earlier layer in the network

• Results enable a very good semantic interpretation
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• Problem: activations are also sensitive to patches very different from the training
data
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1.8 Embedding Images into 2D

• Activations can be seen as features

• We can pick a layer, typically a late layer to embed input images in 2D

• Example: pick an FC 1×1×4096 dimensional layer

• Use dimension reduction to map D dimensions to 2 dimensions:

• Simple dimension reduction: PCA

• More popular for visualization: t-SNE
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• Visualization of MNIST images

• Each image is mapped to a point and color coded according to its class

• We can observe a nice separation of 10 classes
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• Visualization example from Kaparthy

• Each image is visualized as downsampled image

• Needs processing to map images to grid cells, resize images, and figure out occlusion

• Hard to see much, so we also show a zoomed in version
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https://cs.stanford.edu/people/karpathy/cnnembed/


• Note that semantically similar images are closeby, e.g. marine animals
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1.9 Nearest Neighbors in Feature Space

• Visualize nearest neighbors in feature space, e.g. a late FC layer
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• Five imagenet query images in the first column.

• The remaining columns show six training images that produce feature vectors in the
last hidden layer with the smallest Euclidean distance from the feature vector for the
query image.
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1.10 Saliency Maps via Occlusion

• Mask part of the image with a rectangle

• Set all values inside the rectangle to the average pixel value

• typically 0 in transformed space, but some gray value in regular RGB space

• Slide rectangle over the image and record predicted probability of the correct class
by the CNN
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• Intuition: class of elephant should drop when mask moves over elephant face
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• Example shows saliency maps for schooner left and go-kart right

• Intuition: locations where class probability drops the most are most important
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1.11 Saliency via Gradients

• What pixels in the input image should change to improve the class score?

• Forward pass: compute class score

• Backward pass:

• Compute gradient of class score with respect to image pixels

• Take absolute value and max over RGB channels
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• Intuition is that high valued pixels contribute more to the dog class prediction
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• Various other examples

• Problem: salient regions are somewhat visible, but hard to interpret the details
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1.12 Visualizing using Gradient Ascent

• General Idea: use optimization to increase / maximize a particular network response

• e.g. use gradient ascent

• Design choice 1: What objective function / activation to maximize?

• single neuron: single value in a (W ×H ×C ) activation tensor

• channel, activation map: one channel in a (W ×H ×C ) activation tensor
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• activation tensor: all values in a (W ×H ×C ) activation tensor

• class logits: class scores before the softmax activation function

• class probabilities: class probabilities after the softmax activation function
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• Design choice 2: start from random image vs. zero image vs. start from a given
image

• Design choice 3: how to regularize the optimization

• Compute

I vi z = argmax
I

f (I )+R(I ) (1.1)

• f (I ) is a function on tensor values computed by a forward pass of I through the
network

• R(I ) is a regularizer to generate more natural images
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1.13 Problem with Class Probabilities

• Should we use class probabilities or raw class scores (transformed by softmax into
probabilities)

• Class probabilities are generally not used

• Conjecture: to maximize a given class probability it’s easier to reduce other raw class
scores than increase the raw desired score before softmax

• Conjecture: Softmax makes things harder to optimize in general
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1.14 Optimizing without Regularizer

• Gives sometimes reasonable result when optimizing for a long time

• Often the results look completely random

• First example has a lower learning rate, second example has a higher learning rate

• Note the checkerboard artifacts in the results

• Can we really see a pattern?
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• Problem strided convolution and pooling layers create checkerboard patterns in the
gradient:
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1.15 Image Features via Guided Backpropagation

• Pick an intermediate activation tensor (e.g. conv5 13×13×128), pick channel, pick
a very high activation

• Compute modified gradient of neuron with respect to input image pixels

• Modify backpropagation by only looking at positive gradients at each ReLU
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• Example visualizations below
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• Left are the maximally activating patches, right are the results using guided backprop

• Interesting Note: the idea of modified backpropagation was introduced by Zeiler and
Fergus as deconvolutional networks.

• Their deconvolution layer for a conv layer is exactly the same as gradient compu-
tation

• Their max unpooling is the same as gradient computation
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• Their ReLU solution is slightly different (see above)

• Literature:

• Springenberg et al., Striving for Simplicity: The All Convolutional Net, 2015
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1.16 Maximizing Class Scores with L2

• Initialize Image I vi z to zeroes / random noise

• Repeat:

• Forward pass through the network to compute tensors / loss function

• Backprop to get gradient of loss values with respect to image pixels

• Make a small change to the image

• Optimize:

I vi z = argmax
I

SC (I )−λ|I |22 (1.2)

• SC is the score for class C before softmax

• squared two norm prevents pixels from getting too small or too large
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1.17 Maximizing Class Scores with L2++

• Literature: Yosinski et al., Understanding Neural Networks Through Deep Visualiza-
tion, 2015

• Optimize as before:

I vi z = argmax
I

SC (I )−λ|I |22 (1.3)

• In addition during iterations:

• Blur the image using Gaussian kernels

◦ only every few iterations to make it faster

• Clip pixels with small values to 0

◦ create empty regions rather than regions with small random patterns influenc-
ing the result

• Compute val = inner product of absolute value of gradient and pixel
47



◦ Set pixel to 0 if val smaller than threshold

◦ Idea: clip pixels that do not contribute much
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1.18 Maximizing Activations with L2++

• Do same computation as before, but maximize selected activations rather than class
scores
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1.19 Diversity

• Diversity problem: there can be multiple clusters of images that maximize the objec-
tive function

• How can we find all representative images that maximize the objective function?

• This neuron shows blue sky, truss structures, and architecture in representative
patches

• What is the neuron really looking for?

• Only sky, all three, certain grid pattern?
52



1.20 Diversity Examples

• Diversity optimization includes a term that makes new solutions different from existing
solutions.

• In these examples the diversity term is computed using the Gram matrix, similar
to style transfer
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1.21 Multi-faceted Visualizations

• Some classes can be recognized due to multiple different types of features

• Multi-facated feature visualization generates different images leading to high activa-
tions

• Visualizations for the grocery store neuron and example training images recognized
by the neuron as grocery store
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1.22 Multi-faceted Visualizations Gallery
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1.23 DeepDream

• Amplify activations at some layer in the network

• Instead of maximizing activations

• Choose an image I and a layer l in the CNN; repeat

• computate activations in l by a forward pass using I as input

• Set gradient of chosen layer equal to its activations

• Compute gradients of the image by backpropagation

• Update I

• Equivalent to

I vi z = argmax
I

∑
i

fi (I )2 (1.4)
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1.24 DeepDream Code

• Code is simple but uses a few tricks:

• Jitter the image

• L1 normalization of gradients

• Clipping pixel values

• Multi-scale processing
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1.25 DeepDream Example

• Input Image:
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• DeepDream on later layers
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• DeepDream using data other than imagenet (with more architectural examples)
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