
Course Notes: Deep Learning for Visual Computing

Peter Wonka

August 30, 2021

1

Contents

1 Visualization 4
1.1 Literature . 5
1.2 Fancy 3D renderings . 6
1.3 Tone Mapping and Range Mapping . 7
1.4 Visualizing Filters Directly as RGB images . 8
1.5 Visualizing Filters as Collection of Grayscale Images 10
1.6 Visualizing Activation Tensors . 12
1.7 Maximally Activating Patches . 15
1.8 Embedding Images into 2D . 19
1.9 Nearest Neighbors in Feature Space . 25
1.10 Saliency Maps via Occlusion . 28
1.11 Saliency via Gradients . 31
1.12 Visualizing using Gradient Ascent . 34
1.13 Problem with Class Probabilities . 37
1.14 Optimizing without Regularizer . 38

2

1.15 Image Features via Guided Backpropagation 40
1.16 Maximizing Class Scores with L2 . 45
1.17 Maximizing Class Scores with L2++ . 47
1.18 Maximizing Activations with L2++ . 51
1.19 Diversity . 52
1.20 Diversity Examples . 53
1.21 Multi-faceted Visualizations . 55
1.22 Multi-faceted Visualizations Gallery . 56
1.23 DeepDream . 57
1.24 DeepDream Code . 58
1.25 DeepDream Example . 60

3

1 Visualization

4

1.1 Literature

• distill.pub article on Feature Visualization - amazing polish and visual quality

• Deep Visualization Toolbox Code Repository - try out things yourself

5

https://distill.pub/2017/feature-visualization/
https://github.com/yosinski/deep-visualization-toolbox

1.2 Fancy 3D renderings

• Beautiful 3D visualization by Denis Dmitriev

• Looks great

• Hard to see what is going on

6

https://www.youtube.com/watch?v=3JQ3hYko51Y

1.3 Tone Mapping and Range Mapping

• Visualizing arrays of values in the range [mi n,max] needs Tone Mapping or Range
Mapping

• Mapping mi n to 0 and max to 1 (popular)

• Map values < 0 to 0 and value > 1 to 1

• Warning: results can look quite different when the range mapping changes

• Example: values are in a small range, e.g. [−ε,+ε], but values are mapped to the
complete visible range [0,1]

• Example: values are far outside the visible range, e.g. [−100,100] but are mapped
inside the visible range

7

1.4 Visualizing Filters Directly as RGB images

• Works great for filters with size W ×H ×3

• typically first layer CONV filters

• Does not work great for small filters (e.g. 3×3)

• Does not work great for filters in later layers

• Does not work great for filters with many channels (e.g. 3×3×512)

8

9

1.5 Visualizing Filters as Collection of Grayscale Images

• Filters of size W ×H ×Ci n with Ci n > 3 can be visualized as Ci n grayscale images

• For one layer there will be Cout ×Ci n grayscale images

• Discussion: hard to interpret

• Example visualization for one layer of a smaller network:

• 20 filters or size 7×7×16

10

11

1.6 Visualizing Activation Tensors

• Each channel of a tensor (activation map) can be shown as grayscale image

• A W ×H ×C tensor gives C grayscale images of size W ×H .

12

13

• Example shows an activation map that seems to correspond to faces

• Video: youtube: Deep Visualization Toolbox, 4 min

14

https://youtu.be/AgkfIQ4IGaM

1.7 Maximally Activating Patches

• For a channel of a tensor, find the k (e.g. 9) image patches that produce the maximal
response (at any pixel).

• e.g. conv5 is AlexNet is 13×13×128, pick one of the 128 channels

• Run many images through the network and find the k largest activation values

• Crop the patches from the input images that correspond to the receptive field / field
of view of largest value

15

16

• Upper examples are from an earlier layer in the network

• Results enable a very good semantic interpretation

17

• Problem: activations are also sensitive to patches very different from the training
data

18

1.8 Embedding Images into 2D

• Activations can be seen as features

• We can pick a layer, typically a late layer to embed input images in 2D

• Example: pick an FC 1×1×4096 dimensional layer

• Use dimension reduction to map D dimensions to 2 dimensions:

• Simple dimension reduction: PCA

• More popular for visualization: t-SNE

19

20

• Visualization of MNIST images

• Each image is mapped to a point and color coded according to its class

• We can observe a nice separation of 10 classes

21

22

• Visualization example from Kaparthy

• Each image is visualized as downsampled image

• Needs processing to map images to grid cells, resize images, and figure out occlusion

• Hard to see much, so we also show a zoomed in version

23

https://cs.stanford.edu/people/karpathy/cnnembed/

• Note that semantically similar images are closeby, e.g. marine animals

24

1.9 Nearest Neighbors in Feature Space

• Visualize nearest neighbors in feature space, e.g. a late FC layer

25

26

• Five imagenet query images in the first column.

• The remaining columns show six training images that produce feature vectors in the
last hidden layer with the smallest Euclidean distance from the feature vector for the
query image.

27

1.10 Saliency Maps via Occlusion

• Mask part of the image with a rectangle

• Set all values inside the rectangle to the average pixel value

• typically 0 in transformed space, but some gray value in regular RGB space

• Slide rectangle over the image and record predicted probability of the correct class
by the CNN

28

• Intuition: class of elephant should drop when mask moves over elephant face

29

• Example shows saliency maps for schooner left and go-kart right

• Intuition: locations where class probability drops the most are most important

30

1.11 Saliency via Gradients

• What pixels in the input image should change to improve the class score?

• Forward pass: compute class score

• Backward pass:

• Compute gradient of class score with respect to image pixels

• Take absolute value and max over RGB channels

31

• Intuition is that high valued pixels contribute more to the dog class prediction

32

• Various other examples

• Problem: salient regions are somewhat visible, but hard to interpret the details

33

1.12 Visualizing using Gradient Ascent

• General Idea: use optimization to increase / maximize a particular network response

• e.g. use gradient ascent

• Design choice 1: What objective function / activation to maximize?

• single neuron: single value in a (W ×H ×C) activation tensor

• channel, activation map: one channel in a (W ×H ×C) activation tensor

34

• activation tensor: all values in a (W ×H ×C) activation tensor

• class logits: class scores before the softmax activation function

• class probabilities: class probabilities after the softmax activation function

35

• Design choice 2: start from random image vs. zero image vs. start from a given
image

• Design choice 3: how to regularize the optimization

• Compute

I vi z = argmax
I

f (I)+R(I) (1.1)

• f (I) is a function on tensor values computed by a forward pass of I through the
network

• R(I) is a regularizer to generate more natural images

36

1.13 Problem with Class Probabilities

• Should we use class probabilities or raw class scores (transformed by softmax into
probabilities)

• Class probabilities are generally not used

• Conjecture: to maximize a given class probability it’s easier to reduce other raw class
scores than increase the raw desired score before softmax

• Conjecture: Softmax makes things harder to optimize in general

37

1.14 Optimizing without Regularizer

• Gives sometimes reasonable result when optimizing for a long time

• Often the results look completely random

• First example has a lower learning rate, second example has a higher learning rate

• Note the checkerboard artifacts in the results

• Can we really see a pattern?

38

• Problem strided convolution and pooling layers create checkerboard patterns in the
gradient:

39

1.15 Image Features via Guided Backpropagation

• Pick an intermediate activation tensor (e.g. conv5 13×13×128), pick channel, pick
a very high activation

• Compute modified gradient of neuron with respect to input image pixels

• Modify backpropagation by only looking at positive gradients at each ReLU

40

41

• Example visualizations below

42

• Left are the maximally activating patches, right are the results using guided backprop

• Interesting Note: the idea of modified backpropagation was introduced by Zeiler and
Fergus as deconvolutional networks.

• Their deconvolution layer for a conv layer is exactly the same as gradient compu-
tation

• Their max unpooling is the same as gradient computation

43

• Their ReLU solution is slightly different (see above)

• Literature:

• Springenberg et al., Striving for Simplicity: The All Convolutional Net, 2015

44

1.16 Maximizing Class Scores with L2

• Initialize Image I vi z to zeroes / random noise

• Repeat:

• Forward pass through the network to compute tensors / loss function

• Backprop to get gradient of loss values with respect to image pixels

• Make a small change to the image

• Optimize:

I vi z = argmax
I

SC (I)−λ|I |22 (1.2)

• SC is the score for class C before softmax

• squared two norm prevents pixels from getting too small or too large

45

46

1.17 Maximizing Class Scores with L2++

• Literature: Yosinski et al., Understanding Neural Networks Through Deep Visualiza-
tion, 2015

• Optimize as before:

I vi z = argmax
I

SC (I)−λ|I |22 (1.3)

• In addition during iterations:

• Blur the image using Gaussian kernels

◦ only every few iterations to make it faster

• Clip pixels with small values to 0

◦ create empty regions rather than regions with small random patterns influenc-
ing the result

• Compute val = inner product of absolute value of gradient and pixel
47

◦ Set pixel to 0 if val smaller than threshold

◦ Idea: clip pixels that do not contribute much

48

49

50

1.18 Maximizing Activations with L2++

• Do same computation as before, but maximize selected activations rather than class
scores

51

1.19 Diversity

• Diversity problem: there can be multiple clusters of images that maximize the objec-
tive function

• How can we find all representative images that maximize the objective function?

• This neuron shows blue sky, truss structures, and architecture in representative
patches

• What is the neuron really looking for?

• Only sky, all three, certain grid pattern?
52

1.20 Diversity Examples

• Diversity optimization includes a term that makes new solutions different from existing
solutions.

• In these examples the diversity term is computed using the Gram matrix, similar
to style transfer

53

54

1.21 Multi-faceted Visualizations

• Some classes can be recognized due to multiple different types of features

• Multi-facated feature visualization generates different images leading to high activa-
tions

• Visualizations for the grocery store neuron and example training images recognized
by the neuron as grocery store

55

1.22 Multi-faceted Visualizations Gallery

56

1.23 DeepDream

• Amplify activations at some layer in the network

• Instead of maximizing activations

• Choose an image I and a layer l in the CNN; repeat

• computate activations in l by a forward pass using I as input

• Set gradient of chosen layer equal to its activations

• Compute gradients of the image by backpropagation

• Update I

• Equivalent to

I vi z = argmax
I

∑
i

fi (I)2 (1.4)

57

1.24 DeepDream Code

• Code is simple but uses a few tricks:

• Jitter the image

• L1 normalization of gradients

• Clipping pixel values

• Multi-scale processing

58

59

1.25 DeepDream Example

• Input Image:

60

61

• DeepDream on later layers

62

63

• DeepDream using data other than imagenet (with more architectural examples)

64

	Visualization
	Literature
	Fancy 3D renderings
	Tone Mapping and Range Mapping
	Visualizing Filters Directly as RGB images
	Visualizing Filters as Collection of Grayscale Images
	Visualizing Activation Tensors
	Maximally Activating Patches
	Embedding Images into 2D
	Nearest Neighbors in Feature Space
	Saliency Maps via Occlusion
	Saliency via Gradients
	Visualizing using Gradient Ascent
	Problem with Class Probabilities
	Optimizing without Regularizer
	Image Features via Guided Backpropagation
	Maximizing Class Scores with L2
	Maximizing Class Scores with L2++
	Maximizing Activations with L2++
	Diversity
	Diversity Examples
	Multi-faceted Visualizations
	Multi-faceted Visualizations Gallery
	DeepDream
	DeepDream Code
	DeepDream Example

