
Course Notes: Deep Learning for Visual Computing

Peter Wonka

August 30, 2021

1

Contents

1 Optimization 4
1.1 Exponentially Moving Average Review . 5
1.2 Exponentially Moving Average Example . 9
1.3 Bias Correction for Expontentially Moving Average 11
1.4 Overview . 15
1.5 Classical Optimization . 16
1.6 General Form . 17
1.7 Optimization Concepts . 19
1.8 Classical Optimization Algorithm Examples 23
1.9 Optimization in Neural Network . 24
1.10 Simple Taxonomy of Optimization Methods 25
1.11 Basic algorithms . 26
1.12 Gradient Descent . 28
1.13 Stochastic Gradient Descent . 31
1.14 How to choose the minibatch size? . 34

2

1.15 Ill-conditioning Problem . 36
1.16 Many Local Minima and Saddle Points . 38
1.17 Cliffs and Exploding Gradients . 40
1.18 Stopping Criteria . 42
1.19 Basic Learning Rate Scheduling . 44
1.20 Advanced Learning Rate Scheduling . 47
1.21 SGD with Momentum . 51
1.22 Illustration of Momentum . 55
1.23 SGD with Momentum . 57
1.24 Momentum vs. Nesterov Momentum . 59
1.25 RMSProp . 60
1.26 ADAM . 64
1.27 Advanced Algorithms Overview . 68
1.28 Rectified ADAM . 69
1.29 Lookahead . 75
1.30 Novograd . 78

3

1 Optimization

4

1.1 Exponentially Moving Average Review

• Terms:

• Exponentially Moving Average or

• Exponentially Weighted Moving Average

• Example: time series of temperature: x1 = 4, x2 = 9, . . . , x365 = 1

• Exponentially moving average v :

• v0 = 0

• vk =βvk−1 + (1−β)xk

• Explicit Example:

• v0 = 0

• v1 = 0.9v0 +0.1x1

• v2 = 0.9v1 +0.1x2

5

• Advantage vs. Average:

• Computing the mean of the last k, e.g. 10, values requires us to store the last k
values

• Computing the EMA only requires to store the last value

• If you want to compute some average of each parameter in the network / gradient
of network parameters there is a big difference between regular mean and EMA

• Rule of Thumb:

• exponentially moving average with β is similar to averaging over last 1/(1−β)
values

6

• β= 0.9 (red) is similar to average over last 10 values (orange)

7

• red line: β= 0.90 ≈ 10 values

• green line: β= 0.98 ≈ 50 values

• blue line: β= 0.5 ≈ 2 values

8

1.2 Exponentially Moving Average Example

• Example:

• v100 = 0.1 x100 +0.9 v99

• v99 = 0.1 x99 +0.9 v98

• v98 = 0.1 x98 +0.9 v97

• . . .

• v100 = 0.1 x100 +0.9 v99

• v100 = 0.1 x100 +0.9(0.9 v98 +0.1 x99)

• v100 = 0.1 x100 +0.1∗0.9 x99 + (0.9)2 v98

• v100 = 0.1 x100 +0.1∗0.9 x99 +0.1(0.9)2 x98 + . . .

• Visualization (1 corresponds to the last weight of x100)

9

10

1.3 Bias Correction for Expontentially Moving Average

• In the beginning the sum of the weights is too low

• Requirement:

• for a proper moving average the weights should sum to one

• Example:

• v0 = 0

• v1 = 0.9∗0+0.1x1 (sum of weights is 0.1)

• v2 = 0.1x1 +0.1∗0.9x2 (sum of weights is 0.19)

11

• Solution: Bias Correction Term

CorrectionTerm= 1

1−βk
(1.1)

• β parameter of the exponentially moving average

• k iteration number

• Example: (β= 0.9)

• k = 2 →CorrectionTerm= 1/(1−β2) = 1/(1−0.81) = 1/0.19 = 5.26

• k = 100 →CorrectionTerm= 1/(1−β100) = 1.000027

12

• red line - original; orange line - bias corrected

13

• Discussion:

• Bias correction is often ignored if only the last value is used (e.g. batch normal-
ization)

• Potentially a problem if initial values are also used (e.g. optimization)

14

1.4 Overview

• Problem formulation: finding the parameters (w) of a neural network that signifi-
cantly reduce a loss function L(w)

• a loss function typically includes the data loss + regularizers

• the optimization algorithms in this section determine how a given loss function
is optimized

• Example Loss Function:

L = 1

N

∑
i

∑
j 6=yi

max(0, f (xi;W) j − f (xi;W)yi +∆)+λ∑
k

∑
l

W 2
kl (1.2)

15

1.5 Classical Optimization

• Reference:

• Book: "Mathematical Programming: An Introduction to Optimization" by
Melvyn Jeter

• Book: "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe (free
book and slides online)

• Book: Nocedal, Wright, "Numerical Optimization"

• Course: AMCS211 Numerical Optimization

16

1.6 General Form

• Many optimization problems can be represented in the following way:

min
x∈Rn

f (x)

s.t. gi (x) ≥ 0, ∀i ∈ I
g j (x) = 0, ∀ j ∈ E

• Here f (·), gi (·), g j (·) are typically (not always) smooth functions.

• f (·): the cost/energy/objective function

• gi (·), g j (·): the constraints
◦ I is the index set of the Inequality constraints.

◦ E is the index set of the Equality constraints

17

• feasible set: the set of the points that satisfy all the constraints:

F := {
x ∈Rn | gi (x) ≥ 0 ∀i ∈ I , g j (x) = 0 ∀ j ∈ E}

18

1.7 Optimization Concepts

• constrained vs. unconstrained: the feasible domain is the whole space Rn →
unconstrained (otherwise, the problem is constrained).

• convex or non-convex: the problem is convex if and only if the objective function
f (·) is convex and the feasible domain F is a convex set.

• continuous vs. discrete: the variable x is a continuous or discrete variable.

19

• minimum, maximum, saddle point: stationary points with gradient zero

20

• global vs. local minimum:

• x∗ is called a global minimum if: for any feasible point x ∈F we have f (x∗) ≤ f (x)
holds.

• x∗ is called a local minimum if: (for some constant ε) for any feasible x that
satisfies ‖x−x∗‖ ≤ ε we have f (x∗) ≤ f (x) holds.

21

22

1.8 Classical Optimization Algorithm Examples

• Gradient descent methods

• Newton’s method

• Quasi-Newton methods

• Line search methods

• Trust region methods

• Dual ascent method

• Method of multipliers

• Alternating direction method of multipliers (ADMM)

• Primal-Dual methods

• Interior point methods

23

1.9 Optimization in Neural Network

• The real performance measure P is defined w.r.t. the test set

• We optimize a loss function L(w) instead of P directly

• We optimize on the training set rather than the test set

• For pure optimization, minimizing L(w) is a goal in and of itself

• The objective function is a sum over the training examples

• The training set is large and all training samples do not fit into memory at once

24

1.10 Simple Taxonomy of Optimization Methods

• Optimization method types:

• batch methods (also called deterministic methods): optimization algorithms
that use the entire training set.

• stochastic methods (also called online methods): optimization algorithms that
use only a single example at a time.

• minibatch methods (also called minibatch stochastic methods, or simply
stochastic methods nowadays): algorithms that use more than one but fewer
than all the training examples.

• Batch size: number of samples, e.g. images. in a minibatch

25

1.11 Basic algorithms

• Loss function L in neural network optimization has the following structure:

L(w) = 1

n

∑
i

LDi
(

f (xi ;w), yi
)+∑

j
λ j R j (w) (1.3)

• where
(
xi , yi

)
are training samples, e.g., xi represents the i -th image, and yi is the

corresponding label.

• w are the network parameters / weights to be trained / optimized, e.g., parameters
of convolutional layers, linear layers, and normalization layers

• LDi : data loss function applied to the i -th sample

• R j : regularizers (e.g. sum of squared weights)

• n: number of samples

• We assume all network parameters are concatenated into a long vector w

26

• Note: variables for the optimization are w not x

• Alternate Formulation:

L(w) =E(x,y)∼p̃ L
(

. . .
)

(1.4)

• L is the per-example loss function

• p̃ is the empirical distribution (from the training set)

27

1.12 Gradient Descent

• Algorithm name: Gradient Descent

28

• Algorithm reaches different local minima with different initial points

• Intuition:

• pick initial guess

• skii downhill along the gradient direction (with fixed step size)

• keep fingers crossed

Algorithm 1: Gradient Descent
Input: learning rate α
Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

compute the gradient of the loss function: g =∇wL;
update the weights: w = w−αg;

end

29

• Weaknesses:

• hard to find a proper learning rate (step size)

◦ large learning rate: does not converge

◦ small learning rate: converges slowly

◦ (partial) solution: we will introduce a learning rate schedule

• expensive to compute the exact gradient (process all data)

◦ (partial) solution: we will work with mini-batches

• No curvature information included

◦ solution needs the second-order derivatives, the Hessian

◦ computation of the Hessian is very expensive

◦ second order methods are not very popular in deep learning

◦ some approximate second order methods (L-BFGS) are sometimes used

30

1.13 Stochastic Gradient Descent

• Algorithm name: Stochastic Gradient Descent

• basic, but successful algorithm in deep learning

• Intuition:

31

• pick initial guess

• skii downhill along the gradient direction estimated on a mimibatch of m
samples (with decreasing step size)

• keep fingers crossed

Algorithm 2: Stochastic Gradient Descent
Input: learning rate schedule αk , minibatch size m
Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

sample a minibatch of m examples from the training set: I = i1, i2, · · · , im ;
estimate the gradient: g = 1

m∇w
∑

i∈I
LDi

(
f (xi ;w), yi

)
;

update the weights: w ← w−αk g;
end

32

• Gradient estimate should include regularizers:

1

m
∇w

∑
i∈I

LDi
(

f (xi ;w), yi
)+∑

j
λ j R j (w) (1.5)

• We omit the regularizers j to make the notation more concise

• Discussion:

• Can be a great algortihm if you find a good learning rate schedule

• Finding a good learning rate schedule is time consuming

• Ideas for Improvement:

• add momentum: a function of the gradients of previous steps to alter the next
direction (SGD with momentum)

• different learning rate for each parameter (RMSProp)

• add Momentum and different learning rate per parameter (ADAM)

33

1.14 How to choose the minibatch size?

• Minibatch sizes are generally driven by multiple factors

• Larger batches → more accurate estimate of the gradient

• Small batches → underutilise the hardware architectures

• Limited memory:

• typically, all examples in the batch are to be processed in parallel

• memory consumption scales with the batch size

• available memory is a limiting factor in batch size.

• problem for tasks like dense regression, e.g. segmentation papers might run infer-
ence on the CPU

• GPU favors specific sizes of arrays (e.g., power of 2 batch sizes)

• Non-trivial side effects, e.g. batch normalization

34

• Small batches can offer a regularizing effect (perhaps due to the noise they add to
the learning process). E.g., generalization error might be best for a batch size of 1.

• For some problems people observe performance increasing with batch size and then
decreasing.

• Typical batch sizes = 1,2,4,8,16,32, . . .

35

1.15 Ill-conditioning Problem

• A mathematical problem or series of equations is ill-conditioned if a small change
in the input variable leads to a large change in the output.

• Leads to computational problems:

• if the optimization is ill-conditioned, the solution is more difficult to find.

• The ill-conditioning problem is generally believed to be present in neural network
training problems.

• It can cause some algorithm to get stuck in the sense that even very small steps
increase the loss function:

• Second-order Taylor approximation:

f
(
x
)≈ f

(
x0

)+ (
x−x0

)T g+ 1

2

(
x−x0

)T
H

(
x−x0

)
(1.6)

• g: gradient of f at x0;
36

• H: hessian of f at x0

• With learning rate ε, the new point x would be x0 −εg

• Then we have f
(
x0 −εg

)− f
(
x0

)≈−εgT g+ 1
2ε

2gHg

• Generally, the Hessian H is ill-conditioning → 1
2ε

2gHg can exceed −εgT g, there-
fore the small step update cannot decrease the loss, and we get stuck.

37

1.16 Many Local Minima and Saddle Points

• Literature:

• Pascanu et al., On the saddle point problem for non-convex optimization

• Dauphin et al., Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization, NIPS 2014

• Local minima: Loss functions are non-convex with many llocal minima

• saddle points:

• gradient is zero, but the Hessian has both positive and negative eigenvalues

• Theoretical discussions:

• What does the loss landscape look like?

• Are there many global optima?

• Are there a lot more saddle points than local minima?

38

• Are saddle points a problem? (or does SGD just march through)

• Are local minima a problem?

• Example: Visualizing the Loss Landscape of Neural Nets

39

1.17 Cliffs and Exploding Gradients

• Cliffs in the loss function

• Exploding gradients result from the multiplication of several large values together

• Long-term dependencies: (e.g., in recurrent networks) repeated application of the

40

same parameters

• Inexact gradients: gradient estimate is noisy or even biased

41

1.18 Stopping Criteria

• Follow an established test protocol:

• to compare methods there might be an established protocol for a data set.

• e.g., train for k epochs

• You run out of time:

• often training still improves the loss, but you run out of time

• Stop if loss on the validation set gets worse

• Stop if performance metric (e.g. accuracy) on the validation set gets worse

• Stop based on manual inspection

• Stop with whatever criterion, but remember the best weights on validation set (re-
quires many checkpoints)

• Not allowed: continuously test performance metric on test set and report best result

42

43

1.19 Basic Learning Rate Scheduling

44

• Many learning rate scheduling ideas in practice.

• Basic schedules only decrease the learning rate over time at certain points

• Algorithm 1:

• Step1: Find a starting learning rate by trying a few fixed learning rates

• Step2: Train and manually inspect the loss curve on validation set

• Step3: If the loss stagnates divide the learning rate by a factor, e.g. factor 10

• Step 4: If not finished goto Step2

• Step 5: hardcode the learning rate schedule into your program

• Example (ResNet Paper):

• “We use SGD with a mini-batch size of 256. The learning rate starts from 0.1
and is divided by 10 when the error plateaus, and the models are trained for up to
60×104 iterations. We use a weight decay of 0.0001 and a momentum of 0.9."

• multiply learning rate by 0.1 after epochs 30, 60, and 90

45

46

1.20 Advanced Learning Rate Scheduling

• continuously changing learning rate: gradually decrease the learning rate over
time.

47

48

• cosine: αk = 1
2α0 (1+ cos(kπ/T))

• linear: αk =α0(1−k/T)

• Inverse sqrt: αk =α0/
p

k

49

• α0: initial learning rate

• αk : learning rate at epoch k

• T: total number of Epochs

◦ Design choice: change learning rate after each mini-batch or after each epoch?

• Important: The advanced algorithms, such as SGD+Momentum, RMSProp, Adam
do a lot of modifications, but they all have a base learning rate

• you always need a learning rate schedule

50

1.21 SGD with Momentum

• Recall the standard SGD:

• Pick initial guess

• while stopping criterion not fulfilled (at iteration k):

◦ sample a minibatch of m samples

◦ estimate the gradient on the minibatch, denote it as gk

◦ (*) the update direction of the weights is −αk gk

◦ update the weights by wk = wk−1 −αk gk

• We can useMomentum to improve the standard SGD by changing the way to update
the weights in SGD as in step (*).

• More specifically, in step (*), the information of the previous gradients will be added
together with the current gradient to update the direction of the weights.

• In a general formulation, we can update the weights wk = wk−1 +vk

51

• Classical SGD: vk only depends on the current gradient estimation gk

• Momentum: vk also depends on previous gradient estimation g1, · · · ,gk

• let gk denote the gradient estimation of m samples at k-th iteration

• let vk denote the velocity at k-th iteration

• In classical SGD update direction is −αk gk

• In Momentum we have:

• vk =βk vk−1 −αk gk

• wk = wk−1 +vk

• Alternative formulation:

• vk =βk vk−1 +gk

• wk = wk−1 −αk vk

• Alternative formulation:

• vk =βk vk−1 + (1−βk)gk

52

• wk = wk−1 −αk vk

• Recommended by Andrew Ng: allows tuning of β and α more independently

• In practice, βk is initialized to 0.5 and gradually annealed to 0.9 over multiple epochs

• Example:

• Assume we have α= 1 and v1 =−g1 (since we do not have any history information
at the first iteration)

• v2 =βv1 −g2

• v3 =βv2 −g3 =β
(
βv1 −g2

)−g3 =−β2g1 −βg2 −g3

• ...

• vk =βk−1g1 +·· ·+βk−i gi +·· ·+βgk−1 +gk

• ...

• Observations:

• The previous gradients are included in subsequent updates

53

• The weight of the most recent previous gradients is more then less recent ones
(since β< 1)

• The gradient update is an exponential average over previous gradients

54

1.22 Illustration of Momentum

• In this example, we only have two network parameters w1 and w2 to optimize
55

• black arrows: the value of the gradient w.r.t w1 and w2

• red path: the path taken by gradient descent

• we can notice that the value of the gradient w.r.t w1 keeps switching the signs, which
leads to a zig-zag path

• if we use Momentum in this case, i.e., (exponentially) sum up all the previous gradi-
ents, the value along the w1 will be cancel out, and ideally we will move along w2,
as suggested by the blue path.

56

1.23 SGD with Momentum

Algorithm 3: Stochastic Gradient Descent with Momentum
Input: learning rate schedule αk , minibatch size m, friction schedule ρk

Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

sample a minibatch of m examples from the training set (say with sample ID
I = i1, i2, · · · , im);
estimate the gradient: g = 1

m∇wL;
compute velocity: v =βv+ (1−β)g;
update the weights w = w−αk v;

end

• build up velocity as a running mean of gradients

57

• β: friction; e.g. β= 0.9 or β= 0.99

58

1.24 Momentum vs. Nesterov Momentum

• ...

59

1.25 RMSProp

• Algorithm name: RMSProp

• Root Mean Square Propagation

• Main idea:

• update the learning rate for each variable / network parameter independently

• Recall the standard SGD:

• update the weights by: wk = wk−1 −αk gk

• the gradient gk is a vector

• it is multiplied by a scalar αk

• i.e., uniform learning rate (stepsize) for all directions/ variables.

• It is better to have different learning rate for different variable.

• The learning rate for each variable is automatically determined

60

• it depends on the gradient at this variable in all the previous iterations.

• Notation:

• p j
k : the j -th component of the vector pk (at k-th iteration of some vector p)

◦ this is a scalar not a vector, but we still keep the bold font

• g j
k : the estimated gradient w.r.t the weight w j at k-th iteration

◦ i.e., the j -th entry of gk

◦ scalar not a vector

• The learning rate at k-th iteration for the parameter w j is computed as follows:

• s j
k =βs j

k−1 + (1−β)
(
g j

k

)2

• w j
k = w j

k−1 −
αk√
s j

k+ε
g j

k

• Similar to the previous case, s j
k is an exponential average of squares of the gradients

w.r.t the j -th component/weight.

61

• The weighted sum of squared gradients is used to modify the learning rate

• If w j is larger, the learning rate will be set to be smaller

• In the example visualization before, we can see that the squared gradients w.r.t. the
weight w1 have a larger value, then the learning rate w.r.t w1 will be set smaller.
This can help use avoid bouncing between the ridges.

62

Algorithm 4: RMSProp: Root Mean Square Propagation
Input: learning rate schedule αk , minibatch size m, moving average coefficient β
Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

sample a minibatch of m examples from the training set: I = i1, i2, · · · , im ;
estimate the gradient: g = 1

m∇w
∑

i∈I
LDi

(
f (xi ;w), yi

)
;

update the weights: w j
k = w j

k−1 −
αk√
s j

k+ε
g j

k , where s j
k =βs j

k−1 + (1−β)
(
g j

k

)2;

end

63

1.26 ADAM

• Literature: Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic
Optimization, ICLR 2015

• Algorithm Name: ADAM

• Adaptive moment estimation

• Momentum: exponential average over the gradients to update the moving direction

• RMSProp: exponential average over the squared gradients to update the learning
rate

• We can combine the heuristics of both Momentum and RMSProp:

• from momentum: the change of direction depends on all the previous gradient
directions

• from RMSProp: use different learning rate for different variables.

• Updating algorithm: (at k-th iteration)

64

https://arxiv.org/abs/1412.6980

• v j
k =β1v j

k−1 + (1−β1)g j
k

• s j
k =β2s j

k−1 + (1−β2)
(
g j

k

)2

• v̂ j
k = v j

k /(1−βk
1)

• ŝ j
k = s j

k /(1−βk
2)

• w j
k = w j

k−1 −αk
1√

ŝ j
k+ε

v̂ j
k

• Default Parameters:

• β1 is set to around 0.9 (first moment)

• β2 is set to around 0.999 (second moment)

• ε is set to 1e −8

• Note: the parameter for the second moment includes a lot more values in the
moving average.

• Discussion:
65

• Very popular

• Often not the best results, but easier to pick parameters that work well

• Very good for development

66

Algorithm 5: ADAM
Input: learning rate schedule αk , minibatch size m, moving average coefficients

β1,β2

Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

sample a minibatch of m examples from the training set: I = i1, i2, · · · , im ;
estimate the gradient: g = 1

m∇w
∑

i∈I
LDi

(
f (xi ;w), yi

)
;

update the weights: w j
k = w j

k−1 −αk
1√

ŝ j
k+ε

v̂ j
k , where v̂ j

k is bias-corrected velocity,

ŝ j
k is bias-corrected exponential average of squares of the gradients. Specifically,

v̂ j
k = 1

1−βk
1

(
β1v j

k−1 + (1−β1)g j
k

)
, ŝ j

k = 1
1−βk

2

(
β2s j

k−1 + (1−β2)
(
g j

k

)2
)
;

end

67

1.27 Advanced Algorithms Overview

• We call these algorithms advanced, because they are not standard

• Examples of what people try to do in research:

• Rectified Adam (Radam)

• Lookahead

• Novograd

68

1.28 Rectified ADAM

• Algorithm name: Rectified ADAM (RAdam)

• Literature: Liu et al., On the Variance of the Adaptive Learning Rate and Beyond

• Claimed advantages:

• improved convergence

• better training stability (less sensitive to chosen learning rates)

• better accuracy and generalization for a lot of AI applications

• Notation: generic framework for adaptive methods (e.g., Momentum, RMSProp,
ADAM)

• Observations:

• SGD, RMSProp, ADAM, all have adaptive learning rate

• big variance of the adaptive learning rate in the early stage of model learning leads
to the convergence issue

69

https://arxiv.org/abs/1908.03265

• this is due to the lack of samples in the early stage

• previous solution: warmup - an initial period of training with a much lower learning
rate

• empirical verification (see Fig. 1.1)

70

• x-axis: the histogram of the absolute value of gradients (on a log scale)

• y-axis: different iterations from 1st - 70k

• Up - ADAM without warmup: the distribution of the gradients changed/distorted
a lot in the first a few iterations

• Bottom - ADAM with warmup: the distribution of the gradients did not change
too much over 70k iterations

• This suggests that without applying warmup, Adam is trapped in bad/suspicious
local optima after the first few updates.

• Controlled experiments: "Adam-2k"

◦ first 2k iterations: only update the adaptive learning rate, while the momentum
and the parameters are fixed

◦ then add the vanilla Adam

◦ "Adam-2k" achieves similar results as the Adam with warmup.

◦ This supports the hypothesis that the lack of sufficient data samples in the
71

early stage is the root cause of the convergence issue.

• Given that warmup serves as a variance-reducer, but this is application-dependent

• RAdam: a dynamic variance reducer

• see the paper to find how the analytical variance of the learning rate is computed

• if the variance of the learning rate is tractable: update the parameters with adap-
tive momentum

◦ where the adaptive learning rate is rectified w.r.t the estimated variance

• if the variance is not tractable: update the parameters with un-adapted momentum

72

Figure 1.1: The histogram of the absolute value of gradients over iterations
73

Figure 1.2: RAdam algorithm

74

1.29 Lookahead

• Lookahead

• Literature:

◦ Lookahead Optimizer: k steps forward, 1 step back

◦ authors: Michael R. Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba
(author of ADAM)

• Advantages:

◦ less hyper-parameters tuning (works well with default params)

◦ faster convergence rate

◦ better results

• Algorithm:

◦ maintains two sets of weights: slow weights φ and fast weights θ

75

https://arxiv.org/abs/1907.08610

Figure 1.3: Lookahead algorithm

◦ the slow weights get synced with the fast weights every k updates

76

◦ the fast weights are updated through apply A, any standard optimization al-
gorithm (on a minibatch samples D)

◦ After k inner optimizer updates using A, the slow weights are updated towards
the fast weights by linear interpolation

◦ then the fast weights are reset to the current slow weights

• Comments:

◦ standard optimization methods typically require carefully tuned learning rate
to prevent oscillation and slow convergence

◦ the fast weights updates makes rapid progress along the low curvature direction

◦ the slow weights help smooth out the oscillation through the parameter inter-
polation

◦ the combination of the fast weights and slow weights improves learning in high
curvature directions, reduce variance, and improve convergence rate.

• RAdam + Lookahead: complementary to each other, better performance

77

1.30 Novograd

• Algortihm name: Novograd

• Literature

◦ Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training
of Deep Networks

◦ Ginsburg et al.

• First-order SGD-based algorithm, which computes second moments per layer in-
stead of per weight as in Adam

• Advantages:

◦ robust to the choice of learning rate and weight initialization

◦ works well in a large batch size

◦ two times smaller memory footprint than Adam

• Algorithm:
78

https://arxiv.org/abs/1905.11286
https://arxiv.org/abs/1905.11286

◦ gl
t is first used to compute the layer-wise 2nd moment v l

t (not componen-
t/weight wise!)

v l
t =β2v l

t−1 + (1−β2)‖gl
t‖2

79

• Note in RMSProp or Adam, the 2nd moment s j
k is component/weight wise.

◦ then the moment v l
t is used to normalize the gradient gl

t :
gl

t√
v l

t+ε

◦ then calculate the first moment ml
t with the weight decay dwt decoupled:

ml
t =β1ml

t−1 +
gl

t√
v l

t+ε
+dwt

◦ Finally the weights are updated with the first moment ml
t

80

	Optimization
	Exponentially Moving Average Review
	Exponentially Moving Average Example
	Bias Correction for Expontentially Moving Average
	Overview
	Classical Optimization
	General Form
	Optimization Concepts
	Classical Optimization Algorithm Examples
	Optimization in Neural Network
	Simple Taxonomy of Optimization Methods
	Basic algorithms
	Gradient Descent
	Stochastic Gradient Descent
	How to choose the minibatch size?
	Ill-conditioning Problem
	Many Local Minima and Saddle Points
	Cliffs and Exploding Gradients
	Stopping Criteria
	Basic Learning Rate Scheduling
	Advanced Learning Rate Scheduling
	SGD with Momentum
	Illustration of Momentum
	SGD with Momentum
	Momentum vs. Nesterov Momentum
	RMSProp
	ADAM
	Advanced Algorithms Overview
	Rectified ADAM
	Lookahead
	Novograd

