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1 Optimization
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1.1 Exponentially Moving Average Review

• Terms:

• Exponentially Moving Average or

• Exponentially Weighted Moving Average

• Example: time series of temperature: x1 = 4, x2 = 9, . . . , x365 = 1

• Exponentially moving average v :

• v0 = 0

• vk =βvk−1 + (1−β)xk

• Explicit Example:

• v0 = 0

• v1 = 0.9v0 +0.1x1

• v2 = 0.9v1 +0.1x2
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• Advantage vs. Average:

• Computing the mean of the last k, e.g. 10, values requires us to store the last k
values

• Computing the EMA only requires to store the last value

• If you want to compute some average of each parameter in the network / gradient
of network parameters there is a big difference between regular mean and EMA

• Rule of Thumb:

• exponentially moving average with β is similar to averaging over last 1/(1−β)
values
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• β= 0.9 (red) is similar to average over last 10 values (orange)
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• red line: β= 0.90 ≈ 10 values

• green line: β= 0.98 ≈ 50 values

• blue line: β= 0.5 ≈ 2 values
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1.2 Exponentially Moving Average Example

• Example:

• v100 = 0.1 x100 +0.9 v99

• v99 = 0.1 x99 +0.9 v98

• v98 = 0.1 x98 +0.9 v97

• . . .

• v100 = 0.1 x100 +0.9 v99

• v100 = 0.1 x100 +0.9(0.9 v98 +0.1 x99)

• v100 = 0.1 x100 +0.1∗0.9 x99 + (0.9)2 v98

• v100 = 0.1 x100 +0.1∗0.9 x99 +0.1(0.9)2 x98 + . . .

• Visualization (1 corresponds to the last weight of x100)
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1.3 Bias Correction for Expontentially Moving Average

• In the beginning the sum of the weights is too low

• Requirement:

• for a proper moving average the weights should sum to one

• Example:

• v0 = 0

• v1 = 0.9∗0+0.1x1 (sum of weights is 0.1)

• v2 = 0.1x1 +0.1∗0.9x2 (sum of weights is 0.19)
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• Solution: Bias Correction Term

CorrectionTerm= 1

1−βk
(1.1)

• β parameter of the exponentially moving average

• k iteration number

• Example: (β= 0.9)

• k = 2 →CorrectionTerm= 1/(1−β2) = 1/(1−0.81) = 1/0.19 = 5.26

• k = 100 →CorrectionTerm= 1/(1−β100) = 1.000027
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• red line - original; orange line - bias corrected
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• Discussion:

• Bias correction is often ignored if only the last value is used (e.g. batch normal-
ization)

• Potentially a problem if initial values are also used (e.g. optimization)
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1.4 Overview

• Problem formulation: finding the parameters (w) of a neural network that signifi-
cantly reduce a loss function L(w)

• a loss function typically includes the data loss + regularizers

• the optimization algorithms in this section determine how a given loss function
is optimized

• Example Loss Function:

L = 1

N

∑
i

∑
j 6=yi

max(0, f (xi;W ) j − f (xi;W )yi +∆)+λ∑
k

∑
l

W 2
kl (1.2)
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1.5 Classical Optimization

• Reference:

• Book: "Mathematical Programming: An Introduction to Optimization" by
Melvyn Jeter

• Book: "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe (free
book and slides online)

• Book: Nocedal, Wright, "Numerical Optimization"

• Course: AMCS211 Numerical Optimization
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1.6 General Form

• Many optimization problems can be represented in the following way:

min
x∈Rn

f (x)

s.t. gi (x) ≥ 0, ∀i ∈ I
g j (x) = 0, ∀ j ∈ E

• Here f (·), gi (·), g j (·) are typically (not always) smooth functions.

• f (·): the cost/energy/objective function

• gi (·), g j (·): the constraints
◦ I is the index set of the Inequality constraints.

◦ E is the index set of the Equality constraints
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• feasible set: the set of the points that satisfy all the constraints:

F := {
x ∈Rn | gi (x) ≥ 0 ∀i ∈ I , g j (x) = 0 ∀ j ∈ E}
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1.7 Optimization Concepts

• constrained vs. unconstrained: the feasible domain is the whole space Rn →
unconstrained (otherwise, the problem is constrained).

• convex or non-convex: the problem is convex if and only if the objective function
f (·) is convex and the feasible domain F is a convex set.

• continuous vs. discrete: the variable x is a continuous or discrete variable.
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• minimum, maximum, saddle point: stationary points with gradient zero
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• global vs. local minimum:

• x∗ is called a global minimum if: for any feasible point x ∈F we have f (x∗) ≤ f (x)
holds.

• x∗ is called a local minimum if: (for some constant ε) for any feasible x that
satisfies ‖x−x∗‖ ≤ ε we have f (x∗) ≤ f (x) holds.
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1.8 Classical Optimization Algorithm Examples

• Gradient descent methods

• Newton’s method

• Quasi-Newton methods

• Line search methods

• Trust region methods

• Dual ascent method

• Method of multipliers

• Alternating direction method of multipliers (ADMM)

• Primal-Dual methods

• Interior point methods
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1.9 Optimization in Neural Network

• The real performance measure P is defined w.r.t. the test set

• We optimize a loss function L(w) instead of P directly

• We optimize on the training set rather than the test set

• For pure optimization, minimizing L(w) is a goal in and of itself

• The objective function is a sum over the training examples

• The training set is large and all training samples do not fit into memory at once
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1.10 Simple Taxonomy of Optimization Methods

• Optimization method types:

• batch methods (also called deterministic methods): optimization algorithms
that use the entire training set.

• stochastic methods (also called online methods): optimization algorithms that
use only a single example at a time.

• minibatch methods (also called minibatch stochastic methods, or simply
stochastic methods nowadays): algorithms that use more than one but fewer
than all the training examples.

• Batch size: number of samples, e.g. images. in a minibatch
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1.11 Basic algorithms

• Loss function L in neural network optimization has the following structure:

L(w) = 1

n

∑
i

LDi
(

f (xi ;w), yi
)+∑

j
λ j R j (w) (1.3)

• where
(
xi , yi

)
are training samples, e.g., xi represents the i -th image, and yi is the

corresponding label.

• w are the network parameters / weights to be trained / optimized, e.g., parameters
of convolutional layers, linear layers, and normalization layers

• LDi : data loss function applied to the i -th sample

• R j : regularizers (e.g. sum of squared weights)

• n: number of samples

• We assume all network parameters are concatenated into a long vector w
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• Note: variables for the optimization are w not x

• Alternate Formulation:

L(w) =E(x,y)∼p̃ L
(

. . .
)

(1.4)

• L is the per-example loss function

• p̃ is the empirical distribution (from the training set)
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1.12 Gradient Descent

• Algorithm name: Gradient Descent
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• Algorithm reaches different local minima with different initial points

• Intuition:

• pick initial guess

• skii downhill along the gradient direction (with fixed step size)

• keep fingers crossed

Algorithm 1: Gradient Descent
Input: learning rate α
Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

compute the gradient of the loss function: g =∇wL;
update the weights: w = w−αg;

end
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• Weaknesses:

• hard to find a proper learning rate (step size)

◦ large learning rate: does not converge

◦ small learning rate: converges slowly

◦ (partial) solution: we will introduce a learning rate schedule

• expensive to compute the exact gradient (process all data)

◦ (partial) solution: we will work with mini-batches

• No curvature information included

◦ solution needs the second-order derivatives, the Hessian

◦ computation of the Hessian is very expensive

◦ second order methods are not very popular in deep learning

◦ some approximate second order methods (L-BFGS) are sometimes used
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1.13 Stochastic Gradient Descent

• Algorithm name: Stochastic Gradient Descent

• basic, but successful algorithm in deep learning

• Intuition:
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• pick initial guess

• skii downhill along the gradient direction estimated on a mimibatch of m
samples (with decreasing step size)

• keep fingers crossed

Algorithm 2: Stochastic Gradient Descent
Input: learning rate schedule αk , minibatch size m
Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

sample a minibatch of m examples from the training set: I = i1, i2, · · · , im ;
estimate the gradient: g = 1

m∇w
∑

i∈I
LDi

(
f (xi ;w), yi

)
;

update the weights: w ← w−αk g;
end

32



• Gradient estimate should include regularizers:

1

m
∇w

∑
i∈I

LDi
(

f (xi ;w), yi
)+∑

j
λ j R j (w) (1.5)

• We omit the regularizers j to make the notation more concise

• Discussion:

• Can be a great algortihm if you find a good learning rate schedule

• Finding a good learning rate schedule is time consuming

• Ideas for Improvement:

• add momentum: a function of the gradients of previous steps to alter the next
direction (SGD with momentum)

• different learning rate for each parameter (RMSProp)

• add Momentum and different learning rate per parameter (ADAM)
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1.14 How to choose the minibatch size?

• Minibatch sizes are generally driven by multiple factors

• Larger batches → more accurate estimate of the gradient

• Small batches → underutilise the hardware architectures

• Limited memory:

• typically, all examples in the batch are to be processed in parallel

• memory consumption scales with the batch size

• available memory is a limiting factor in batch size.

• problem for tasks like dense regression, e.g. segmentation papers might run infer-
ence on the CPU

• GPU favors specific sizes of arrays (e.g., power of 2 batch sizes)

• Non-trivial side effects, e.g. batch normalization
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• Small batches can offer a regularizing effect (perhaps due to the noise they add to
the learning process). E.g., generalization error might be best for a batch size of 1.

• For some problems people observe performance increasing with batch size and then
decreasing.

• Typical batch sizes = 1,2,4,8,16,32, . . .
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1.15 Ill-conditioning Problem

• A mathematical problem or series of equations is ill-conditioned if a small change
in the input variable leads to a large change in the output.

• Leads to computational problems:

• if the optimization is ill-conditioned, the solution is more difficult to find.

• The ill-conditioning problem is generally believed to be present in neural network
training problems.

• It can cause some algorithm to get stuck in the sense that even very small steps
increase the loss function:

• Second-order Taylor approximation:

f
(
x
)≈ f

(
x0

)+ (
x−x0

)T g+ 1

2

(
x−x0

)T
H

(
x−x0

)
(1.6)

• g: gradient of f at x0;
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• H: hessian of f at x0

• With learning rate ε, the new point x would be x0 −εg

• Then we have f
(
x0 −εg

)− f
(
x0

)≈−εgT g+ 1
2ε

2gHg

• Generally, the Hessian H is ill-conditioning → 1
2ε

2gHg can exceed −εgT g, there-
fore the small step update cannot decrease the loss, and we get stuck.
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1.16 Many Local Minima and Saddle Points

• Literature:

• Pascanu et al., On the saddle point problem for non-convex optimization

• Dauphin et al., Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization, NIPS 2014

• Local minima: Loss functions are non-convex with many llocal minima

• saddle points:

• gradient is zero, but the Hessian has both positive and negative eigenvalues

• Theoretical discussions:

• What does the loss landscape look like?

• Are there many global optima?

• Are there a lot more saddle points than local minima?
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• Are saddle points a problem? (or does SGD just march through)

• Are local minima a problem?

• Example: Visualizing the Loss Landscape of Neural Nets
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1.17 Cliffs and Exploding Gradients

• Cliffs in the loss function

• Exploding gradients result from the multiplication of several large values together

• Long-term dependencies: (e.g., in recurrent networks) repeated application of the
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same parameters

• Inexact gradients: gradient estimate is noisy or even biased
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1.18 Stopping Criteria

• Follow an established test protocol:

• to compare methods there might be an established protocol for a data set.

• e.g., train for k epochs

• You run out of time:

• often training still improves the loss, but you run out of time

• Stop if loss on the validation set gets worse

• Stop if performance metric (e.g. accuracy) on the validation set gets worse

• Stop based on manual inspection

• Stop with whatever criterion, but remember the best weights on validation set (re-
quires many checkpoints)

• Not allowed: continuously test performance metric on test set and report best result
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1.19 Basic Learning Rate Scheduling
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• Many learning rate scheduling ideas in practice.

• Basic schedules only decrease the learning rate over time at certain points

• Algorithm 1:

• Step1: Find a starting learning rate by trying a few fixed learning rates

• Step2: Train and manually inspect the loss curve on validation set

• Step3: If the loss stagnates divide the learning rate by a factor, e.g. factor 10

• Step 4: If not finished goto Step2

• Step 5: hardcode the learning rate schedule into your program

• Example (ResNet Paper):

• “We use SGD with a mini-batch size of 256. The learning rate starts from 0.1
and is divided by 10 when the error plateaus, and the models are trained for up to
60×104 iterations. We use a weight decay of 0.0001 and a momentum of 0.9."

• multiply learning rate by 0.1 after epochs 30, 60, and 90
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1.20 Advanced Learning Rate Scheduling

• continuously changing learning rate: gradually decrease the learning rate over
time.
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• cosine: αk = 1
2α0 (1+ cos(kπ/T ))

• linear: αk =α0(1−k/T )

• Inverse sqrt: αk =α0/
p

k
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• α0: initial learning rate

• αk : learning rate at epoch k

• T: total number of Epochs

◦ Design choice: change learning rate after each mini-batch or after each epoch?

• Important: The advanced algorithms, such as SGD+Momentum, RMSProp, Adam
do a lot of modifications, but they all have a base learning rate

• you always need a learning rate schedule
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1.21 SGD with Momentum

• Recall the standard SGD:

• Pick initial guess

• while stopping criterion not fulfilled (at iteration k):

◦ sample a minibatch of m samples

◦ estimate the gradient on the minibatch, denote it as gk

◦ (*) the update direction of the weights is −αk gk

◦ update the weights by wk = wk−1 −αk gk

• We can useMomentum to improve the standard SGD by changing the way to update
the weights in SGD as in step (*).

• More specifically, in step (*), the information of the previous gradients will be added
together with the current gradient to update the direction of the weights.

• In a general formulation, we can update the weights wk = wk−1 +vk

51



• Classical SGD: vk only depends on the current gradient estimation gk

• Momentum: vk also depends on previous gradient estimation g1, · · · ,gk

• let gk denote the gradient estimation of m samples at k-th iteration

• let vk denote the velocity at k-th iteration

• In classical SGD update direction is −αk gk

• In Momentum we have:

• vk =βk vk−1 −αk gk

• wk = wk−1 +vk

• Alternative formulation:

• vk =βk vk−1 +gk

• wk = wk−1 −αk vk

• Alternative formulation:

• vk =βk vk−1 + (1−βk )gk

52



• wk = wk−1 −αk vk

• Recommended by Andrew Ng: allows tuning of β and α more independently

• In practice, βk is initialized to 0.5 and gradually annealed to 0.9 over multiple epochs

• Example:

• Assume we have α= 1 and v1 =−g1 (since we do not have any history information
at the first iteration)

• v2 =βv1 −g2

• v3 =βv2 −g3 =β
(
βv1 −g2

)−g3 =−β2g1 −βg2 −g3

• ...

• vk =βk−1g1 +·· ·+βk−i gi +·· ·+βgk−1 +gk

• ...

• Observations:

• The previous gradients are included in subsequent updates
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• The weight of the most recent previous gradients is more then less recent ones
(since β< 1)

• The gradient update is an exponential average over previous gradients
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1.22 Illustration of Momentum

• In this example, we only have two network parameters w1 and w2 to optimize
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• black arrows: the value of the gradient w.r.t w1 and w2

• red path: the path taken by gradient descent

• we can notice that the value of the gradient w.r.t w1 keeps switching the signs, which
leads to a zig-zag path

• if we use Momentum in this case, i.e., (exponentially) sum up all the previous gradi-
ents, the value along the w1 will be cancel out, and ideally we will move along w2,
as suggested by the blue path.
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1.23 SGD with Momentum

Algorithm 3: Stochastic Gradient Descent with Momentum
Input: learning rate schedule αk , minibatch size m, friction schedule ρk

Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

sample a minibatch of m examples from the training set (say with sample ID
I = i1, i2, · · · , im);
estimate the gradient: g = 1

m∇wL;
compute velocity: v =βv+ (1−β)g;
update the weights w = w−αk v;

end

• build up velocity as a running mean of gradients
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• β: friction; e.g. β= 0.9 or β= 0.99
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1.24 Momentum vs. Nesterov Momentum

• ...
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1.25 RMSProp

• Algorithm name: RMSProp

• Root Mean Square Propagation

• Main idea:

• update the learning rate for each variable / network parameter independently

• Recall the standard SGD:

• update the weights by: wk = wk−1 −αk gk

• the gradient gk is a vector

• it is multiplied by a scalar αk

• i.e., uniform learning rate (stepsize) for all directions/ variables.

• It is better to have different learning rate for different variable.

• The learning rate for each variable is automatically determined
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• it depends on the gradient at this variable in all the previous iterations.

• Notation:

• p j
k : the j -th component of the vector pk (at k-th iteration of some vector p)

◦ this is a scalar not a vector, but we still keep the bold font

• g j
k : the estimated gradient w.r.t the weight w j at k-th iteration

◦ i.e., the j -th entry of gk

◦ scalar not a vector

• The learning rate at k-th iteration for the parameter w j is computed as follows:

• s j
k =βs j

k−1 + (1−β)
(
g j

k

)2

• w j
k = w j

k−1 −
αk√
s j

k+ε
g j

k

• Similar to the previous case, s j
k is an exponential average of squares of the gradients

w.r.t the j -th component/weight.
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• The weighted sum of squared gradients is used to modify the learning rate

• If w j is larger, the learning rate will be set to be smaller

• In the example visualization before, we can see that the squared gradients w.r.t. the
weight w1 have a larger value, then the learning rate w.r.t w1 will be set smaller.
This can help use avoid bouncing between the ridges.

62



Algorithm 4: RMSProp: Root Mean Square Propagation
Input: learning rate schedule αk , minibatch size m, moving average coefficient β
Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

sample a minibatch of m examples from the training set: I = i1, i2, · · · , im ;
estimate the gradient: g = 1

m∇w
∑

i∈I
LDi

(
f (xi ;w), yi

)
;

update the weights: w j
k = w j

k−1 −
αk√
s j

k+ε
g j

k , where s j
k =βs j

k−1 + (1−β)
(
g j

k

)2;

end
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1.26 ADAM

• Literature: Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic
Optimization, ICLR 2015

• Algorithm Name: ADAM

• Adaptive moment estimation

• Momentum: exponential average over the gradients to update the moving direction

• RMSProp: exponential average over the squared gradients to update the learning
rate

• We can combine the heuristics of both Momentum and RMSProp:

• from momentum: the change of direction depends on all the previous gradient
directions

• from RMSProp: use different learning rate for different variables.

• Updating algorithm: (at k-th iteration)

64
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• v j
k =β1v j

k−1 + (1−β1)g j
k

• s j
k =β2s j

k−1 + (1−β2)
(
g j

k

)2

• v̂ j
k = v j

k /(1−βk
1 )

• ŝ j
k = s j

k /(1−βk
2 )

• w j
k = w j

k−1 −αk
1√

ŝ j
k+ε

v̂ j
k

• Default Parameters:

• β1 is set to around 0.9 (first moment)

• β2 is set to around 0.999 (second moment)

• ε is set to 1e −8

• Note: the parameter for the second moment includes a lot more values in the
moving average.

• Discussion:
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• Very popular

• Often not the best results, but easier to pick parameters that work well

• Very good for development
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Algorithm 5: ADAM
Input: learning rate schedule αk , minibatch size m, moving average coefficients

β1,β2

Output: network parameters w
initialize w;
while stopping criterion not fulfilled do

sample a minibatch of m examples from the training set: I = i1, i2, · · · , im ;
estimate the gradient: g = 1

m∇w
∑

i∈I
LDi

(
f (xi ;w), yi

)
;

update the weights: w j
k = w j

k−1 −αk
1√

ŝ j
k+ε

v̂ j
k , where v̂ j

k is bias-corrected velocity,

ŝ j
k is bias-corrected exponential average of squares of the gradients. Specifically,

v̂ j
k = 1

1−βk
1

(
β1v j

k−1 + (1−β1)g j
k

)
, ŝ j

k = 1
1−βk

2

(
β2s j

k−1 + (1−β2)
(
g j

k

)2
)
;

end
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1.27 Advanced Algorithms Overview

• We call these algorithms advanced, because they are not standard

• Examples of what people try to do in research:

• Rectified Adam (Radam)

• Lookahead

• Novograd
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1.28 Rectified ADAM

• Algorithm name: Rectified ADAM (RAdam)

• Literature: Liu et al., On the Variance of the Adaptive Learning Rate and Beyond

• Claimed advantages:

• improved convergence

• better training stability (less sensitive to chosen learning rates)

• better accuracy and generalization for a lot of AI applications

• Notation: generic framework for adaptive methods (e.g., Momentum, RMSProp,
ADAM)

• Observations:

• SGD, RMSProp, ADAM, all have adaptive learning rate

• big variance of the adaptive learning rate in the early stage of model learning leads
to the convergence issue
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• this is due to the lack of samples in the early stage

• previous solution: warmup - an initial period of training with a much lower learning
rate

• empirical verification (see Fig. 1.1)
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• x-axis: the histogram of the absolute value of gradients (on a log scale)

• y-axis: different iterations from 1st - 70k

• Up - ADAM without warmup: the distribution of the gradients changed/distorted
a lot in the first a few iterations

• Bottom - ADAM with warmup: the distribution of the gradients did not change
too much over 70k iterations

• This suggests that without applying warmup, Adam is trapped in bad/suspicious
local optima after the first few updates.

• Controlled experiments: "Adam-2k"

◦ first 2k iterations: only update the adaptive learning rate, while the momentum
and the parameters are fixed

◦ then add the vanilla Adam

◦ "Adam-2k" achieves similar results as the Adam with warmup.

◦ This supports the hypothesis that the lack of sufficient data samples in the
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early stage is the root cause of the convergence issue.

• Given that warmup serves as a variance-reducer, but this is application-dependent

• RAdam: a dynamic variance reducer

• see the paper to find how the analytical variance of the learning rate is computed

• if the variance of the learning rate is tractable: update the parameters with adap-
tive momentum

◦ where the adaptive learning rate is rectified w.r.t the estimated variance

• if the variance is not tractable: update the parameters with un-adapted momentum
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Figure 1.1: The histogram of the absolute value of gradients over iterations
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Figure 1.2: RAdam algorithm
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1.29 Lookahead

• Lookahead

• Literature:

◦ Lookahead Optimizer: k steps forward, 1 step back

◦ authors: Michael R. Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba
(author of ADAM)

• Advantages:

◦ less hyper-parameters tuning (works well with default params)

◦ faster convergence rate

◦ better results

• Algorithm:

◦ maintains two sets of weights: slow weights φ and fast weights θ
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Figure 1.3: Lookahead algorithm

◦ the slow weights get synced with the fast weights every k updates
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◦ the fast weights are updated through apply A, any standard optimization al-
gorithm (on a minibatch samples D)

◦ After k inner optimizer updates using A, the slow weights are updated towards
the fast weights by linear interpolation

◦ then the fast weights are reset to the current slow weights

• Comments:

◦ standard optimization methods typically require carefully tuned learning rate
to prevent oscillation and slow convergence

◦ the fast weights updates makes rapid progress along the low curvature direction

◦ the slow weights help smooth out the oscillation through the parameter inter-
polation

◦ the combination of the fast weights and slow weights improves learning in high
curvature directions, reduce variance, and improve convergence rate.

• RAdam + Lookahead: complementary to each other, better performance

77



1.30 Novograd

• Algortihm name: Novograd

• Literature

◦ Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training
of Deep Networks

◦ Ginsburg et al.

• First-order SGD-based algorithm, which computes second moments per layer in-
stead of per weight as in Adam

• Advantages:

◦ robust to the choice of learning rate and weight initialization

◦ works well in a large batch size

◦ two times smaller memory footprint than Adam

• Algorithm:
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◦ gl
t is first used to compute the layer-wise 2nd moment v l

t (not componen-
t/weight wise!)

v l
t =β2v l

t−1 + (1−β2)‖gl
t‖2
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• Note in RMSProp or Adam, the 2nd moment s j
k is component/weight wise.

◦ then the moment v l
t is used to normalize the gradient gl

t :
gl

t√
v l

t+ε

◦ then calculate the first moment ml
t with the weight decay dwt decoupled:

ml
t =β1ml

t−1 +
gl

t√
v l

t+ε
+dwt

◦ Finally the weights are updated with the first moment ml
t
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