Course Notes: Deep Learning for Visual Computing

Peter Wonka

August 30, 2021



Contents

1 Linear Classification and Loss Functions 4
1.1 Literature . . . . . . . 5
1.2 Classifier Components . . ... ... ... ... .. ... 6
1.3 Onehotencoding . . ... ... . .. . ... 7
1.4 Linear Score Function . . . . . . . . . ... 8
1.5 Simplify Notation . . . .. ... ... ... ... 11
1.6 Interpretation as K Classifiers in D dimensional space . . .. ... ... ... 13
1.7 Interpretation as K templates . . . . . . .. .. ... .. L. 15
1.8 Loss Function Overview . . . . . . ... ... ... ... 16
1.9 Two Popular Losses . . . . . . .. . .. .. . 17
1.10 Multiclass Support Vector Machine loss . . . . .. ... ... ... ...... 18
1.11 Regularization . . . . . . . .. ... 22
1.12 Softmax Classifier Overview . . . .. ... ... .. ... ... ......... 25
1.13 Softmax Function . . . . . ... ... . ... 26
1.14 Cross-Entropy Loss . . . . . . . . . . ... 28



1.15 Information Theoretical Interpretation . . . ... ... ... .......... 30

1.16 Probabilistic Interpretation . . . . . . . . ... ... 32
1.17 Numerical Stability . . ... ... .. ... .. .. 33
1.18 SVM vs. Softmax Comparison . . . . . . . ... .. .. ... .. ... 34
1.19 SVM vs. Softmax Comparison . . . . . . .. . ... . ... ... .. 35



1 Linear Classification and Loss Functions



1.1 Literature

» Content is a shorter version of EECS 498.007 / 598.005: Deep Learning for Computer
Vision Fall 2019, Lecture 3, Linear Classifiers

e youtube


https://youtu.be/qcSEP17uKKY

1.2

Classifier Components

Score function predicts a class label for a given image
Loss function quantifies the (dis)agreement between the predicted scores and the

ground truth
Optimization minimizes the loss function with respect to the parameters of the

neural network



1.3

One hot encoding

Class labels are originally given as integers, e.g. {1,2,3,...,K}

One hot encoding encodes a class label i as vectors (0,...,1,...,0)7 with the 1 at the
ith position

Better for a probabilistic interpretation and optimization



1.4 Linear Score Function

e An image is given as a vector as vector x; with D dimensions.
e e.g. CIFAR-10 image is described by D =32 x 32 x 3 =3072 numbers
e Left: Cat with 1024 x 1024 pixels. Right: Cat with 32 x 32 pixels




We have a set of images x; with corresponding labels y; from a set of K labels.
o eg. CIFAR-10 has K =10

We use a linear function f(x;; W,b):RP — RX as score function
f&x;W,b)=WX; +b

o images x; € RP

o weight matrix W e RK*P

e beRK

 output is vector € RX

« each element of the output is a class score for each of the 10 classes (higher means
more of the class)

e basically a neural network consisting of a single linear layer
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1.5

Simplify Notation

Simplify Notation by adding an element 1 to x; and adding a column to W: f(x;; W) =
Wx;

e images x; e RP+!

o weight matrix W e RK*D+1

e output is vector € RX

e previous vector b is the last column of W

Example: CIFAR-10 would be f(x;; W) : R3972*1 — R1° as score function

o W e R10%(B072+1)

Note: Shortens notation on the slides; We can refer to all network weights as W
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1.6 Interpretation as K Classifiers in D dimensional space

e We can images as points in D dimensional space and each row of W as separate
linear classifier in high dimensional space

e The i*" row of W controls the rotation and offset of the i hyperplane

e The score on the hyperplane is 0. The arrows in the figure show in what direction
the score increases.
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car classifier

airplane classifier

.




1.7 Interpretation as K templates

o We can think of the rows of W' as template images.
e Templates are also called prototypes.

o Each image is compared to each of the K template using an inner product (dot
product).

o Below is a visualization of templates learned for CIFAR-10

plane car bird cat deer dog frog harse ship truck
i
”

e Note the two headed horse template. Note the blue background for planes and ships.
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1.8 Loss Function Overview

e \We measure our unhappiness with the predicted scores using a loss function

e also called cost function or objective

e e.g. if an image is a cat we want the predicted cat score to be high and the other
scores to be low

o Loss over the data set is the average loss over each sample

1
L= 2 Lil(f&xi; W), yi) (1.1)

e L;is the loss of sample i

e N is number of samples
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1.9

Two Popular Losses

Hinge loss for an SVM Classifier

e also called Max-margin loss

e also called Multiclass Support Vector Machine loss
Cross-entropy loss for a Softmax Classifier

e also called Softmax loss

Note there are multiple versions of these losses
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1.10 Multiclass Support Vector Machine loss

e Terms: Multiclass Support Vector Machine loss or SVM loss

e SVM loss wants the correct class for each image to a have a score higher than the
incorrect classes by some fixed margin A

o Scale is typically arbitrary, therefore A=1
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Notation:
e We call the output of the score function s = f(x;; W)
o The j-th element of s defines the score for the j-th class: s; = f(x;; W);
o using s;j, sij, or S;j seems more annoying
SVM loss for image i is:
Li= ) max(0,s;— sy, +A)
J#vi
e Sum over all labels except the ground truth label y;
¢ sy, is the predicted score of ground truth label y;
e Another term for losses of the form max(0,...) is hinge loss.

Example Calculation:

19
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cat 3.2 1.3
car 5.1 4.9

frog '1 7 20
Losses: 2.9 0) 12 9
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o Assume A=1

e Cat column: max(0,5.1-3.2+1)+max(0,-1.7—-3.2+1) = max(0,2.9) +max(0, —-3.9) =
2.9

e Car column: max(0,1.3-4.9+1) + max(0,2.0-4.9+1)=0
e Frog column: max(0,2.2 - (-3.1) + 1) + max(0,2.5-(-3.1) +1) =6.3+6.6 =12.9
o L=1(I1+L,+L3)=15.8/3=527
Questions about the loss function:
o What is the min/max possible loss?
e At initialization, all entries in W are small, s = 0, what is the loss?
e Assume we found W such that L=0. Is this W unique?
o No, 2W also has L=0

o — we want to introduce regularization

21



1.11 Regularization

o New Loss: Data Loss + Regularization:

1
L= NZLi(f(xi;W)yyi) +AR(W)

e A strength of the regularization

e R(W) regularization
o Simple Regularization Examples:

o L2 regularization: R(W) = ZkZlW]fl

e L1 regularization: R(W) =Y 1. > ;| Wy

o Elastic Net (L1 + L2): RW) =X X, (WZ +Wy)
e Why regularize?

o Express preferences over weights
22
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e Make the model simple so it works better on test data
o Improve optimization by adding curvature

e L2 Regularization Example:

1 1 0.25
R 0 0.25 T
x=|1 [ W= [ w5 Wrx=we x=1 (1.4)
1 0 0.25

o Both set of weights give the same result, but wy is preferred by the L2 regularizer.

o L2 regularizer likes to spread out the weights (encourages the use of multiple
features to make a decision).

e Full Loss Function:

Z ; max(0, f (xi; W) — f xi; W)y, +A)+AZZW,§Z (1.5)
i j#yi
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Loss generally cannot be 0 because of the regularizer

Biases b can/should use a different regularizer than the weight matrix W
o Biases could be omitted from regularization

o Regularizing biases often has negligible effect

The parameter A can be set to 1. A interacts with A and they control the same
trade-off.
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1.12 Softmax Classifier Overview

o We want to build a Softmax Classifier, discussing the following components:
e Softmax Function
o Cross-entropy
e KlL-divergence
o Numerical Stability
e We want to interpret classifier scores as probabilities
e raw scores: s = f(x; W)
e want: P(Y = k| X =xj)
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1.13 Softmax Function

e raw scores: s = f(x; W)
e Softmax function:

e 0:RN-RK

e |nput: vector s

o Qutput:

e Example:

Scat
S=| Scar

Sfrog

|

|

3.2
5.1
-1.7

o(s); =

-

26

Si

2 e’i

24.5
164.0
0.18

) normalize (
—_—

0.13
0.87
0.00

|



e after applying exp we have unnormalized probabilities = 0.
e at the end we have probabilities summing to 1.

e Softmax in PyTorch

1 torch.nn.Softmax(dim: Optional[int] = None)
2 torch.nn.LogSoftmax(dim: Optional[int] = None)
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1.14 Cross-Entropy Loss

Cross-entropy loss has the form:

Li=—log( e ) (1.8)

e s is the vector of raw scores
e y; is the true class label

Reformulation:

Li=—sy, +log(2esf) (1.9)
J

Summary: The Cross-Entropy loss is the negative log of the normalized probability
of the correct class

Example Calculation (cat is the true class):
28



Probabilities

must be >=0
cat 3.2 24.5
car 51 |—{164.0
frog -1.7 0.18

Unnormalized
log-probabilities / logits

Probabilities

must sum to 1

normalize
D ——

unnormalized

probabilities

Questions about the loss function?

o What is the min/max possible loss L;?

0.13
0.87
0.00

probabilities

. L =-log(0.13)
=2.04

e What is the loss when all raw scores are approx. the same?
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1.15

Information Theoretical Interpretation

Cross-entropy between a true distribution P and an estimated distribution Q is
defined as:

H(BQ)=- ) P(x)log(Q(x) (1.10)
xeX

e P and Q are discrete distributions

Since the true distribution has the form P = (0,...,1,...,0) the cross-entropy loss
minimizes the cross-entropy defined above.

Cross-entropy is the sum of Entropy and Kullback-Leibler divergence

H(P.Q)= H(P)+Dgr(P| Q) (1.11)

KL-divergence is defined for discrete probability distributions P and Q defined on the
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same probability space:

DxL(P Q== P(x)log(Q( )) (1.12)
xex P(x)
Entropy is defined as:
H(P)=- ) P(x)logP(x) (1.13)
xeX

» depending on the base of the logarithm the units are bits(2), nats(e), bans(10)

Note: entropy for the true distribution is 0 therefore the cross-entropy loss is equal
to the KL-divergence in our case.
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1.16 Probabilistic Interpretation

o Probability of the true class y; given the image x;:

e%i

= Zj s

P(yilx; W) (1.14)

o The cross-entropy loss can be interpreted as minimizing the negative log likelihood
of the correct class.

o This can be interpreted as performing Maximum Likelihood Estimation (MLE)

o We can now interpret the regularization as a Gaussian prior over w to yield Max-
imum A Posteriori (MAP) estimation.
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1.17 Numerical Stability

o Computing the softmax can include large values due to the exp function
e We can reformulate:
i Ce’vi i +logC

Z] esi - Cz] esi B Z] gsj+10gc

(1.15)

e A good choice is 10g(C) = —maxs;

o that means we shift all values in s so that the max value is 0
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1.18 SVM vs. Softmax Comparison

o Example Computation:

hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—= | 0.86 max(0, 0.86-0.28 + 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
07 1.58
0.7 02 | 0.05 | 0.16 22
+ 0.2
00 | -045 | -02 | 0.03 -44 03| [ | cross-entropy loss (Softmax)
-2.85 0.058 0.016
w 56 b
i
L» | 0.86 iﬁ.’. 2.36 M 0.631 | -'09(0-353)
wz (to sum =
ta one) 1.04
0.28 1.32 0.353
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1.19 SVM vs. Softmax Comparison

o Softmax is never fully happy / SVM is happy if the margin is satisfied
e Softmax has a better semantic interpretation as probabilities

e [Interactive Demo
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http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
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