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1 Linear Classification and Loss Functions
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1.1 Literature

• Content is a shorter version of EECS 498.007 / 598.005: Deep Learning for Computer
Vision Fall 2019, Lecture 3, Linear Classifiers

• youtube
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https://youtu.be/qcSEP17uKKY


1.2 Classifier Components

• Score function predicts a class label for a given image

• Loss function quantifies the (dis)agreement between the predicted scores and the
ground truth

• Optimization minimizes the loss function with respect to the parameters of the
neural network
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1.3 One hot encoding

• Class labels are originally given as integers, e.g. {1,2,3, . . . ,K }

• One hot encoding encodes a class label i as vectors (0, . . . ,1, . . . ,0)T with the 1 at the
ith position

• Better for a probabilistic interpretation and optimization
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1.4 Linear Score Function

• An image is given as a vector as vector xi with D dimensions.

• e.g. CIFAR-10 image is described by D = 32×32×3 = 3072 numbers

• Left: Cat with 1024×1024 pixels. Right: Cat with 32×32 pixels
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• We have a set of images xi with corresponding labels yi from a set of K labels.

• e.g. CIFAR-10 has K = 10

• We use a linear function f (xi ;W ,b) :RD →RK as score function

• f (xi ;W ,b) =W xi +b

• images xi ∈RD

• weight matrix W ∈RK×D

• b ∈RK

• output is vector ∈RK

• each element of the output is a class score for each of the 10 classes (higher means
more of the class)

• basically a neural network consisting of a single linear layer
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1.5 Simplify Notation

• Simplify Notation by adding an element 1 to xi and adding a column toW : f (xi ;W ) =
W xi

• images xi ∈RD+1

• weight matrix W ∈RK×D+1

• output is vector ∈RK

• previous vector b is the last column of W

• Example: CIFAR-10 would be f (xi ;W ) :R3072+1 →R10 as score function

• W ∈R10×(3072+1)

• Note: Shortens notation on the slides; We can refer to all network weights as W
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1.6 Interpretation as K Classifiers in D dimensional space

• We can images as points in D dimensional space and each row of W as separate
linear classifier in high dimensional space

• The i th row of W controls the rotation and offset of the i th hyperplane

• The score on the hyperplane is 0. The arrows in the figure show in what direction
the score increases.
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1.7 Interpretation as K templates

• We can think of the rows of W as template images.

• Templates are also called prototypes.

• Each image is compared to each of the K template using an inner product (dot
product).

• Below is a visualization of templates learned for CIFAR-10

• Note the two headed horse template. Note the blue background for planes and ships.
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1.8 Loss Function Overview

• We measure our unhappiness with the predicted scores using a loss function

• also called cost function or objective

• e.g. if an image is a cat we want the predicted cat score to be high and the other
scores to be low

• Loss over the data set is the average loss over each sample

L = 1

N

∑
i

Li ( f (xi ;W ), yi ) (1.1)

• Li is the loss of sample i

• N is number of samples
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1.9 Two Popular Losses

• Hinge loss for an SVM Classifier

• also called Max-margin loss

• also called Multiclass Support Vector Machine loss

• Cross-entropy loss for a Softmax Classifier

• also called Softmax loss

• Note there are multiple versions of these losses
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1.10 Multiclass Support Vector Machine loss

• Terms: Multiclass Support Vector Machine loss or SVM loss

• SVM loss wants the correct class for each image to a have a score higher than the
incorrect classes by some fixed margin ∆

• Scale is typically arbitrary, therefore ∆= 1
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• Notation:

• We call the output of the score function s = f (xi ;W )

• The j-th element of s defines the score for the j-th class: s j = f (xi ;W ) j

◦ using si j , si j , or Si j seems more annoying

• SVM loss for image i is:

Li =
∑

j 6=yi

max(0, s j − syi +∆) (1.2)

• Sum over all labels except the ground truth label yi

• syi is the predicted score of ground truth label yi

• Another term for losses of the form max(0, ...) is hinge loss.

• Example Calculation:
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• Assume ∆= 1

• Cat column: max(0,5.1−3.2+1)+max(0,−1.7−3.2+1) = max(0,2.9)+max(0,−3.9) =
2.9

• Car column: max(0,1.3−4.9+1)+max(0,2.0−4.9+1) = 0

• Frog column: max(0,2.2− (−3.1)+1)+max(0,2.5− (−3.1)+1) = 6.3+6.6 = 12.9

• L = 1
3 (L1 +L2 +L3) = 15.8/3 = 5.27

• Questions about the loss function:

• What is the min/max possible loss?

• At initialization, all entries in W are small, s ≈ 0, what is the loss?

• Assume we found W such that L = 0. Is this W unique?

◦ No, 2W also has L = 0

◦ → we want to introduce regularization
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1.11 Regularization

• New Loss: Data Loss + Regularization:

L = 1

N

∑
i

Li ( f (xi ;W ), yi )+λR(W ) (1.3)

• λ strength of the regularization

• R(W ) regularization

• Simple Regularization Examples:

• L2 regularization: R(W ) =∑
k
∑

l W 2
kl

• L1 regularization: R(W ) =∑
k
∑

l |Wkl |
• Elastic Net (L1 + L2): R(W ) =∑

k
∑

l
(
W 2

kl +|Wkl |
)

• Why regularize?

• Express preferences over weights
22



• Make the model simple so it works better on test data

• Improve optimization by adding curvature

• L2 Regularization Example:

•

x =


1
1
1
1

 , w1 =


1
0
0
0

 , w2 =


0.25
0.25
0.25
0.25

 , w1
T x = w2

T x = 1 (1.4)

• Both set of weights give the same result, but w2 is preferred by the L2 regularizer.

• L2 regularizer likes to spread out the weights (encourages the use of multiple
features to make a decision).

• Full Loss Function:

L = 1

N

∑
i

∑
j 6=yi

max(0, f (xi;W ) j − f (xi;W )yi +∆)+λ∑
k

∑
l

W 2
kl (1.5)
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• Loss generally cannot be 0 because of the regularizer

• Biases b can/should use a different regularizer than the weight matrix W

◦ Biases could be omitted from regularization

◦ Regularizing biases often has negligible effect

• The parameter ∆ can be set to 1. ∆ interacts with λ and they control the same
trade-off.
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1.12 Softmax Classifier Overview

• We want to build a Softmax Classifier, discussing the following components:

• Softmax Function

• Cross-entropy

• KL-divergence

• Numerical Stability

• We want to interpret classifier scores as probabilities

• raw scores: s = f (xi;W )

• want: P (Y = k|X = xi)
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1.13 Softmax Function

• raw scores: s = f (xi;W )

• Softmax function:

• σ :RK →RK

• Input: vector s

• Output:

σ(s)i = e si∑
j e s j

(1.6)

• Example:

s =
 scat

scar

s f r og

=
 3.2

5.1
−1.7

→exp

 24.5
164.0
0.18

→nor mali ze

0.13
0.87
0.00

 (1.7)
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• after applying exp we have unnormalized probabilities ≥ 0.

• at the end we have probabilities summing to 1.

• Softmax in PyTorch

1 t o r ch . nn . Softmax ( dim : Opt i ona l [ i n t ] = None )
2 t o r ch . nn . LogSoftmax ( dim : Opt i ona l [ i n t ] = None )
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1.14 Cross-Entropy Loss

• Cross-entropy loss has the form:

Li =− log

(
e syi∑

j e s j

)
(1.8)

• s is the vector of raw scores

• yi is the true class label

• Reformulation:

Li =−syi + log

(∑
j

e s j

)
(1.9)

• Summary: The Cross-Entropy loss is the negative log of the normalized probability
of the correct class

• Example Calculation (cat is the true class):
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• Questions about the loss function?

• What is the min/max possible loss Li?

• What is the loss when all raw scores are approx. the same?
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1.15 Information Theoretical Interpretation

• Cross-entropy between a true distribution P and an estimated distribution Q is
defined as:

H(P,Q) =− ∑
x∈X

P (x) log(Q(x)) (1.10)

• P and Q are discrete distributions

• Since the true distribution has the form P = (0, . . . ,1, . . . ,0) the cross-entropy loss
minimizes the cross-entropy defined above.

• Cross-entropy is the sum of Entropy and Kullback-Leibler divergence

H(P,Q) = H(P )+DK L(P ∥Q) (1.11)

• KL-divergence is defined for discrete probability distributions P and Q defined on the
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same probability space:

DKL(P ∥Q) =− ∑
x∈X

P (x) log

(
Q(x)

P (x)

)
(1.12)

• Entropy is defined as:

H(P ) =− ∑
x∈X

P (x) logP (x) (1.13)

• depending on the base of the logarithm the units are bits(2), nats(e), bans(10)

• Note: entropy for the true distribution is 0 therefore the cross-entropy loss is equal
to the KL-divergence in our case.
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1.16 Probabilistic Interpretation

• Probability of the true class yi given the image xi:

P
(
yi |xi;W

)= e syi∑
j e s j

(1.14)

• The cross-entropy loss can be interpreted as minimizing the negative log likelihood
of the correct class.

• This can be interpreted as performing Maximum Likelihood Estimation (MLE)

• We can now interpret the regularization as a Gaussian prior over w to yield Max-
imum A Posteriori (MAP) estimation.
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1.17 Numerical Stability

• Computing the softmax can include large values due to the exp function

• We can reformulate:

e syi∑
j e s j

= Ce syi

C
∑

j e s j
= e syi +logC∑

j e s j+logC
(1.15)

• A good choice is l og (C ) =−max s j

• that means we shift all values in s so that the max value is 0
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1.18 SVM vs. Softmax Comparison

• Example Computation:
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1.19 SVM vs. Softmax Comparison

• Softmax is never fully happy / SVM is happy if the margin is satisfied

• Softmax has a better semantic interpretation as probabilities

• Interactive Demo
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http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
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