Course Notes: Deep Learning for Visual Computing

Peter Wonka

August 30, 2021

1

Contents

1	Linear Classification and Loss Functions				
	1.1	Literature	5		
	1.2	Classifier Components	6		
	1.3	One hot encoding	7		
	1.4	Linear Score Function	8		
	1.5	Simplify Notation	11		
	1.6	Interpretation as K Classifiers in D dimensional space	13		
	1.7	Interpretation as K templates	15		
	1.8	Loss Function Overview	16		
	1.9	Two Popular Losses	17		
	1.10	Multiclass Support Vector Machine loss	18		
	1.11	Regularization	22		
	1.12	Softmax Classifier Overview	25		
	1.13	Softmax Function	26		
	1.14	Cross-Entropy Loss	28		

1.15	Information Theoretical Interpretation	30
1.16	Probabilistic Interpretation	32
1.17	Numerical Stability	33
1.18	SVM vs. Softmax Comparison	34
1.19	SVM vs. Softmax Comparison	35

1 Linear Classification and Loss Functions

4

1.1 Literature

- Content is a shorter version of EECS 498.007 / 598.005: Deep Learning for Computer Vision Fall 2019, Lecture 3, Linear Classifiers
 - youtube

1.2 Classifier Components

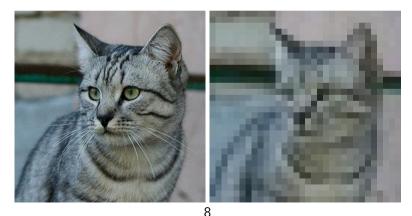
- Score function predicts a class label for a given image
- Loss function quantifies the (dis)agreement between the predicted scores and the ground truth
- **Optimization** minimizes the loss function with respect to the parameters of the neural network

1.3 One hot encoding

- Class labels are originally given as integers, e.g. {1,2,3,...,K}
- One hot encoding encodes a class label *i* as vectors $(0, ..., 1, ..., 0)^T$ with the 1 at the ith position
- Better for a probabilistic interpretation and optimization

1.4 Linear Score Function

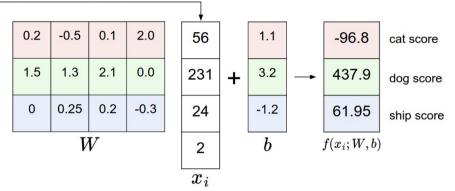
- An image is given as a vector as vector \mathbf{x}_i with D dimensions.
 - e.g. CIFAR-10 image is described by $D = 32 \times 32 \times 3 = 3072$ numbers
 - Left: Cat with 1024×1024 pixels. Right: Cat with 32×32 pixels



- We have a set of images \mathbf{x}_i with corresponding labels y_i from a set of K labels.
 - e.g. CIFAR-10 has K = 10
- We use a linear function $f(\mathbf{x}_i; \mathbf{W}, \mathbf{b}) : \mathbb{R}^D \to \mathbb{R}^K$ as score function
- $f(\mathbf{x}_i; \mathbf{W}, \mathbf{b}) = \mathbf{W}\mathbf{x}_i + \mathbf{b}$
 - images $\mathbf{x}_i \in \mathbb{R}^D$
 - weight matrix $\boldsymbol{W} \in \mathbb{R}^{K \times D}$
 - $\mathbf{b} \in \mathbb{R}^{K}$
 - output is vector $\in \mathbb{R}^{K}$
 - each element of the output is a class score for each of the 10 classes (higher means more of the class)
 - basically a neural network consisting of a single linear layer

stretch pixels into single column

input image



1.5 Simplify Notation

- Simplify Notation by adding an element 1 to \mathbf{x}_i and adding a column to \mathbf{W} : $f(\mathbf{x}_i; \mathbf{W}) = \mathbf{W}\mathbf{x}_i$
 - images $\mathbf{x}_i \in \mathbb{R}^{D+1}$
 - weight matrix $\boldsymbol{W} \in \mathbb{R}^{K \times D + 1}$
 - output is vector $\in \mathbb{R}^{K}$
 - previous vector ${f b}$ is the last column of ${m W}$
- Example: CIFAR-10 would be $f(\mathbf{x}_i; \mathbf{W}) : \mathbb{R}^{3072+1} \to \mathbb{R}^{10}$ as score function
 - $\boldsymbol{W} \in \mathbb{R}^{10 \times (3072+1)}$
- Note: Shortens notation on the slides; We can refer to all network weights as \boldsymbol{W}

0.2	-0.5	0.1	2.0			
1.5	1.3	2.1	0.0			
0	0 0.25		-0.3			
W						



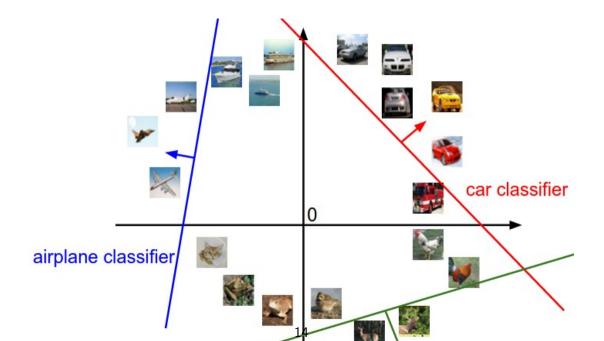
Γ	0.2	-0.5	0.1	2.0	1.1	56
	1.5	1.3	2.1	0.0	3.2	231
	0	0.25	0.2	-0.3	-1.2	24
W b					2	

new, single W

 x_i

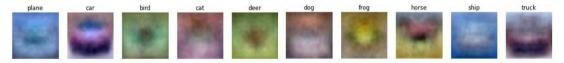
1.6 Interpretation as *K* Classifiers in *D* dimensional space

- We can images as points in D dimensional space and each row of W as separate linear classifier in high dimensional space
- The i^{th} row of \boldsymbol{W} controls the rotation and offset of the i^{th} hyperplane
- The score on the hyperplane is 0. The arrows in the figure show in what direction the score increases.



1.7 Interpretation as *K* templates

- We can think of the rows of $oldsymbol{W}$ as template images.
- Templates are also called prototypes.
- Each image is compared to each of the K template using an inner product (dot product).
- Below is a visualization of templates learned for CIFAR-10



• Note the two headed horse template. Note the blue background for planes and ships.

1.8 Loss Function Overview

- We measure our unhappiness with the predicted scores using a loss function
 - also called **cost function** or **objective**
- e.g. if an image is a cat we want the predicted cat score to be high and the other scores to be low
- Loss over the data set is the average loss over each sample

$$L = \frac{1}{N} \sum_{i} L_i(f(\mathbf{x}_i; \boldsymbol{W}), y_i)$$
(1.1)

- L_i is the loss of sample i
- N is number of samples

1.9 Two Popular Losses

- Hinge loss for an SVM Classifier
 - also called Max-margin loss
 - also called Multiclass Support Vector Machine loss
- Cross-entropy loss for a Softmax Classifier
 - also called Softmax loss
- Note there are multiple versions of these losses

1.10 Multiclass Support Vector Machine loss

- Terms: Multiclass Support Vector Machine loss or SVM loss
- SVM loss wants the correct class for each image to a have a score higher than the incorrect classes by some fixed margin Δ
- Scale is typically arbitrary, therefore $\Delta = 1$

- Notation:
 - We call the output of the score function $\mathbf{s} = f(\mathbf{x}_i; \mathbf{W})$
 - The j-th element of **s** defines the score for the j-th class: $\mathbf{s}_j = f(\mathbf{x}_i; \mathbf{W})_j$
 - $\circ~$ using $\mathbf{s}_{ij},~\mathbf{s_{ij}},~$ or \boldsymbol{S}_{ij} seems more annoying
- SVM loss for image *i* is:

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + \Delta)$$
 (1.2)

- Sum over all labels except the ground truth label y_i
- s_{y_i} is the predicted score of ground truth label y_i
- Another term for losses of the form max(0, ...) is hinge loss.
- Example Calculation:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

- Assume $\Delta = 1$
- Cat column: max(0,5.1-3.2+1)+max(0,-1.7-3.2+1) = max(0,2.9)+max(0,-3.9) = 2.9
- Car column: max(0, 1.3 4.9 + 1) + max(0, 2.0 4.9 + 1) = 0
- Frog column: max(0, 2.2 (-3.1) + 1) + max(0, 2.5 (-3.1) + 1) = 6.3 + 6.6 = 12.9
- $L = \frac{1}{3}(L_1 + L_2 + L_3) = 15.8/3 = 5.27$
- Questions about the loss function:
 - What is the min/max possible loss?
 - At initialization, all entries in W are small, $s \approx 0$, what is the loss?
 - Assume we found W such that L = 0. Is this W unique?
 - No, 2W also has L = 0
 - $\circ \rightarrow$ we want to introduce regularization

1.11 Regularization

• New Loss: Data Loss + Regularization:

$$L = \frac{1}{N} \sum_{i} L_{i}(f(\mathbf{x}_{i}; \boldsymbol{W}), y_{i}) + \lambda R(\boldsymbol{W})$$
(1.3)

- λ strength of the regularization
- R(W) regularization
- Simple Regularization Examples:
 - L2 regularization: $R(\mathbf{W}) = \sum_k \sum_l W_{kl}^2$
 - L1 regularization: $R(\mathbf{W}) = \sum_k \sum_l |W_{kl}|$
 - Elastic Net (L1 + L2): $R(W) = \sum_{k} \sum_{l} (W_{kl}^2 + |W_{kl}|)$
- Why regularize?
 - Express preferences over weights

- Make the model simple so it works better on test data
- Improve optimization by adding curvature
- L2 Regularization Example:

.

$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{w}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{w}_{2} = \begin{pmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{pmatrix}, \quad \mathbf{w}_{1}^{T} \mathbf{x} = \mathbf{w}_{2}^{T} \mathbf{x} = 1$$
(1.4)

- Both set of weights give the same result, but \mathbf{w}_2 is preferred by the L2 regularizer.
- L2 regularizer likes to spread out the weights (encourages the use of multiple features to make a decision).
- Full Loss Function:

$$L = \frac{1}{N} \sum_{i} \sum_{j \neq y_i} \max(0, f(\mathbf{x_i}; \boldsymbol{W})_j - f(\mathbf{x_i}; \boldsymbol{W})_{y_i} + \Delta) + \lambda \sum_{k} \sum_{l} W_{kl}^2$$
(1.5)
23

- Loss generally cannot be 0 because of the regularizer
- Biases ${f b}$ can/should use a different regularizer than the weight matrix ${m W}$
 - Biases could be omitted from regularization
 - Regularizing biases often has negligible effect
- The parameter Δ can be set to 1. Δ interacts with λ and they control the same trade-off.

1.12 Softmax Classifier Overview

- We want to build a Softmax Classifier, discussing the following components:
 - Softmax Function
 - Cross-entropy
 - KL-divergence
 - Numerical Stability
- We want to interpret classifier scores as probabilities
- raw scores: $\mathbf{s} = f(\mathbf{x_i}; W)$
- want: $P(Y = k | X = \mathbf{x_i})$

1.13 Softmax Function

- raw scores: $\mathbf{s} = f(\mathbf{x_i}; W)$
- Softmax function:
 - $\sigma: \mathbb{R}^K \to \mathbb{R}^K$
 - Input: vector s
 - Output:

$$\sigma(\mathbf{s})_i = \frac{e^{s_i}}{\sum_j e^{s_j}} \tag{1.6}$$

(1.7)

• Example:

$$\mathbf{s} = \begin{pmatrix} s_{cat} \\ s_{car} \\ s_{frog} \end{pmatrix} = \begin{pmatrix} 3.2 \\ 5.1 \\ -1.7 \end{pmatrix} \xrightarrow{exp} \begin{pmatrix} 24.5 \\ 164.0 \\ 0.18 \end{pmatrix} \xrightarrow{normalize} \begin{pmatrix} 0.13 \\ 0.87 \\ 0.00 \end{pmatrix}$$

- after applying exp we have unnormalized probabilities ≥ 0 .
- at the end we have probabilities summing to 1.
- Softmax in PyTorch
- 1 torch.nn.Softmax(dim: Optional[int] = None)
 2 torch.nn.LogSoftmax(dim: Optional[int] = None)

1.14 Cross-Entropy Loss

• Cross-entropy loss has the form:

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right) \tag{1.8}$$

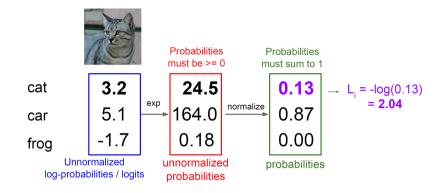
- s is the vector of raw scores
- y_i is the true class label
- Reformulation:

$$L_i = -s_{y_i} + \log\left(\sum_j e^{s_j}\right) \tag{1.9}$$

• Summary: The Cross-Entropy loss is the negative log of the normalized probability of the correct class

28

• Example Calculation (cat is the true class):



- Questions about the loss function?
 - What is the min/max possible loss L_i?
 - What is the loss when all raw scores are approx. the same?

1.15 Information Theoretical Interpretation

• Cross-entropy between a true distribution P and an estimated distribution Q is defined as:

$$H(P,Q) = -\sum_{x \in \mathcal{X}} P(x) \log(Q(x))$$
(1.10)

- *P* and *Q* are discrete distributions
- Since the true distribution has the form P = (0, ..., 1, ..., 0) the cross-entropy loss minimizes the cross-entropy defined above.
- Cross-entropy is the sum of Entropy and Kullback-Leibler divergence

$$H(P,Q) = H(P) + D_{KL}(P || Q)$$
(1.11)

• KL-divergence is defined for discrete probability distributions P and Q defined on the

same probability space:

$$D_{\mathsf{KL}}(P \parallel Q) = -\sum_{x \in \mathcal{X}} P(x) \log\left(\frac{Q(x)}{P(x)}\right)$$
(1.12)

• Entropy is defined as:

$$H(P) = -\sum_{x \in \mathcal{X}} P(x) \log P(x)$$
(1.13)

- depending on the base of the logarithm the units are bits(2), nats(e), bans(10)
- Note: entropy for the true distribution is 0 therefore the cross-entropy loss is equal to the KL-divergence in our case.

1.16 Probabilistic Interpretation

• Probability of the true class y_i given the image x_i:

$$P(y_i|\mathbf{x_i}; \boldsymbol{W}) = \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$
(1.14)

- The cross-entropy loss can be interpreted as minimizing the negative log likelihood of the correct class.
- This can be interpreted as performing Maximum Likelihood Estimation (MLE)
- We can now interpret the regularization as a Gaussian prior over w to yield Maximum A Posteriori (MAP) estimation.

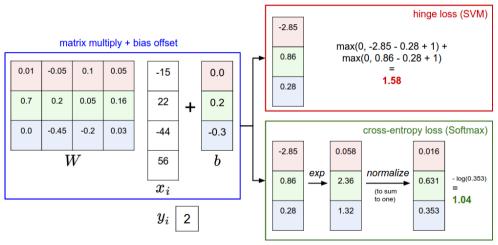
1.17 Numerical Stability

- Computing the softmax can include large values due to the exp function
- We can reformulate:

$$\frac{e^{s_{y_i}}}{\sum_j e^{s_j}} = \frac{Ce^{s_{y_i}}}{C\sum_j e^{s_j}} = \frac{e^{s_{y_i} + \log C}}{\sum_j e^{s_j + \log C}}$$
(1.15)

- A good choice is $log(C) = -\max s_j$
 - that means we shift all values in ${\boldsymbol s}$ so that the max value is 0

- 1.18 SVM vs. Softmax Comparison
 - Example Computation:



1.19 SVM vs. Softmax Comparison

- Softmax is never fully happy / SVM is happy if the margin is satisfied
- Softmax has a better semantic interpretation as probabilities
- Interactive Demo