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Figure 1: We propose a system which gives the user full artistic control over rule-based procedural models. With our system, an artist created
building designs showcasing architectural styles in Tel Aviv based on reference imagery (left). The artist authored one basic rule set (middle
left) where local edits enabled him to quickly reconstruct an existing building (middle right) or design a new alternative (right). By using
local edits, the artist was able to create a large amount of detailed building designs in a matter of hours rather than days (bottom).

Abstract

Procedural modeling is used across many industries for rapid 3D content creation. However, professional procedural tools
often lack artistic control, requiring manual edits on baked results, diminishing the advantages of a procedural modeling
pipeline. Previous approaches to enable local artistic control require special annotations of the procedural system and manual
exploration of potential edit locations. Therefore, we propose a novel approach to discover meaningful and non-redundant good
edit locations (GELs). We introduce a bottom-up algorithm for finding GELs directly from the attributes in procedural models,
without special annotations. To make attribute edits at GELs persistent, we analyze their local spatial context and construct a
meta-locator to uniquely specify their structure. Meta-locators are calculated independently per attribute, making them robust
against changes in the procedural system. Functions on meta-locators enable intuitive and robust multi-selections. Finally, we
introduce an algorithm to transfer meta-locators to a different procedural model. We show that our approach greatly simplifies
the exploration of the local edit space, and we demonstrate its usefulness in a user study and multiple real-world examples.

CCS Concepts
• Computing methodologies → Mesh geometry models;

1. Introduction

Procedural modeling is a popular 3D content creation method used
across many industries ranging from film and game production to
architecture and planning. Professional 3D tools such as Houdini,
Maya, Rhino, CityEngine or Speedtree provide frameworks to de-
fine a procedural model as well as its control user interface (UI).
The latter allows the artist to interactively modify certain attributes

of the models. In practice, not enough artistic control can be pro-
vided by these UIs. Therefore, an artist typically bakes the proce-
dural model into a mesh to apply additional local edits. As a conse-
quence, the advantages of a procedural modeling pipeline are lost.

Local editing of a procedural model is a challenge that has not
yet been solved in a generic way. Some procedural frameworks try
to store such edit operations in the scene graph, resulting in dif-
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ficult manual modeling processes and edits which are not robust
against changes in the procedural model (see Figure 2(a)). Other
frameworks allow the author of the procedural system to explicitly
define local edit interfaces (e.g. [LWW08] and [JPCS18] where the
author needs to tag rules and is required to setup facade grids in-
cluding dimensions per row and column, resulting in tedious rule
authoring processes and limited application areas (see Figure 2(c)).
As a consequence, authors do not use local edits and instead create
procedural modeling systems with countless attributes in order to
have more artistic control, resulting in large unmaintainable code
bases and unintuitive UIs (see Figure 2(b)).

In this paper, we propose a novel approach for local editing in
rule-based procedural modeling systems that does not require any
annotations, rule changes, or pre-processing. It utilizes the fact that
every author of procedural modeling systems uses attributes, simi-
lar to every programmer using variables instead of magic numbers
in his code. Our hypothesis is that attribute usage in a procedu-
ral model implicitly contains the information necessary to do local
edits which are robust against changes, are transferable onto other
models, and allow for full artistic control. Figure 1 shows how an
artist efficiently designed a set of buildings with our local editing
system. Our approach makes the following main contributions:

• We present the novel concept of Good Edit Locations (GELs)
which describes, independently per attribute, the optimal set of
possible edit locations in the derivation tree of a procedural
model. They allow the artist to intuitively modify attributes lo-
cally without knowledge of the rule set or the derivation tree hier-
archy. Without the need for any pre-processing or manual anno-
tation, the set is automatically defined by an efficient bottom-up
algorithm which can be executed in real-time.
• To persist the artist’s local edits, we introduce meta-locators, ro-

bust descriptors to identify a GEL or a set of GELs in a derivation
tree independently for each attribute. Meta-locators use multiple
functions to analyze the local context of a GEL. For example, a
meta-locator could describe an local edit on the first window of
the top floor on the facade facing south (but note again that no ex-
plicit definition of facade, floor, or window is required). Further,
combination functions are introduced on top of meta-locators,
which allow, for example, to replace a set of meta-locators with
one meta-locator using wildcards. This enables a robust and in-
tuitive user experience for designing multi-selection.
• The final requirement of an artist is to conveniently transfer the

local edits from one model to other models, e.g. with a copy-
paste user experience. Therefore we describe a novel method
that does not require user assistance even in the case where the
derivation trees have different topologies.

2. Previous Work

Procedural modeling is a popular model to generate complex ob-
jects or larger environments, for example plants [PL90], urban
street networks [PM01], roads [GPMG10], facades [WWSR03],
buildings [MWH∗06], parcels [VKW∗12], rollercoasters [KK11],
and terrains [GGG∗13]. In this paper, we are mainly concerned
with methods to control procedural modeling. One idea is to
define external attributes that can be queried by the procedural
model [PJM94, PM01].

(a)

(b)

(c)

(d) (e)

Figure 2: Local editing of procedural models is still a challenge.
(a) In modeling tools like Maya, the editing of the the scene graph
of the procedural model can result in holes or texturing problems.
(b) in our approach the window dimension can be locally edited
without problems. (c) In procedural tools like CityEngine, authors
have to define countless attributes to control for example every win-
dow ornament, leading to unintuitive UIs and complex procedural
systems. (d) in our approach, the artist has full artistic control over
the facade appearance. (e) Our local edits can be applied to arbi-
trary shapes or hierarchies. Unlike [LWW08], our local edits allow
unnested grids (e.g. caused by ornaments) and do not require spe-
cial annotations.

A significantly more difficult coupling of user input and proce-
dural modeling are techniques that aim to find a procedural model
with certain properties, sometimes referred to as inverse procedu-
ral modeling. Several techniques propose combinations of proba-
bilistic sampling or optimization techniques [TLL∗11, VGDA∗12,
RMGH15, SW14] to find parameters of a procedural model with a
fixed structure. A second approach is to optimize for the structure
of a grammar given some input shapes, e.g. [TYK∗12, MVG13,
WYD∗14]. One particular form of inverse procedural modeling is
to control a procedural model by sketching [NGDA∗16,HKYM17].
All these techniques are a first step to bringing existing models into
a more editable form by converting them to procedural descrip-
tions. Therefore they can be used as input to our approach, which
uses forward procedural modeling.

Another concept is to enable the user to change a model while
it is derived, to interleave procedural and interactive editing. This
has been proposed for plant modeling [HBDS17], street model-
ing [CEW∗08], and ecosystem modeling [EVC∗15].

Another related research question is how to edit the (rules of)
procedural models directly. In recent years, graph-based procedural
modeling systems became popular, e.g. [Pat12, SEBC15, BBP13].
Another idea is the generation of procedural sub-models that can be
interacted with as separate components [LHP11, KK12]. Our work
also uses a user interface and procedural handles [KWM15,Hav05]
to interact with a procedural model so we build on some of this
recent work. However, the actual design of the user interface is not
a focus of our paper.

Our work is mainly concerned with persistent edits in procedural
modeling, which are preserved if a model needs to be regenerated
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Figure 3: (a) These rules generate a facade F containing row R, ledge L, tile T, and window W, as seen in (b). (c) An abbreviated derivation
tree with an orange selection W is shown. The numbers along the orange path are the treekey. We find GELs independently for the attributes.

under different starting conditions. Lipp et al. [LWW08] introduced
semantic locators to persistently store and apply local edits. Jesus
et al. [JPCS18] extended this idea using a query and example based
interface for more complex selections.

In contrast to our meta-locators, semantic locators require anno-
tations in the grammar, and have dependencies between attributes.
Also, choosing meaningful semantic locators requires manual trial-
and-error exploration in contrast to our automatic detection of
GELs. The transfer algorithm of Lipp et al. can only handle sin-
gle selections, and needs manual decisions on when to transform.

A key advantage of editing procedural models is that they enable
high-level semantic edits. A related research area in shape model-
ing is to analyze geometric models so that similar higher-level edit-
ing operations become possible [GSMCO09,LCOZ∗11,BWSK12].

Our problem statement can also be seen as a special case of shape
matching. For example, Tevs et al. [THW∗14] propose a framework
for matching shapes via geometric symmetries and regularities and
Alhashem et al. [AXZ∗15] propose a discrete shape matching al-
gorithm for two input shapes. In contrast to these other problem
statements, we are able to leverage structural information provided
by the rule-based procedural model to get more robust results.

Rule-based modeling Background Müller et al. [MWH∗06] in-
troduced CGA, a procedural system targeted at building generation.
In CGA, starting at a shape, consisting of a label, attributes and ge-
ometry, the system searches for a rule with a matching label, and
applies the rule. Rules have a label and one or more operations,
which can use attributes. They output refined shapes.

For example, in Figure 3(a), the rule with label F has the opera-
tion splitY which reads the attribute h and splits the input shape
into multiple shapes with label R along the y direction. When no
matching rule label is found for a shape label, it is a terminal shape.
The union of the geometry of all terminal shapes will yield the fi-
nal model (N, W and L in Figure 3). The process of getting from the
start shape to the terminal shapes is called derivation.

During derivation we build a derivation tree. In order to sup-
port nested operations, we store both shape nodes (e.g. F or R
in Figure 3(c), shown as a solid circle) and operation nodes (e.g.
splitY, which is abbreviated as y, shown as a dashed circle) in
the derivation tree. When an operation reads or writes attributes
while generating a shape, we mark the generated shape with those
attributes. For example, in Figure 3 the attribute h is read while
executing the operation y, thus we mark the shape R with h.

A node can be uniquely identified in a derivation tree: First
the path from the root to the node is determined. Then, for each
node on this path, its index in the ordered list of siblings is ex-
tracted, and added to a list. We call this list the treekey of a node,
Lipp et al. [LWW08] named it exact instance locator. In Fig-
ure 3(c) such a path is highlighted in orange, and the treekey is
(0,2,0,0,1,0,1,0,0).

Local Edits Without loss of generality, we specify a local edit as
writing the value v to attribute a at a specific treekey tk during
derivation. Such a local edit is defined by the tuple l = (tk,a,v),
and our implementation is capable of applying local edits during
derivation of the procedural model, thus the derivation process in-
cludes local edits in addition to the initial shape and rules.

3. Finding Good Edit Locations (GELs)

We would like to set out to make three fundamental observations
about local edits that are important to define GELs. In our work,
a GEL is specified per attribute, so that each attribute has a dif-
ferent set of GELs. First, there are many locations where apply-
ing an edit has no effect. For example, in Figure 3(c), editing
the attribute h at treekey (0,2,0) will be without effect, because
h is not read below. These locations in the tree are unsuitable as
GELs. Second, there are many redundant locations where apply-
ing an edit leads to the same modification, for example, in Fig-
ure 3, editing d at treekey (0,2,0,1) has the same effect as editing
it at treekey (0,2). For these edit locations, it makes sense to se-
lect the edit location highest up in the tree as representative. Third,
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there are many combinations where writing an attribute in mul-
tiple locations has the same effect as writing it in one location.
For example in Figure 3, setting the color col at multiple treekeys
{(0,2,0,0,0),(0,2,0,0,1),(0,2,0,0,2),(0,2,0,0,3)} is the same
as setting it at (0,2). For specifying local edits, it is better to store
as few locations as possible, so we prefer to store a single edit in-
stead of a set of edits whenever possible.

To describe GELs, we use the concept of read coverage. We de-
fine the read coverage of a specific attribute a at a tree node n as the
number of times the attribute is read in the subtree below n. If there
is a write access to attribute a in the subtree below n, all reads of
attribute a below the write location are not counted. It is necessary
to ignore all reads below writes, because they will not be affected
by any edit above the write.

The concept of read coverage can now be used to define a GEL
for attribute a, based on the observations above. GELs for attribute
a are all locations in the tree where the read coverage increases.

Algorithm 1 implements this by computing the read coverage
bottom-up, independently for each leaf and attribute. This indepen-
dence has the advantage that the edit granularity can be different
for different attributes. For example in Figure 3(c), the attribute d
can only be edited uniquely at treekey (0,2), but the color col has
multiple good locations.

Algorithm 1 findGoodEditLocations(leaf ,a)
node = leaf
numLeaves = 1;coverage = 0
if a in node.attrsread then coverage++
locations = ∅
while node.parent 6= null do

lnew = 0;cnew = 0
calcCoverage(node.parent,a, lnew,cnew)
if cnew > coverage and lnew >numLeaves then

add node to locations
node = node.parent
numLeaves = lnew;coverage = cnew

return locations

Algorithm 2 calcCoverage(node,a,numLeaves,coverage)
if a in node.attrsread then coverage++
if a in node.attrswritten then return
if node.children == ∅ then leaves++
for child in node.children do

calcCoverage(child,a, numLeaves,coverage)

Another example of GELs is shown in Figure 3. When one win-
dow W is selected, the GELs are at treekeys (0,2,0,0,1,0,1) for
col, at (0,2,0,0,1) for col and w and at (0,2) for col, w, d, and h.
Note that the previously mentioned redundant locations are auto-
matically ignored. Results of edits at GELs are shown in Figure 4.

User Interface for Edits at GELs (note: changed subsection to
paragraph)

Our user interface enables artists to specify edits at GELs. To se-
lect one GEL, the user clicks on a leaf shape. For each attribute, we

(a) (b)

(c) (d)
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Figure 4: (a) For the selected shape, GELs are determined for each
attribute, and handles are displayed. (b) All handles were modified.
Note the different granularity, e.g. changing the color col only af-
fects the window while changing h affects the floor. (c) Selecting
one window, then stepping up two GELs increases the scope of the
handles w and col to the row R. Changing them results in (d).

ascend towards the root in the derivation tree until we find the first
GEL. This can be a different location for each attribute. We display
procedural handles [KWM15] at those locations to enable interac-
tive modifications of attributes. Dragging a handle will create or
update a local edit.

For example in Figure 4(a), which is based on the rules in Fig-
ure 3, we display the following handles after clicking the orange
leaf: for height h a handle is shown for the whole row R, while for
the color col a handle (blue triangle) is shown at the window W.
We highlight the shape corresponding to the deepest edit location
in the derivation tree, which is the window W.

Increasing the scope Using a hotkey the user can step up to the
next higher GELs on the path towards the root. This can be done
until arriving at the root node, thus degenerating into a global edit.
For example, in Figure 4(c) one window W was selected, then step
up was clicked twice: First, the color handle col moves up to a tile
T. Second, both the handle for col and w move to the row R. On
the next step up, all handles would affect the whole facade. Note
that it is not possible to select a whole column this way, because
there is no GEL representing a column. A way to achieve this is
using group selections using wildcards. These selections will be
described at the end of the next section.

4. Meta-locators

One GEL can be uniquely addressed using a treekey. However,
treekeys are not robust regarding changes in the derivation tree.
Changes in the derivation trees can occur in a number of situations,
for example when a global attribute, the initial shape, or the rules
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change, as shown in Figure 6. In order to preserve local edits in
such situations, we need a more general way to describe the GEL.

The main idea is to describe the context of a GEL using multiple
local context functions. Then we construct a meta-locator, based
on the results from those functions to identify a GEL. To describe a
set of GELs we introduce combination functions for meta-locators.
As the GELs are created bottom-up per attribute, the meta-locator
is also a bottom-up description with adaptive granularity.

4.1. Local Context Functions

Given a GEL n and attribute a, we define the local context L(n,a)
as the list of all siblings (including n) which are a GEL for at-
tribute a. The filter using a is done to avoid influence from other
attributes, for example adding an ornamented ledge with a new at-
tributes should not influence the floor numbers.

A local context function r = c(s,a) calculates a unique rational
number r∈Q for a subset of siblings s∈ LS(n,a) where the domain
LS(n,a) is a subset of L(n,a). c can be undefined for some elements
in L(n,a). The simple local index context function: cidx(n,a) oper-
ates on LS = L and returns the order position that n has in L.

We define multiple direction context functions. They analyze the
bounding box centers of nodes in L. For the cx context function
we project all siblings along the x direction of the parent bounding
box. If all projected positions are unique within a certain threshold,
we order the positions along x and return the order index of n. Oth-
erwise cx is undefined. Analogously cy and cz define indices with
regard to the y and z directions.

The component index context function ccomp analyzes if a com-
ponent split, as introduced in CGA [MWH∗06] was performed on
the parent shape. A component split separates a shape into multiple
components with reduced dimensions, for example a box into six
faces. First we look at the dimensions of the bounding boxes of all
siblings in L. If all of them have a zero dimension where the parent
is non-zero, we assume it is a component split, and the local index
is returned. Otherwise the function is undefined.

For component splits, the component orientation context func-
tions analyze the angle of the component normals with respect
to global directions. The function csouth operates on the domain
LSsouth including all siblings facing south within some threshold.
csouth orders the elements in LSsouth along the vector orthogonal
to south and up, which is the east vector. When n is included in
LSsouth, csouth returns the order index of n, otherwise it is undefined.
Analogously cnorth,ceast ,cwest return indices for other directions.

For all functions, we also define the composite functions per-
centage and reverse: Given the maximum value rmax for a function
c with a given domain LS, we can define a function cp returning
percentages for c: cp(n) = c(n) ∗ 100/rmax, and the reverse func-
tion creverse = rmax− c(n).

4.2. Constructing Meta-Locators

A meta-locator m identifies a GEL n for a given attribute a. It is
a list of pairs (c j,c j(p,a)), containing a context function c j, and
the result c j(p,a) for nodes p which are GELs of a along the path
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Figure 5: (a) Selecting two windows W automatically expands to
the column. (b) Handle changes affect the column. Also showing
example of function override UI. (c) Selecting three tiles expands
to a complex selection, which is adjusted using one handle (d).

from the root to n. We also add pairs (c j,∗) for the path from n
to the deepest child, where the wildcard ∗ indicates that all chil-
dren are chosen. While the children are not necessary to locate n
in this specific derivation tree, they help when transforming m to a
different derivation tree where parent and child relations might be
reversed.

To construct m, we walk from the root towards n, and at every
node p that is a GEL of a we look at the defined local context
functions. Note that multiple context functions c can be defined for
a given p. However, as the results of all defined functions need to
be unique, choosing one function is enough to uniquely locate a
GEL in a given derivation tree. The chosen function is added to the
meta-locator together with the evaluated value.

Which function to choose depends on the desired behavior when
the derivation tree changes. For example, the composite function
creverse makes sure edits stay relative to the last sibling. We provide
both an automatic heuristic to choose a function c j, and a user-
interface to allow overriding of the choice c j to a different function
ck that is defined for p.

By default we first set the component index function as the
choice c j, if this is undefined the direction and then orientation, and
finally the local index function. When there are multiple directions
(or orientations), we choose the one where the projected positions
have the biggest (or angles have the smallest) variation. The user in-
terface to override the choice c j to ck, for example to choose a com-
posite function, is shown in Section 4.5. Overrides of c j to ck are
always applied to all instances of c j in the meta-locator (but they
can vary between different local edits), as long as ck is defined in
the corresponding node. Override decision are stored alongside the
meta-locator in order to apply it again on derivation tree changes.

Example The first GEL of the attribute c along the path to the
shape T with treekey (0,2,0,0,1) in Figure 3 is at treekey (0,2).
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We evaluate the context functions here. As there is a y split, the
direction function cy return a defined value, and will be chosen by
our heuristic. The row R is the third row when ordering the siblings
along the parents y direction. Therefore cy evaluates to 2, one less
because our counting is zero-based. The pair (cy,2) will be added
to the meta-locator m. Then, the context functions for the second
GEL at treekey (0,2,0,0,1) are evaluated. As there is a x split,
the context function cx will be chosen. Adding the pair of cx and
the order 1 creates the final meta-locator ((cy,2),(cx,1)). Now add
pairs for the path to the deepest child to the list, replacing all results
with the wildcard ∗. The meta-locator is: ((cy,2),(cx,1),(cx,∗)).

4.3. Combining Meta-Locators

To describe sets of GELs, we define the range frange(c,rmin,rmax),
even fe, odd fo, and wildcard f∗(c) functions, which can be
used instead of a specific result c(p,a) in a meta-locator. In the
meta-locator pairs we store them using the short-hand notation
(c, [rmin,rmax]), (c,e), (c,o), and (c,∗).

Such meta-locators are constructed by combining two meta-
locators m1 and m2. First the meta locator with the longer or equal
list ml and the one with the shorter list ms out of m1 and m2 is
selected. Then, we find pairs in ms, where the corresponding pair
in ml uses the same function c, but has different results rs and rl .
For the range function, such pairs are replaced with (c, [min(rs,rl),
max(rs,rl)]), for the wildcard function with (c,∗). If rs is different
to rl , but both are even or odd, (c,e) or (c,o) are used.

Note that to actually apply a meta-locator m describing a set dur-
ing derivation, it must be unrolled to a set M of individual meta-
locators first. For every pair in m containing frange(c,rmin,rmax) we
find the set of results R = c(s,a)|s ∈ LS(p). Then, for each result
r ∈ R|rmin < r < rmax a copy of m is created, where we replace the
pair with (c,r). For the wildcard function f∗ this is similar, however
all elements r ∈ R are taken.

Example The meta-locator for shape W1 in Figure 5(a)
is m1 = ((cy,2),(cx,2),(cx,1)), and for W2 it is m2 =
((cy,1), (cx,2), cx,1)). The first pair has matching functions
cy but mismatching results 2 6= 1. Therefore we construct
meta-locators ((cy,∗),(cx,2),(cx,1)) which can be unrolled to
((cy,Y1),(cx,2),(cx,1))∀Y1 ∈ (0,1,2,3). This represents a whole
column.

Figure 5(c) is a more complex example with two x and y splits.
The shapes Wi have meta-locators

((ccomp,0), (cx,1), (cx,0), (cy,1), (cy,1)) for W1,

((ccomp,0), (cx,2), (cx,0), (cy,1), (cy,1)) for W2 and

((ccomp,1), (cx,0), (cx,1), (cy,1), (cy,1)) for W3.
Combining them selects a floor across all facades:

((ccomp,∗), (cx,∗), (cx,∗), (cy,1), (cy,1)).

Mapping When calculating the meta-locator for all GELs we ob-
tain a mapping: tk↔ m, i.e. a meta-locator m can be mapped to a
treekey tk and vice-versa, for all GELs in a given derivation tree.
Therefore we can write the local edit tuple as l = (m,a,v).

4.4. Write Local Edits Back Into Rules

Storing local edits as tuples l = (m,a,v) separately from the rules
has the advantage that they can be transferred to different deriva-
tion trees and rules, as shown in chapter 5. As a disadvantage, ev-
ery derivation tree change requires running the transfer algorithm,
even when the rules stay the same. In this case it can be beneficial
to write the local edits back into the rules. This way the transfer
algorithm is no longer required on derivation tree changes.

Automatic Semantic Tags The idea is to add semantic tags
[LWW08] based on the meta-locator m to the rules. Note that
the functions cidx(p,a) in m can not be evaluated during a top
down derivation, because we do not know if an attribute will ac-
tually be used later in the derivation, therefore we do not know
which siblings are GELs. However, cidx(p,a) can be approximated
by assuming all siblings are GELs. For example in CGA, the
split.index attribute can be used to approximate the direction
context functions cx, cy and cz. This can result in a different local
edit position if for example ornaments are added, which is a general
limitation of semantic tags as introduced by Lipp et al. [LWW08].

For every context function c j in m, except the last one, an
attribute assignment using set(cj, aj) is added to the
rule at the position where the coverage increase happens. aj
is an approximation of c j(p,a). For example, in Figure 3 the
coverage for attribute col increases three times, so we add
assignments for the first two times. This results in the following
rules: R → set(cy, split.index)) splitY(...)
and T → set(cx, split.index) splitX(...).
Then, for the last context function, an assignment of v
to a is added after a case statement which tests against
ai. For example, extrude(0.5) color(col) W is
changed to extrude(0.5) (case(cy==2 && cx==1)
set(col, v)) color(col)) W. When wildcards occur as
function results, the corresponding case statement is omitted.

4.5. User Interface for Sets of GELs

To design meta-locators representing a set of GELs, the user first
selects two or more leaf shapes. Then, we find GELs for those leaf
shapes, and calculate their respective meta-locators. Depending on
an optional modifier key the user presses, the meta-locators are ei-
ther combined using ranges or wild-cards.

For example, in Figure 5(c) the user clicks on three shapes. The
meta-locators are combined, and the unrolled result is highlighted
in blue, as shown in (d). Note that step-up is a special case of wild-
cards: Clicking on two windows on the same floor in Figure 5(a)
and combining them with wild-cards would select the same GEL
as clicking on one window, then stepping up once. We prefer using
wild-card selections, because they make the split order (floors or
columns) transparent to the user.

If multiple context functions match for a specific node p, we
show an icon representing the automatically chosen function next
to the first node p1 ∈ LS(p). In Figure 5(b), cx was chosen by the
heuristic, but the composite functions percent and reverse are also
defined. If the user drags the circle below cx, dashed icons for the
other defined functions are shown next to their respective first node
p1 ∈ LS(p). Dropping the circle over a icon defines an override.
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Figure 6: Local edits of the color coli, width wi and height hi are applied (a). Those edits are transferred to a house having a different rule
with switched y/x split order and lower height (b), one with nested splits (c), and one with nested splits and a different initial shape (d).

5. Transfer of local edits between derivation trees

The problem of edit transfer can be described as follows. We are
given a set of local edits for a source derivation tree and we would
like to find a corresponding set of local edits for a target derivation
tree. The core of this problem is matching tree locations from the
source tree to the target tree. To tackle this problem we propose to
enlist the meta-locators described in the previous section. We first
describe the matching for meta-locators describing a single location
and then extend to meta-locators describing a set of locations, i.e.
meta-locators including wildcards and ranges. Given a local edit
ls = (ms,a,v) in the source tree at a location specified by meta-
locator ms, we want to find a matching tree location in the target tree
specified by meta-locator mt . Essentially we have to find a mapping
ms→ mt , for each local edit.

As a first step, we calculate all meta-locators mt of all GELs in
the target derivation tree using local context functions and choosing
one based on the heuristic introduced in 4.2.

Then, for each local edit, we try to find an mt that matches ms. If
mt contains overrides of selection functions (which can be different
for each local edit), we also apply those overrides on mt . When a
match is found, we execute the local edit in the target derivation
tree. The challenges are to decide when meta-locators are match-
ing, how to handle different derivation tree structures, and how to
prioritize matches when multiple matches are found.

Exact and unordered matches Two meta-locators ms and mt
match exactly when all list entries are the same and have the same
order. This is an ordered match with priority 1. In case the meta-
locators have the same pairs, but their order is different, we con-
sider this an unordered match with priority 2. The motivation be-
hind this match is that this typically indicates that the source and
target model are very similar, but that the two derivation trees create
different hierarchical structures for these models. An example for
an unordered match occurs when transferring edit col4 from Fig-
ure 6(a) to (b). The first derivation tree splits the facades first into
columns and then into floors and the second derivation tree splits
the model first into floors and then into columns. The meta-locator
for edit col4 is ((ccomp,1),(cx,0)),(cy,1)) in building (a) and is
matched to meta-locator ((ccomp,1),(cy,1)),(cx,0)) in (b).

Handling different structure When the structure of the derivation
tree has major differences, it is very likely that there are no exact or
unordered matches. To detect such differences we count how often
each context function c occurs both for ms and mt .

Whenever a count for c is different between ms and mt , there is
a structural difference. For example, when considering a transfer
from Figure 6(a) to (c), we can observe that the facade in (c) has
more entries for the cx and cy function. The edit col4 in Figure 6(a)
has the meta-locator ms =((ccomp,1),(cx,0),(cy,1)). The count for
ccomp, cx, and cy is one each. In the building 6(c) the meta-locator
mt = ((ccomp,1), (cx,0), (cx,0), (cy,0), (cy,1)) also has a count
for ccomp of one, but two for each cx and cy. Therefore the counts
for cx and cy mismatch between ms and mt .

For every function with mismatching count, we compute the
global order index using the algorithm introduced by Lipp et
al. [LWW08]. Their algorithm computes a global ordering index
using a post-order traversal of the derivation tree. For example, the
global order of the edit col4 with meta-locator ms in Figure 6(a) is
0 for ccomp, 1 for cy and 0 for cx. The global orders match for meta-
locator mt in Figure 6(c). This algorithm is performed on meta-
locators, and therefore the result is independent for each attribute.

When global order matches are found, we construct a new meta-
locator msG by first copying it from ms. Now, for every function
c with mismatching count, where a global order match was found,
we replace all pairs referencing c in ms with the ones from mt .
In the previous example this results in msG = ((ccomp,1), (cx,0),
(cx,0), (cy,0), (cy,1)), which is equal to mt . Finally, we test for
an unordered match between msG and mt . If it passes, we call it a
global order match and set priority 3.

Not matchable edits There are multiple cases for which a meta-
locator cannot find a match. This can happen if the meta-locator
describes a location that does not exist in the target derivation tree
(e.g. the fourth floor in a two-storey building) or it describes an
attribute that cannot be changed in another structure. For example,
the edit h1 in Figure6(a) modifies the height h of one tile. This edit
is not possible in building (b), because it is first split into rows along
y with heights h and then along x into columns. Therefore h can
only be edited per row. This also means that editing h per tile is not
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a GEL in Figure 6(b), because it has no effect, therefore it will not
be found at all in Algorithm 1.

5.1. Handling sets of edit locations

Now, we extend to matching local edits at a set of locations, de-
scribed by meta-locators that include wildcards or ranges, to an-
other set of locations.

For ranges, we simply create two meta-locators, one for the start
and one for the end of the range. Then we transform those individ-
ually. For wildcards we consider two cases, both times using the
globally matched meta-locator msG as source:

First, a meta-locator can include wildcards exclusively in pairs
at the end of the list, but not in the middle. These meta-locators
are typically generated by the step up operation described in Sec-
tion 3, but they can also be generated by simple multi-selections as
described in Section 4.5. While these meta-locators describe a set
of attribute usages in different parts of the derivation tree, the edit
can be accomplished by changing an attribute at a single tree loca-
tion higher up in the tree. Figure 6 shows two such examples, the
edits col1 and w1. The meta-locator for col1 is ((ccomp,0), (cx,3),
(cy,∗)).

Since our meta-locators already include trailing wildcards for
children, this case can be handled with the previously described
algorithms without further changes.

Second, a meta-locator can include wildcards in pairs some-
where in the middle of the list. These meta-locators are typically
generated using multi-selection as described in Section 4.5. For ex-
ample, the edits col2,col3, and h2 in Figure 6 were created using
multi-selection. The meta-locator of edit col2 is ((ccomp,0), (cx,∗),
(cy,5)). This meta-locator is not representable by one GEL. To find
this type of meta-locators, we start from meta-locators in the tar-
get derivation tree without wildcards and meta-locators that have
wildcards only in trailing pairs and enumerate all possible wildcard
placements in the middle. For example, given a meta-locator with
context function results (0,1,2,∗,∗) we enumerate (0,∗,2,∗,∗),
(∗,1,2,∗,∗) and (∗,∗,2,∗,∗). The detailed enumeration algorithm
is shown in Algorithm 4. If an ordered or unordered match is found
with a permutation, it is a multi-selection match with priority 4.

For example, the edit col2 in Figure 6(a) with meta-locator
((ccomp,0), (cx,∗), (cy,5)) has an unordered match to meta-locator
((ccomp,0), (cy,5), (cx,∗)) in Figure 6(b). Note that in (b) the x/y
splits are swapped, thus a meta-locator with a wildcard in the mid-
dle can match a meta-locator with a wildcard at the end. The oppo-
site happens for edit col1 with locator ((ccomp,0), (cx,3), (cy,∗)).
It is matched to locator ((ccomp,0), (cy,∗), (cx,3)).

Handling multiple edits It is possible for edits to be in conflict
with each other. A simple conflict happens when one edit over-
writes an attribute change effected by a previous edit. A more
complex conflict happens when meta-locators using wildcards are
used. Then a set of derivation tree locations described by one meta-
locator can partially intersect the derivation tree locations described
by another meta-locator. In general, we do not use explicit con-
flict handling, but let subsequent edits simply overwrite the values

of previous edits. For example, in Figure 6(a) the edit col1 looses
against edits col2 and col3 because it is higher up in the derivation
tree, while in building (b) it always wins.

Prioritizing multiple matches Matches are sorted by their as-
signed priority. In case of multiple matches having the same pri-
ority, the matches are next sorted by the amount of entries in the
meta-locator list in descending order. This prefers meta-locators
with more matching pairs. Then sorting proceeds using treekey
length in ascending order, preferring edits higher up in the tree.
Finally, the first match is chosen.

Algorithm 3 findMatch(ms, locations)
matches = ∅
for mt in locations do

if EXACTMATCH(ms, mt ) then
add mt to matches with priority 1

else if UNORDEREDMATCH(ms, mt ) then
add mt to matches with priority 2

else
msG = GLOBALTRANSFORM(ms, mt )
if UNORDEREDMATCH(msG, mt ) then

add mt to matches with priority 3
else if MULTISELECTIONMATCH(msG, mt ) then

add mt to matches with priority 4
sort matches by priority and |entries| in mt and associated treekey
return first element in matches

Algorithm The matching is an iterative process. For each local
edit we call Algorithm 3. The matching subfunctions are shown in
Algorithm 4. For unmatched edits, we try again after all others were
matched and executed. We might get more matches this way, for
example when one edit increases the building height, and another
one changes one floor which only appears because of the increased
height. We iterate as long as we find new matches. It is possible that
some meta-locators remain unmatched. This happens e.g. when a
local edit addresses floor 6 but the building just has 4 floors.

Triggering edit transfers Local edits are stored as tuples {m,a,v}
with an initial shape. Whenever the derivation tree of the initial
shape changes, the local edits need to be transformed to the new
derivation tree using Algorithm 3. This is done automatically, e.g.
when a rule changes, an initial shape changes, or when edits are
added using the copy-paste functionality (described in Section 5.2).

5.2. User Interface for Transfers

We provide a user interface to copy-paste edits from one shape with
a source derivation tree to another shape with a target derivation
tree. It allows for copying of some edits between model parts, or
copying all edits at once.

The user first needs to specify a location in the source tree us-
ing the method described in Section 4.5, resulting in meta-locator
mselCopy. On clicking on copy in the context menu, all edits are fil-
tered with mselCopy and stored in the copy buffer. To filter edits,
we take all edits whose meta-locators match mselCopy and all ed-
its whose meta-locators match a specific wildcard replacement of
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Figure 7: Editing and automatic transfer of edits across topology changes. (a) Procedural facade encoded row-first which one column of
tiles selected. (b) The same facade with some local edits applied. These edits are stable against topology changes as shown in (c) where a
ground floor and pillars were enabled. (d) The edits from (b) are transferred to a building with more floors and a more complex footprint.

Algorithm 4 Matching subfunctions, with input meta-
locators ms = ((cs0,rs0), . . . ,(csk−1,rsk−1)) and mt =
((ct0,rt0), . . . ,(ctl−1,rtl−1)) where c is a context function
and r is a result of c ∈Q, k = |ms| and l = |mt |

function EXACTMATCH(ms,mt )
return true when k = l and csm = ctm

and rsm = rtm for all m ∈ [0,k[
function UNORDEREDMATCH(ms,mt )

return true when k = l and csm = ctn
and rsm = rtn with m = [0,1, ...,k−1]
where n is any permutation of m.

function GLOBALTRANSFORM(ms,mt )
msG = ms
for all unique functions c in ms do

calculate global order of c for ms and mt
if global order matches then

replace pairs using c in msG with the pairs from mt

return msG

function MULTISELECTIONMATCH(ms,mt )
i = index of first wildcard in mt - 1
for j = 1 to 2i−1 do . Enumerate multi-selections

mwc = mt
for k = 0 to i−1 do

if bit k is set in j then
set result of pair k in mwc to ∗

if UNORDEREDMATCH(ms,mwc) then
return true

return false

mselCopy. Next, a target selection is defined, yielding meta-locator
mselPaste. On paste, we perform the following operation for each
meta-locator m corresponding to an edit in the copy buffer. We
change m to make it relative to mselPaste by replacing wildcard in-
dices of the pairs in mselPaste with the index of the corresponding
pairs in m. Finally, Algorithm 3 is used again to transform mselPaste.

The example in Figure 8 has three local edits of colors. The green
color edit col1S is at location ((ccomp,1), (cx,3), (cy,2)). The se-
lected row in (a) has meta-locator ((ccomp,1), (cx,∗), (cy,2)). All

three edits are matched by the selection filter. In (b), the target se-
lection with mselPaste = ((ccomp,0), (cx,∗), (cy,1)) is shown. In (c),
the three edits were pasted, i.e. made target-relative, transformed
and applied to the derivation tree. The final meta-locator for col1T
is ((ccomp,0), (cx,3), (cy,1)).

(a) (b) (c)col1S col1T

Figure 8: Copy-paste of local edits from one floor onto another
one: (a) A floor with local edits is selected and copied. (b) A target
floor is selected. (c) The local edits are pasted relative to the target.

6. Results and Discussion

Creating Variations of an Architectural Style Our methods have
been used extensively in a project that was exhibited for 6 months
at the Architecture Biennale in Venice, Italy. Many buildings were
modeled in a geotypical look for multiple 3D cities, including an
idealized version of Tel Aviv, Israel, in 1935, according to designs
by city planner Patrick Geddes.

The artists encoded the basic style components in a procedural
rule and then modeled the buildings using local edits (Figure 1).
The edits included choosing the main facade layout and floor pat-
tern, selecting balcony types, placing windows, etc.

This approach allowed them to explore and design the styles
much faster than using either a fully procedural or fully manual
approach. Using our hybrid approach keeps both rule-writing and
manual actions to a minimum. The designers needed about one day
for encoding the default style in rules, 5 minutes for manually cre-
ating the 3D mass model and 15 minutes for placing edits to create
the reconstruction or a design variation. Manually modeling such a
building would have taken them about 4 hours for each variation.
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(c)                                                               (d)

(a)                                           (b)                 

Figure 9: Transfer of urban planning design. Left: (a) Rule which divides a block into units. (b) Local edits are used to design one block. (c),
(d) The design is copy-pasted onto two different blocks, with different form and number of edges. Right: transfer to a whole city.

(a)                   (b)                                         

Figure 10: Editing a Stochastic Building Facade. Left: The initial
result of a stochastic rule. Right: The final model after being edited
by an artist. Positions, sizes and appearance of some windows are
corrected and doors and balconies are inserted.

Refining Facades This example shows how the tools described in
this paper make local edits robust against changes in the rule base.
Figure 7(a) shows a procedural facade, encoded row-first. When
clicking on a shape, we analyze the attribute usage and show han-
dles for meaningful edit locations. The user can quickly select a
column of tiles (orange highlight) using a second click. By drag-
ging handles, local edits can be applied to create an interesting
facade which would have required complicated if-case-statements
in the procedural rules (b). These edits are stable against topol-
ogy changes as shown in Figure 7(c) where a ground floor and
pillars were enabled, resulting in a completely different topology
with nested grids. Figure 7(d) shows the edits from (b) after being
transferred to a building with more floors and a complex footprint,
spanning multiple facades. Note how the edits stay in place even if
the facade spans multiple faces and has more floors. This is possi-
ble using both the component orientation context functions and the
reverse composite functions.

Editing a Stochastic Building Facade Procedural modeling is
great to generate stochastic variations. However, artists often de-
sire some local control. Local edits allow for this, as shown in Fig-
ure 10. Here, the rules generate a modern building with windows
of random size and at random positions. The windows of the initial
model on the left are edited to obtain the final result on the right.
Windows are moved around, their size and appearance is changed,
balconies are added, and doors are inserted. For example, one edit

(a)                          (b) (c)

Figure 11: We compared three local edit interfaces in our user
study. (a) Ours: Selections automatically expand, and clicking on
the handle applies the edit. (b) Example-based: On selection, mul-
tiple examples are shown. Clicking on a example applies the edit
[JPCS18]. (c) Query-Based: Structured queries define the selec-
tion [JPCS18]. We provide a user interface for query construction.

enables balconies on the whole top floor of the front facade. Defin-
ing and storing the edits separate from the rule is much easier and
flexible than editing the rules and keeps the rules clean.

Transfer of Urban Planning Design The example in Figure 9
demonstrates how our method can be used to transfer local edits
from one initial shape to other initial shapes. In this urban plan-
ning use case, a procedural rule is used to divide a block into units.
Then, the block is manually designed with local edits: the heights
are changed and usages (color-coded) are assigned to whole units or
specific floors. An urban planning rule needs to be respected which
allows at most one tower per block. Finally, in order to rapidly de-
sign the whole city, the edits are copied to all other blocks, most
having a different number of edges than the original block.

6.1. Discussion

User Study We compared our user interface described in Section
4.5 with the example-based and query-based approaches presented
in [JPCS18]. Figure 11 depicts those interfaces. The example- and
query-based approaches require semantic tags, therefore we em-
ployed our automatic semantic tagging method introduced in Sec-
tion 4.4 for them.

Eight users where given the task to replicate the local color edits
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50 100 150 200 250
Query-Based

Example-Based
Ours

Time in seconds to complete edits

20 40 60 80 100
Number of clicks

1 Simplicity - "This method is easy to use" 7

1 Expressiveness - "It allows complex selections" 7

1 Creativity - "This method helps doing creative edits" 7

Figure 12: Results of our user study (n=8). Qualitative results use
a Likert scale (1 = strongly disagree, 7 = strongly agree).

seen in Figure 6(c) using those three methods in randomized order,
without knowing which method was ours. Four users had proce-
dural modeling knowledge, the others a general computer graphics
background. They were given a brief introduction and example for
each method. Then the number of clicks and time to do the task was
recorded, and are shown in Figure 12. It shows that our method re-
quired the least time and number of clicks.

The users also filled out a qualitative questionnaire. As shown in
Figure 12, our method scores the highest. For simplicity, comments
for our method were: "it feels natural" and "there is a direct con-
nection". For the example-based method comments where "it helps
to see what is possible", however also "disconnect makes it hard to
see what will happen". For expressiveness, there were similar com-
ments. However, for the example-based approach three users were
concerned that it might not scale well for more complex buildings,
due to combinatorial explosion. The query based approach is no-
ticeable worse for simplicity and creativity. However for expres-
siveness results have a wide spread, also in the group with proce-
dural modeling knowledge. Four people mentioned "it is only good
for programmers", and two said "however it enables very complex
selections".

Space of Possible Local Edits In Table 1 we show the total num-
ber of addressable edit locations for different methods. Lower num-
bers imply it is easier for a user to find non-redundant and mean-
ingful edits. Additionally, we show the maximum number of loca-
tions when selecting a single leaf and stepping up to the root as
described in Section 3. This directly correlates to how many clicks
a user needs when stepping up to a specific selection.

With exact instance locators, as introduced by Lipp et
al. [LWW08], every attribute can be changed at every derivation

tree node using treekeys. Semantic locators [LWW08] use a heuris-
tic based on scope aspect ratios to add semantic tags to split oper-
ations. Depending on the heuristic parameters, more or less splits
are tagged, creating a range of addressable edits. We show both the
worst case, where all splits are tagged, and the best case, where
we manually added tags to only count split operations potentially
creating more than one shape reading any attribute.

Table 1 shows a maximum of 19 potential edits for our method,
when selecting a leaf in the model shown in Figure 7(c). Seman-
tic locators have 28 to 98 potential edits. This is because semantic
locators from Lipp et al. allow edits of the floor height and wall
color on the window level, even when windows do not read those
attributes. In general, it is preferable to have as few addressable lo-
cations as possible, provided all edits with unique effects are still
possible. Two edits are distinguishable if the resulting leaf shapes
vary in at least one attribute and they are redundant if they result in
leaf shapes with identical attributes.

Our method consistently has the smallest number of addressable
locations. We can even improve upon the manually tagged seman-
tic edits, because we analyze attribute usage independently, there-
fore preventing cases where an attribute edit will not be read. Our
method only presents edits with unique effect, while semantic tags
also allow edits with either no effect or the same effect as other
edits.

Comparison of Transfers In order to compare our transfer algo-
rithm to the methods introduced by Lipp et al. [LWW08], we use
copy and paste of multiple edits from one initial shape to another,
and manually count how many transfers succeed. We assume that
users want the global order of affected leaf shapes to be the same.
Therefore a transfer is successful if it affects at least one attribute
read, and affects the terminal shapes in the same global order (e.g.
an edit affecting the second window must not shift to the third).

The transfer from Figure 7(b)→(c) fails for all previous meth-
ods, only ours passes, as shown in Table 2. This is because the
added pillars create offsets in the global order. Our method handles
this because order is calculated independently for attributes. The
previous semantic approach works for Figure 6(a)→(b), but fails
for all but two cases in Figure 6(a)→(c), because it does not sup-
port wildcard transformations combined with hierarchy changes.
The transform from Figure 9(b)→(c) works for all methods. An in-
teresting case is transfer 10(b)→(a) where exact locators have the
best result, implying that exact locators work well when global at-
tributes and rules remain the same. Three edits fail to transfer using
our method. This is because the split detection based on bounding
boxes fails due to the irregularity in the facade. Extracting splits
from the grammar might improve this.

Note that the transfer method in Lipp et al. [LWW08] requires
a manual tags and user decision whether to perform an exact or
global order match. We manually searched the best case for the
old approach in Table 2. By contrast, our method does not require
manual tagging and works automatically.

Implementation and Performance We implemented our algo-
rithms as plugin in CityEngine [Pro17]. For complexity analysis,
we define n as the number of derivation tree nodes, a the number of
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Fig. All Edit Locations Leaf Selection
Exact Semantic Our Ex. Sem. Our

1r. 13170 30-445 30 300 5-30 5
7(c) 23751 203-5467 130 329 28-98 19
9(b) 1018 94-290 65 118 12-16 11
10(b) 266608 12928-55456 3336 784 128-208 53

Table 1: Number of edit locations for our examples in total and for
a single leaf selection, comparing three methods: exact locators
(Ex.), semantic locators from Lipp et al. with a range from best to
worst case, and our method.

Figure Edits Exact Semantic Ours
7(b)→(c) 8 0.0% 0.0% 100.0%
6(a)→(b) 7 0.0% 100.0% 100.0%
6(a)→(c) 7 0.0% 28.6% 100.0%
9(a)→(b) 14 100.0% 100.0% 100.0%
10(b)→(a) 48 100.0% 75.0% 93.8%

Table 2: Success rate when transferring edits from a source to a
target, both absolute and in percent. For each edit we checked man-
ually if it affects the attributes in the correct leaf shapes.

attributes, l the number of GELs in the derivation tree and ew and e
the number of local edits with and without wildcards; s is the max-
imum number of splits in a branch of the derivation tree and limits
the length of the meta-locators. To calculate GELs for all nodes and
attributes, Algorithm 1 has complexity O(n · a · 2) as every node
is visited once for coverage calculation, and once for comparing
coverage, provided that the coverages and GELs are cached once
calculated. We also calculate the global order of every GEL during
this traversal. Algorithm 3 to find matching meta-locators has worst
case complexity (if no match is found and thus all branches are ex-
ecuted) of O(l · s · log(s) · (e+2s−1 · ew). Note that the complexity
of Algorithm 3 does not dependent on the number of attributes a,
because the edits are already tied to specific attributes.

Timing results when performing a copy/paste operation, which
uses the transformation algorithm, are shown in Table 3 (Hardware:
Intel i7-6700 3.4Ghz, Nvidia 980). For the examples in Figures 6
and 9 the transformations can be performed interactively at about
10 frames per second, while in Figure 10 it is about 0.5 fps.

In order to allow for interactive editing in those cases, we limit
how often we transfer as follows: We only transform when rules or
the initial shape change, or treekeys of edits are no longer found in
the derivation tree. In most cases this results in a good approxima-

Figure Edits Total Derive Good Edits Transf.
7(c) 8 100.5 54.1 46.2 0.2
9(b) 13 103.9 73.9 17.7 12.2
10(b) 48 1211.4 408.7 668.9 133.8

Table 3: We first copied the local edits, then removed them from
the models, and finally measured the times in ms it took for pasting
local edits again. Split times are shown for the derivation, finding
GELs (Algorithm 1) and transfer (Algorithm 3).

tion of transforming at every parameter change, while only incur-
ring the derivation time cost.

Limitations and Failure Cases GELs are found by analyzing the
actual derivation tree. If one subtree collapses to just one attribute
usage, for example by setting the number of floors to one, local
edits assigned to floors are no longer matched, even if the rule con-
tains a floor split. When the number of floors is increased after-
wards, those edits are matched again.

There is no special handling of recursions, therefore recursions
potentially add one GEL for every invocation. This can result in edit
locations that are similar to a multi-selection and therefore redun-
dant, and causes the 19 possible edits for the model in Figure 9, as
shown in Table 1. The same happens for exact locators and seman-
tic tags introduced by Lipp et al. [LWW08]. Detection of recursions
could alleviate this problem.

Choosing one context function in a meta-locator entry can be in-
sufficient to uniquely identify a GEL. For example, choosing either
cx or cz for the block subdivision in Figure 9 is not enough to iden-
tify blocks uniquely. A workaround is to add intermediate splits.
Generally solving this would require multiple functions per entry.

When the structure mismatches for one context function, our
transformation algorithm falls back to global ordering. This means
that all hierarchical information for this function is ignored. This
could be improved by using a ordering based on other context func-
tions instead, or using extended context queries [SM15].

The transformation algorithm requires attribute names to match
between derivation trees, and assumes that equality in names im-
plies similar semantics of attributes. This can either result in lost
edits, or edits placed at wrong positions.

Future Work To improve the attribute name mismatch limitations,
it would be interesting to automatically detect similar attributes
based on their effect on derivation tree properties using machine
learning techniques. This would require a large database of pro-
cedural models. We intend to tackle this problem once we have
collected enough training data.

6.2. Conclusions

We presented a novel approach for the local editing of procedu-
ral models, requiring no technical knowledge of the underlying
rule system by artists. No cumbersome manual tagging, rewriting,
or pre-processing of rules is necessary. Therefore, non-technical
artists can use the system intuitively. This is achieved by leverag-
ing the attributes of procedural systems. We analyze attributes to
find GELs, which greatly simplifies the discovery of meaningful
and non-redundant local edits.

To persist attribute edits at GELs we introduced meta-locators,
defined upon local context functions. Combination functions on
meta-locators enable an intuitive and robust multi-selection work-
flow. Meta-locators are evaluated independently per attribute and
are thus more robust to derivation tree changes compared to pre-
vious work. Using a novel transfer algorithm, local edits are trans-
ferred to other procedural models without user assistance. We im-
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plemented our techniques as plug-in to CityEngine and demon-
strated their usefulness in a user study and multiple real-world test
cases.
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