
Selection Expressions for Procedural Modeling
SELEX Specification

1 Introduction1

This document describes the syntax and semantics of the model-2

ing language SELEX. The lexical and syntactic structure are given3

in Extended Backus-Naur Form (EBNF) aiming at a precise de-4

scription (refer to [Wirth 1996]), while the semantics are explained5

using natural language. Given a program, lexical analysis separates6

strings (e.g. "a=2") as tokens (e.g. "a", "=", "2"), while syntax7

analysis operates on the stream of tokens (e.g. integer) and outputs8

a syntax tree. For the high-level concepts in the syntax analysis,9

more semantic details are elaborated on, in order to reveal the de-10

tails of semantics and implementation.11

We employ static type checking as the type system in SELEX. This12

means that the type of each symbol is determined during the parsing13

process. For example, command "a=1.2" will implicitly determine14

that variable "a" has type float.15

The parser for SELEX is implemented in Python using the pypars-16

ing library, which outputs a syntax tree. The data model and exe-17

cution model in SELEX are implemented in C++. During runtime,18

we traverse the syntax tree, execute the commands evolving a 3D19

model, and output a final 3D model.20

1.1 Notation21

There are several variants of the EBNF notation. In our description,22

we adopt the conventions listed in Table 1.23

Usage definition concatenation alternation optional
Notation = SPACE | [...]

one or more zero or more grouping terminal string
+ * (...) "..."

special sequence escape character
?...? \

Table 1: EBNF notation used in this document.

2 Lexical analysis24

The task of lexical analysis is to divide the strings of the input into25

a list of tokens.26

2.1 Line structure27

A SELEX program is composed of a list of commands, which are28

separated by a newline. However, a command can also span multi-29

ple lines containing newline characters.30

Comments start with the character "#" and end at the end of the31

line. They will be ignored by the parser. However, the character32

"#" does not start a comment if it is part of a string. In this paper,33

as well as in our language, we use the term character to refer to any34

type of ASCII character. We use the term letter to refer to alphabetic35

characters.36

37
comment = "#" (char)*38

char = ?any ASCII character?39

letter = ?alphabetic characters a−z and A−Z?4041

2.2 Identifiers and keywords42

Identifiers can be used to identify a variable, an attribute, or a func-43

tion name, e.g. "facHeight" could be the name of a variable that44

stores the facade height. SELEX is case-sensitive and an identifier45

is defined as follows:46

47
identifier = letter (letter | digit | "_")*48

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"4950

Keywords are reserved by the language, and cannot be redefined51

by the user:52

53
"child" "descedant" "parent" "root" "self" "neighbor"54

"label" "type" "rowIdx" "colIdx" "rowLabel" "colLabel"55

"last" "rowLast" "colLast" "groupRows" "groupCols"56

"groupRegions" "if" "randomSelect" "eval"5758

2.3 Literals59

Numeric literals define numbers (floating point or integer):60

61
float = ["−" | "+"] digit+ "." digit+62

integer = ["−" | "+"] digit+63

number = float | integer6465

Boolean literals can be either false (0) or true (1):66

67
Boolean = "0" | "1"6869

In SELEX, the automatic type-casting between numeric literals and70

Boolean literals is allowed as in C/C++.71

String literals define a sequence of characters as follows:72

73
string = "\"" (char)* "\""7475

2.4 Operators and delimiters76

Operators can be the following:77

78
"+" "−" "*" "/" "in" "contains" "!" "&&" "||"79

">" "<" "==" ">=" "<=" "!="8081

Delimiters are the following:82

83
"{" "}" "[" "]" "(" ")" "<" ">"84

"=" "," ":" ";" "−>"8586

Whitespace characters are special characters used to separate to-87

kens.88

89
whitespace = "\n" | " " | "\t"9091

1

3 Syntax and semantic analysis92

3.1 Data model93

We use object as the abstraction of different types of data. Every94

object has a type and a pointer to its value. The value pointer stores95

the address of the value in memory. In SELEX, we support the96

following types: Boolean, float, integer, string, list, pair, shape, and97

construction-line. A list is a list of other types of objects and we98

also support lists of lists. A pair consists of two objects. The first99

object should be comparable, and can be a number, a string, or a100

Boolean value. The second object can be any kind of object. A101

construction-line is a special type of object used to create virtual102

shapes.103

In the language, a list is defined as follows.104

105
list = "(" expression ("," expression)* ")"106107

3.2 Selection-expressions108

A selection-expression selects a list of shapes from the shape tree109

using selectors interleaved with the operator "/". Each selector110

takes a list of shapes as input and returns a list of shapes. The111

implicit input to the first selector is a list containing the root node112

of the shape tree. The operator "/" takes a list of shapes as input113

and executes the remaining commands for each shape in the list.114

Selectors are grouped in selector sequences ("selectorSeq") that con-115

sist of specialized selectors that can have three different types:116

topology-selector (e.g. child, descendant), attribute selector (e.g.117

"[label=="window"]") and group selector (e.g. "[::groupRows()]").118

The selectors cannot be arbitrarily mixed within a sequence and119

they need to occur in the given order.120

A topology selector takes a list containing a single shape as input,121

and outputs a list of shapes with the specified topology relation to122

the input shape. An attribute selector takes a list of shapes as input,123

and returns a list of shapes whose attributes satisfy some conditions.124

A group selector takes a list of shapes as input, and applies group-125

ing operations to return a list of combined shapes. A group selector126

only operates on virtual shapes and regroups subregions, e.g. com-127

bines cells of a virtual shape into floors. If a selection-expression is128

empty, it returns the input.129

130
selectionExpression = "<" [selectorSeq ("/" selectorSeq)*] ">"131

selectorSeq = [topoSelector] [attrSelector | groupSelector]*132

topoSelector = funcCall133

attrSelector = "[" boolExpr "]"134

groupSelector = "[" "::" funcCall "]"135136

where "boolExpr" encodes the set operation and comparison oper-137

ation and "funcCall" calls a function as described in Sec. 4. Note138

that the given syntax is not very restrictive. However, the semantics139

only accepts certain type of function calls and Boolean expressions140

to be used.141

3.3 Variable and function142

A variable is initialized by an expression. Afterwards, the value of143

the variable can be referred to by the identifier:144

145
assignment = identifier "=" expression146147

Function is called by the command:148

149
funcCall = identifier "(" argList ")"150

argList = [expression ("," expression)*]151152

Here expression acts as an argument for a function, e.g. "0.5+0.1"153

in "toShapeX(0.5+0.1)". Currently, we do not allow the definition154

of new functions. Only functions from our given function library155

can be called.156

3.4 Expression157

An expression evaluates to a value and it combines variables (iden-158

tified by an identifier), functions, arithmetic operations, Boolean159

operations, and set operations. The arithmetic operation operates160

on two numeric value, and returns the result. A Boolean operation161

takes one or two values as input, and returns a Boolean result. A162

set operation tests if an object is contained in a list. The detailed163

definition is given in the following EBNF. Note that the arithmetic164

operation, Boolean operation, and set operations are defined recur-165

sively to enable nested expressions. For example, a Boolean opera-166

tion can operate on a value returned by an arithmetic operation, e.g.167

"1+4==5".168

169
expression = identifier | funcCall | boolExpr170

171

boolExpr = andExpr ["||" andExpr]172

andExpr = notExpr ["&&" notExpr]173

notExpr = ("!" boolOperand) | boolOperand174

boolOperand = setExpr | cmpExpr | ("(" setExpr ")")175

176

setExpr = (expression "in" list) | (list "contains" expression)177

178

cmpExpr = arithExpr [cmpOP arithExpr]179

cmpOp = "==" | "!=" | ">=" | "<=" | ">" | "<"180

181

arithExpr = multiplyExpr [("+"|"−") multiplyExpr]182

multiplyExpr = arithOperand [("*"|"/") arithOperand]183

arithOperand = expression | ("(" arithExpr ")")184185

Table 2: List of expression operators.

Operator Effect
x, /, +, - algebra operations
!, &&, || Boolean operations
==, !=, >, <, >=, <= comparison operations
in, contains set operation

3.5 Execution model186

A SELEX program is a collection of commands. Each command187

can be a rule, an assignment, or a return statement. Each command188

is interpreted and executed one by one. An exit statement will exit189

the program, and any command after it will not be executed:190

191
program = (command)*192

command = rule | assignment | exit193

exit = "exit;"194195

A rule has two components, i.e. selection-expression and actions.196

Actions are a list of functions that act on a shape selected by a197

selection-expression:198

199
rule = "{" selectionExpression "−>" actions "}"200

actions = (funcCall ";")+201202

The implemented actions are listed in Sec. 4.2203

Naming and binding determines what an identifier refers to in204

SELEX. In our implementation, it can be a variable (e.g. "fac-205

2

Size"), a function (e.g. "numCols" in "numCols()") or an attribute206

(e.g. "label" in "[label == "facade"]") depending on its context.207

A variable is created by an assignment statement, and stored as a208

name and object pair. When we refer to a variable, the object will209

be queried and returned.210

An attribute in SELEX can be a built-in attribute or a dynamic at-211

tribute. A built-in attribute is created by SELEX, and a dynamic at-212

tribute is created by a user when they call some specific commands,213

e.g. "setAttrib(...)".214

A function is called with its arguments, and returns an object. The215

function name will be queried and arguments are matched before216

the execution of the function.217

We currently do not support local scopes. A variable can be used218

anywhere after it has been defined. However, an attribute can only219

be used inside a selection-expression.220

4 The built-in function library221

The following types of functions are supported:222

• selection functions which help select shapes223

• shape functions which refine the shape hierarchy224

• utility functions for coordinate conversion and the query of225

information226

• constraint functions which specify necessary constraints on227

shapes228

• auxilliary math functions229

For an easier understanding of the text, we do not describe the built-230

in function library in EBNF form.231

4.1 Selection functions232

There are three types of selection functions: the topology selec-233

tion functions, attribute testing functions, and grouping functions.234

These functions are used in the corresponding selectors.235

Topology functions select shapes based on their topological rela-236

tion with the input shape, which can be the children, the parent,237

the descendants, the root shape and the left or right neighbors. The238

corresponding functions are listed below.239

240
child();241

descendant();242

parent();243

root();244

neighbor(["left"], ["right"]);245246

Attribute testing functions test the attributes of the shapes in the247

input list and produce a list of selected shapes which pass the test.248

A shape passes an attribute test if it returns true on the test.249

The function "isEmpty()" tests if a shape does not have any con-250

struction shapes inside. Another version "isEmpty(selection1)"251

checks if there is any selected shapes in the selection "selection1".252

Function "pattern(regex, pat)" checks if the pattern character of253

"regex" at the index position of a shape matches "pat". For ex-254

ample, "pattern("(AB)*", "A")" tests if an input shape is at an255

odd index position, and "pattern("A(B)*A", "A")" tests if an in-256

put shape is at the first or last position of an input list. Also,257

(a) (b) (c) (d)

groupCols() groupEach(2) groupRegions()

Figure 1: Given the red selected region of (a), command "group-
Cols()" groups the cells into columns to create a list of virtual
shapes (shown in orange in (b)). Then command "groupEach(2)"
groups adjacent columns to yield a list of two regions shown in
(c). At last, command "groupRegions()" combines the virtual shapes
into a single region shown in (d).

more complex examples are possible and meaningful, e.g. "pat-258

tern("AC(ACCA)*CA", "A")", but regular expressions have inher-259

ent ambiguities when multiple repetitions are used. For example,260

for the case "pattern("A*B*A*"", "A")", we try to keep an equal261

amount of repetitions. Nested repetitions are also ambiguous and262

currently not supported.263

Function "isEven()" and "isOdd()" are special cases of the com-264

mand "pattern(regex, pat)", which check if a shape has an even or265

odd index in a list of selected shapes.266

Many common attribute tests are formulated as a Boolean expres-267

sion. For example, "label == "win"" tests if a shape has a label268

"win". Except for the built-in attributes, we use the index as an269

attribute to facilitate the test based on the index of an input shape270

in a list, or a grid. For example, the 5th shape can be selected by271

"idx==5". "idx" is the index of a shape in a list. "rowIdx" and272

"colIdx" is the topological position of a cell with respective to the273

region spanned by input virtual shapes. For example, "rowIdx==1274

&& colIdx==1" specifies the left bottom cell of a region spanning275

by given virtual shapes.276

277
isEmpty([selection1]);278

pattern(regex, pat);279

isEven();280

isOdd();281282

Grouping functions operate on a list of shapes and return a new283

list of shapes. Generally, grouping functions are used to restructure284

subregions of a virtual shape (grid) in different ways.285

Function "groupRows()" and "groupCols()" merge adjacent virtual286

shapes (i.e. cells) with the same row or column index. Function287

"groupRegions()" merges all adjacent virtual shapes, which form288

one or multiple rectangular regions. We show an example in Fig. 1.289

Function "groupEach(n)" merges every n adjacent virtual shapes.290

Function "groupPair()" generates all possible pairings of two sub-291

sequent shapes. For example, given "ABCD" it will return "AB",292

"BC", and "CD". Function "cells()" decomposes a virtual shape as293

a list of virtual shapes with one cell. Function "sortBy(d, pos, or-294

der=1)" sorts the selected shapes by relative position "pos" in the di-295

mension "d" with the increasing (order=1) or decreasing (order=0)296

order.297

298
groupRows();299

groupCols();300

groupRegions();301

groupEach(n);302

groupPair();303

cells();304

sortBy(dim, pos, order=1);305306

3

Figure 2: Left: A construction shape shown with a red boundary
contains two green construction shapes. Right: Executing com-
mand "coverShape()" creates several orange shapes as children of
the red shape.

4.2 Shape functions307

Shape functions are used on the right hand side of selection-rules.308

Each shape function has an implicitly defined input shape. Typi-309

cally, the input shape is one element of a list of shapes that is re-310

turned by a the selection-expression used on the left hand side of311

the selection-rule. A shape function returns a status flag, i.e. false312

for failure and true for success. Note that not all shape functions313

make use of the input shape.314

Function "addShape" adds a 2D construction shape to another 2D315

construction shape. Parameter "la" specifies the label of the new316

shape, parameters "cx, cy, w, h" specify the center point and size,317

parameter "offset" the relative depth with respect to its parent, and318

parameter "visible" controls the visibility of the shape. The last two319

parameters are optional.320

There are different versions of "addShape". Function321

"add2ProjectedLeafShape" adds a construction shape to the322

leaf construction shape of the input shape, which contains the323

projection of the added shape. These versions also exist for other324

commands, such as "attachShape".325

326
addShape(la, cx, cy, w, h [, offset=0.0, [visible=1]]);327

add2ProjectedLeafShape(la, cx, cy, w, h [, offset=0.0,328

[visible=1]]);329330

Function "attachShape" attaches a construction shape to another331

construction shape. The parameters are similar to function332

"addShape" to specify the 2D size and location. In addition the333

parameters "near-offset, far-offset" specify the minimal and maxi-334

mal depth values relative to the input shape to yield a 3D attached335

shape.336

337
attachShape(la, cx, cy, w, h, near−offset, far−offset);e338339

Function "connectShape" connects any two descendant construction340

shapes of an input shape, which are adjacent in the 2D projected341

XY plane and have different depth values in the coordinate frame342

of their sharing parent.343

344
connectShape();345346

Function "coverShape" adds a set of shapes to an input shape so347

that each descendant shape will be partitioned by its children in the348

2D projected plane of the local coordinate frame (see Fig. 2 for an349

example).350

351
coverShape();352353

Function "copyShape" copies all descendants of the shape in selec-354

tion "selection1" and maps their coordinates to the input shape. Pa-355

rameter "transformation" is a list of transformation commands (e.g.356

c
c
d
d

a a aba(a) (b)

(c) (d) (e)

createGrid(”mainGrid”,
 rows(lineElem((1.0, 0.8, 1.2), (1, 3), “c”),
 lineElem((1.0, 0.8, 1.2), (1, 3), “d”)),
 cols(lineElem((1.2, 0.8, 1.5), (1, 3), “a”),
 lineElem((1.5, 1.0, 1.5), (1, 1), “b”),
 lineElem((1.2, 0.8, 1.5), (1, 3), “a”))
);

createGrid(”subGrid”,
 rows(”inherited”),
 cols(”inherited”)
);

Figure 3: Starting from a region shown in (c), the actions in (a)
create a virtual shape (grid) shown in (d). The row ("ddcc") and
column labels ("aabaa") are specified by the actions. We can add a
sub-grid in the red region in (d) by executing the actions in (b). The
resulting grid, shown in (e), re-uses the cells of the parent grid.

"scale:(1,-1,1)" mirroring a shape along the y-direction). All shapes357

are transformed and added as children to the input shape.358

359
copyShape(selection1, transformation);360361

Function "polygon" is constructed by a set of 2D points where each362

point is specified by a two element list, e.g. "(x1,y1), (x2,y2), ...":363

364
polygon(point1, point2, ...);365366

Function "addVolume" adds a volume with label "la" as child of the367

input shape by extruding a polygon "polygon" with height "h". The368

label for each face of the volume is specified in the list "labels".369

370
addVolume(la, polygon, h, labels);371372

Function "lineElem" has three parameters: "spacing" is a three ele-373

ment list specifying the preferred, minimal, and maximal distance374

from the previous construction line or the boundary. The repeti-375

tion "rep" is a two-element list specifying the minimal and maximal376

number of repetitions. The label "la" is given as a string. For exam-377

ple, the command "lineElem((4.0, 3.5, 5.5), (1,1), "groundFloor")"378

will add a construction line with spacing as close as possible to379

4.0 while remaining in the interval [3.5, 5.5]. The construction line380

cannot be repeated and it is labeled with "groundFloor".381

382
lineElem(spacing, rep, la);383384

Function "Group" can be used to group several construction lines385

in order to repeat the whole group. For example, the command386

"group(A, B)" can be used to create a repetition of the form387

"(AB)*".388

389
group(constructionLine1, constructionLine2, ...);390391

Function "createGrid" adds a virtual shape. The function has three392

parameters: the label "la", a list of construction lines in the hor-393

izontal direction (i.e. "rs") and a list of construction lines in the394

vertical direction (i.e. "cs"). The corresponding functions "rows"395

and "cols" return such lists of contruction lines. If "rows" and "cols"396

are called with the keyword "inherited" the list of construction lines397

are copied from the parent. Fig. 3 shows an example.398

399
createGrid(la, rs, cs);400

4

rows(constructionLine1, constructionLine2, ...);401

rows("inherited");402

cols(constructionLine1, constructionLine2, ...);403

cols("inherited");404405

Function "SetAttrib" sets or adds an attribute with name "name"406

and value "val" to the input shape, and the name can be used to407

query this attribute.408

409
setAttrib(name, val);410411

Function "exchange" exchanges a selected row (column) of an input412

shape with the row (column) of another selection "selection1".413

414
exchange(selection1);415416

Function "transform" combines rotations, translations, and scaling417

and returns the transformation information as a list. The individ-418

ual transformations can be specified by the corresponding functions419

"rotate", "translate", and "scale".420

421
transform([scale [,translation [,rotation]]]);422

rotate(xrot, yrot, zrot);423

translate(xpos, ypos, zpos);424

scale(xs, ys, zs);425426

Function "include" will load a specified asset "la" and transform427

it with the transformation information specified as the list "trans".428

This list is generated by the function "transform" described above.429

430
include(la, trans);431432

Function "shareCorner" automatically generates a completion of a433

facade part according to its adjacent facades.434

435
shareCorner();436437

Function "finalRoof" is a specialized command to generate roof438

shapes.439

440
finalRoof(h1, h2, ...);441442

4.3 Other utility functions443

A coodinate conversion function converts positions between dif-444

ferent coordinate systems. The parameter "val1" specifies a posi-445

tion and the parameter "selector1" is a list containing one shape that446

is typically generated by a selection-expression. If no selection-447

expression is specified, the input shape becomes the reference448

shape. Function "toParent?" converts the value "val1" to the coor-449

dinate system of the reference shape’s parent. Function "toShape?"450

converts the value "val1"to the coordinate frame of the reference451

shape. Function "toLocal?" converts a position in the parent coordi-452

nate frame to the coordinate frame of the reference shape. We use453

normalized values for these mappings. We map each dimension of a454

shape to a normalized value in the interval [0, 1]. For example, the455

center position in the x-dimension corresponds to the normalized456

value 0.5.457

458
toParentX(val1 [, selector1])459

toParentY(val1 [, selector1])460

toShapeX(val1 [, selector1])461

toShapeY(val1 [, selector1])462

toLocalX(val1 [, selector1])463

toLocalY(val1 [, selector1])464465

h

(a)

e f
a b

c d

(b)

Figure 4: Two query examples. (a) For the input facade shown in
brown, command "queryCorner" queries the x or y coordinate of the
corner point shared with the white facade specified by a selection-
expression in its left or right side with height h. (b) The functions
"numRows, numCols, rowLast, colLast, rowRange, colRange" work
on an input list of virtual shapes that form a rectangular region.
For example, for the input list of virtual shapes (c, d), which are
adjacent and can be merged into a larger region, functions "num-
Rows"’ and "numCols" will yield 3 and 4 respectively.

The function "queryCorner" is used to compute the position of a466

corner. This is typically useful if corners were cut out of a facade.467

The corner position of the input shape is computed at side "side" and468

height "h". The corner is with respect to the first shape specified by469

"selector" projected to the input shape. An example is shown in470

Fig. 4a.471

472
queryCorner(selector, side, h, whichDim);473474

List query functions take a list of shapes as input, and return in-475

formation about the input list.476

The function "count()" returns the number of elements in the in-477

put list. The function "last(i)" returns the last i-th index of the in-478

put list. For example, if we have 5 shapes in the input list then479

the function "last(1)" returns the last index 5. The function "in-480

dexRange(idxBegin, idxEnd)" returns a list of indices from "idxBe-481

gin" to "idxEnd". Function "index(i)" returns the i-th shape in the482

input list.483

We also provide functions to query virtual shapes. These queries484

can be based on rows or columns. The functions "numRows()" and485

"numCols()" return the number of rows and columns of the region486

spanned by the virtual shapes in the input list (see Fig. 4b). The487

functions "rowLast(i)" and "colLast(i)" return the last i-th index of488

rows and columns of all virtual shapes in the input list. The function489

"rowRange(idxBegin, idxEnd)" and "colRange(idxBegin, idxEnd)"490

return a list of shapes, which are inside the region spanned by rows491

(or columns) "idxBegin" to "idxEnd", and include both "idxBegin"492

and "idxEnd". We also allow the use of negative numbers that count493

from the last index backwards, e.g. −1 indicates the second to last494

index.495

496
count();497

last(i);498

indexRange(idxBegin, idxEnd);499

index(i);500

501

numRows();502

numCols();503

rowLast(i);504

colLast(i);505

rowRange(idxBegin, idxEnd);506

colRange(idxBegin, idxEnd);507508

5

4.4 Constraint functions509

In general, it is difficult to specify the location of a shape in a510

stochastic grammar, since we cannot know exactly what shapes511

have been placed previously. Therefore, a user can use SELEX512

to specify a sequence of constraints and leave the precise shape513

placement to an optimization algorithm. It is possible to use the514

optimization in conjunction with the two functions "addShape" and515

"attachShape".516

A sequence of constraints can be specified with the following com-517

mand:518

519
constrain(constraint1, constraint2, ...),520521

A constraint is given by a constraint function, which will take the522

input shape as an implicit parameter and output a constraint speci-523

fication in list form. Each constraint specification includes variable524

names, variable weights, and the comparison operation. Supported525

constraints are elaborated on below.526

The specified constraints may be compatible or not. To tackle po-527

tential conflicts in the constraints, we incrementally check the com-528

patibility. If no conflict is detected, we just add the constraint to the529

constraint set. Incompatible constraints are dropped. That means,530

that constraints specified first implicity have a higher priority. At531

last, an optimizer will enforce the selected constraints to obtain op-532

timal shape parameters.533

The optimization uses a quadratic objective function with linear534

constraints. The optimization computes the optimal (final) lower535

left position (x∗, y∗) and optimal size (w∗, h∗) of a 2D shape. The536

objective function encodes that the final position and size should be537

close to the specification (x, y, w, h) in a least squares sense:538

(x∗ − x)2 + (y∗ − y)2 + (w∗ − w)2 + (h∗ − h)2, (1)

Alignment can be specified between two shapes. The input shape539

and a reference shape specified by a shape label. We support the fol-540

lowing types of alignment: "left", "right", "top", "bottom", "center-541

x", "center-y", "one2two-x", "one2two-y".542

543
snap2(shapeLabel1, snapType1, shapeLabel2, snapType2, ...)544545

For example, the function "constrain(snap2("window1", "left"),546

snap2("window1", "center-x"))", specifies that the input shape547

should be left and center-x aligned with a shape labeled "window1".548

Here we describe the formulation of alignments in more detail.549

Our alignment scheme has three steps. First, we detect the refer-550

ence shapes that may align to the input shape. Then, we calcu-551

late the snapping position according to the alignment type. At last,552

we enforce the alignment between the current shape and the pre-553

ferred position according to the alignment type using an optimiza-554

tion technique. In the following, we take bottom alignment as an555

example to describe the algorithm, and explain the special algin-556

ments "one2two-x", "one2two-y". The corresponding examples can557

be found in Fig. 5.558

In the detection step, shapes that with the specified label are first559

selected. Alignment "left", "right", "top", "bottom", "center-x",560

"center-y" align one element to another as shown in Fig. 5(a). But561

alignment "one2two-x", "one2two-y" try to align one element to the562

bounding box of two nearby elements with the given label. Thus,563

the bounding boxes are returned as the selected shapes as shown564

in Fig. 5(b). Among the selected shapes, the final candidates are565

shapes that satisfy the specified alignments to input shape within566

a threshold (half of the width or height of the input shape in our567

experiments). For example, left alignment will test if the differ-568

ence between left edges of the selected shape and the input shape is569

within the threshold. For alignment "one2two-x", "one2two-y", cen-570

ter alignment between the returned bounding box and input shape571

is tested.572

In the second step, snapping position si is calculated. For example,573

left alignment will use the nearest edge of the selected shape with574

respect to the left edge of the input shape as illustrated in Fig. 5(a).575

For alignment "one2two-x", "one2two-y", the nearest horizontal or576

vertical center position relative to the horizontal or vertical center577

position of the input shape will be used, as illustrated in Fig. 5(b).578

At last, alignment can be achieved by adding the alignment con-579

straints to an optimization. Assuming we would like to align to a580

position si, the constraint is formulated as: x∗ + αi ∗ w∗ = si,581

where x∗, w∗ is the left position and width of a shape, and αi582

equals to −0.5, 0.0, 0.5 for left, center-x, and right alignment, re-583

spectively.584

If multiple alignments are specified within a snap2 function, one585

of these alignments should be enforced. For example, the function586

"constrain(snap2("window1", "left", "window1", "center-x"))", spec-587

ifies that the input shape should be either left or center-x aligned588

with a shape labeled "window1".589

Selecting one constraint from n equality constraints of a form x∗ +590

αi ∗ w∗ = si can be reformulated as a set of linear constraints as591

follows:592

x∗ + αi ∗ w∗ − si +M ∗ bi ≥ 0,∀i ∈ [1, n],

x∗ + αi ∗ w∗ − si −M ∗ bi ≤ 0,∀i ∈ [1, n],
n∑
j

bj = n− 1,

bi ∈ {0, 1}, ∀i ∈ [1, n],

(2)

Local symmetry refers to the alignment to the center of the input593

shape, which is specified by594

595
sym2region();596597

This can be formulated as x∗ + αi ∗ w∗ = sc,.598

Distance to boundary constrains the minimal and maximal dis-599

tance to the left, right, top, or bottom of a reference region.600

The reference region is either the input shape for "dist2region"601

or a parent shape of the input shape selected by its label for602

(a) (b)

Figure 5: Two example alignments. In each subfigure, the left side
is derived without alignments, while the right side is derived with
alignments. (a) Alignment "left" aligns the input shape in green
to a reference shape in white. (b) Alignment "one2two-x" aligns
the input shape in green to the center of the bounding box of two
white reference shapes. The red dashed line denotes the snapping
position, while the red bounding box marks the bounding box of two
reference shapes.

6

"dist2layout"). The auxilliary functions "dist2left", "dist2right",603

"dist2top", "dist2bottom" generate a constraint specification in list604

form.605

606
dist2layout(label,[dist2func, ...]);607

dist2region([dist2func, ...]);608

dist2left(minDist, maxDist);609

dist2right(minDist, maxDist);610

dist2bottom(minDist, maxDist);611

dist2top(minDist, maxDist);612613

For example, "dist2region(dist2bottom(0.0, 0.0))" means that the614

input shape should touch the bottom of the newly generated shape.615

The constraints can be specified as follows. We just use the com-616

mand "dist2left(d0, d1)" as example:617

x∗ − 0.5 ∗ w∗ − d0 ≥ 0,

x∗ − 0.5 ∗ w∗ − d1 ≤ 0.
(3)

The specifications for "dist2right", "dist2bottom", "dist2top" are618

analogous.619

Intersection avoidance prevents invalid intersections between the620

newly generated shape and other shapes. In SELEX, users can spec-621

ify the valid intersections, then the other intersections will be in-622

valid. The intersection command has the following syntax:623

624
validIntersect(la1, la2, ...);625626

where "la1", "la2" are labels of shapes that can intersect with the627

current shape.628

These intersection constraints are formulated as:629

min(x∗1 − 0.5 · w∗
1 , x

∗
2 − 0.5 · w∗

2)

≤ max(x∗1 + 0.5 · w∗
1 , x

∗
2 + 0.5 · w∗

2),

min(y∗1 − 0.5 · h∗
1, y

∗
2 − 0.5 · h∗

2)

≤ max(y∗1 + 0.5 · h∗
1, y

∗
2 + 0.5 · h∗

2).

(4)

By the big-M method, we can convert these two functions into lin-630

ear form:631

y∗1 + h∗
1 − y∗2 −M ∗ δ3 −M ∗ δ2 −M ∗ (1− δ1) ≤ 0,

y∗2 + h∗
2 − y∗2 −M ∗ (1− δ3)−M ∗ δ2 −M ∗ (1− δ1) ≤ 0,

y∗1 + h∗
1 − y∗1 −M ∗ δ4 −M ∗ (1− δ2)−M ∗ (1− δ1) ≤ 0,

y∗2 + h∗
2 − y∗1 −M ∗ (1− δ4)−M ∗ (1− δ2)−M ∗ (1− δ1) ≤ 0,

x∗1 + w∗
1 − x∗2 −M ∗ δ6 −M ∗ δ5 −M ∗ δ1 ≤ 0,

x∗2 + w∗
2 − x∗2 −M ∗ (1− δ6)−M ∗ δ5 −M ∗ δ1 ≤ 0,

x∗1 + w∗
1 − x∗1 −M ∗ δ6 −M ∗ (1− δ5)−M ∗ δ1 ≤ 0,

x∗2 + w∗
2 − x∗1 −M ∗ (1− δ6)−M ∗ (1− δ5)−M ∗ δ1 ≤ 0,

(5)

whereM is a big value (10000 in our implementation), and δi, ∀i ∈632

[1, 6] are binary variables.633

4.5 Math functions634

We offer the following functions to obtain random numbers: Func-635

tion "randint" generates a random integer within the interval [min,636

max], "rand" generates a random floating point within the interval637

[min, max], and "randSelect" selects a value from the given list of638

values with a uniform distribution.639

640
randint(min, max);641

rand(min, max);642

randSelect(val1, val2, val3, ...);643644

4.6 Flow control and stochastic variations645

Conditional rules are one necessary ingredient for specifying varia-646

tions. In SELEX, conditional rules are implemented using a special647

function "if", which takes a Boolean expression "cond" as first in-648

put. Optional parameters "selectionExpression" and "funcCall" will649

be executed if the given condition "cond" evaluates to true.650

651
if(cond [, selectionExpression | funcCall]);652653

In SELEX, we chose not to implement stochastic rules directly, but654

to rely on a combination of random variables and conditional rules.655

For example, we may want to add two kinds of windows randomly,656

which can be programmed as657

"a = rand(0.0, 1.0);658

if(a>0.5, addShape("win1", ...));659

if(a<=0.5, addShape("win2", ...));"660

Note that we abbreviated the parameters for "addShape" in the given661

example.662

To allow for the execution of a rule encoded as a string, SELEX663

supplies an evaluator. This could also be used to introduce random-664

ness if the string is generated during the execution of the SELEX665

program.666

667
eval(string);668669

5 Modeling example670

In Figs. 6-20, we give details about a modeling example shown in671

the paper.672

References673

WIRTH, N. 1996. Extended backus-naur form (ebnf). ISO/IEC674

14977, 2996.675

7

Figure 6: (a) The starting shape is a rectangle. The rectangle is selected and extruded. In this series of images, we always show the state
before a command is processed.

Figure 7: (b) The building shape is selected and a grid is inserted as a virtual shape to split the building into floors. The floors are consistent
across all building facades. This grid works similar to construction lines in technical drawing and does not actually split the building
geometry. The corresponding selection-expression is "<[label=="building"]>".

8

Figure 8: (c) The front facade is selected and a grid named "fmain" is inserted. The corresponding selection-expression is "<[la-
bel=="building"] /[label=="front"]>".

Figure 9: (d) Each facade inherits the floor information and is split into a finer grid by specifying columns. The columns are labeled with
"colLeft", "colMidLeft", "colMidRight", "colRight".

9

Figure 10: (e) The grid named "fmain" is selected and a subgrid is selected, moved backwards, and inserted as construc-
tion shape "wl". The corresponding selection-expression is "<descendant()[label=="front"] /[label=="fmain"] /[type=="cell"] [colLa-
bel=="colMidLeft"][::groupRegions()]>".

Figure 11: (f) The grid named "fmain" is selected again and another subgrid is selected, moved forward and the corresponding geometry
is inserted as child of front named "wlm". The corresponding selection-expression is "<descendant()[label=="front"] /[label=="fmain"]
/[type=="cell"][colLabel=="colMidRight"][::groupRegions()]>".

10

Figure 12: (g) Another subgrid of "fmain" is selected, moved forward, and the corresponding geometry is inserted. The corresponding
selection-expression is "<descendant()[label=="front"] /[label=="fmain"] /[type=="cell"][colLabel=="colRight"][::groupRegions()]>".

Figure 13: (h) A subgrid of "wl" is selected in order to insert some larger windows. The corresponding selection-expression is "<descen-
dant()[label=="front"] /[label=="fmain"] /[type=="cell"][colLabel=="colMidLeft"][::groupRegions()] /[type=="cell"][rowIdx in rowRange(2,-
2)][colIdx in colRange(2,-2)][::groupRegions()]>".

11

Figure 14: (i) The selected subgrids will be used to insert a door in the first floor and a large window on the top floor. The corre-
sponding selection-expression is "<descendant()[label=="front"] /[label=="wl"] /[label=="wmain"] /[type=="cell"][rowIdx in (1,-1)][colIdx
in colRange(2,-2)][::groupRows()]>".

Figure 15: (j) This selection selects grid cells in alternating floors to yield an alternating balcony pattern. The pattern selector "pat-
tern("(ab)*")=="a"" selects every row with an odd number. The corresponding selection-expression is "<descendant()[label=="front"]
/[label=="wlm"] /[label=="gridLeftMid"] /[type=="cell"][rowIdx in rowRange(2,-1)][::groupRows()][pattern("(ab)*")=="a"]>".

12

Figure 16: (k) This selected facade is an example of geometry that emerged through an extrusion. The corresponding selection-expression is
"<descendant()[label=="front"] /[label=="wlm"] /neighbor("left", "right")>".

Figure 17: (l) The corresponding selection-expression selects the second to the last floor in a subgrid and then selects every second floor.
The corresponding selection-expression is "<descendant()[label=="front"] /[label=="wrm"] /[label=="wmain"] /[type=="cell"][rowIdx in
rowRange(2,-1)][::groupRows()][pattern("(ab)*") == "a"]>".

13

Figure 18: (m) This complex selection pattern is done by referencing previously generated labels. The corresponding selection-expression is
"<descendant()[label=="front"] /[label=="wrm"] /[label in ("gridEven", "gridOdd")] /[type=="cell"][colLabel=="colNarrow"]>".

Figure 19: (n) The final building without assets.

14

Figure 20: (o) The final building including simpel assets for windows and doors.

15

