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1 Notation

• The vector space is denoted asR,Rn ,Rm×n ,V,W

• Matricies are denoted by upper case, italic, and boldface letters: Am×n

• Vectors are column vectors denoted by boldface and lower case letters: x ∈Rn×1

• 1n ∈Rn is a n ×1 vector of all ones

• In is n ×n identity matrix.

• ei is the unit vector where only the i -th element is 1 and the rest are 0.
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2 Optimization Terms

• General Form

min
x

f (x)

s.t gi (x) ≤ bi , 1 ≤ i ≤ m

x ∈Zn1 ×Rn2

• Details:

– x is a vector of n = n1 +n2 variables

– gi are called constraint functions

– f is called objective function

• The feasible region is:
F = {x ∈Zn1 ×Rn2 |gi (x) ≤ bi }

• A solution is an assignment of values to variable

• An optimal solution x∗ has smallest value of f among all feasible solutions.

• term optimization vs. term programming
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3 Linear Programming
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3.1 General Form

• General form:

min
x

cT x

Ax ≤ b

• x ∈Rn is a vector of variables

• c ∈Rn is a vector of known coefficients (weights)

• A ∈Rm×n is a matrix. Each of the m rows of the matrix defines the coefficients of a linear
inequality.

• b ∈Rm is a vector. Each entry bi is on the right hand side of inequality i .
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3.2 Example

• Example with two variables and two constraints:

min
x1,x2

c1x1 + c2x2

a11x1 +a12x2 ≤ b1

a21x1 +a22x2 ≤ b2

• More specific example with two variables and two constraints:

min
x1,x2

−4x1 −2x2

x1 +2.4x2 ≤ 12.1

7x1 ≤ 22

• Graphical Example:

max
x1,x2

100x1 +64x2

50x1 +31x2 ≤ 250

3x1 −2x2 ≥−4

x1 ≥ 0

x2 ≥ 0

optimum at (376/193,950/193)

x1

x2

6



3.3 How to solve linear programming problems?

• No analytic formula for the solution

• Reliable and efficient algorithms and software, e.g.

– Simplex algorithm

– Interior point algorithms

• Computation time proportional to n2m if m ≥ n; less with structure

• Formulating a problem as linear programming problem is already non-trivial
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3.4 From linear programming to linear integer programming

• Optimization problem:

min
x

cT x

Ax ≤ b

• floating point variables

– x ∈Rn

– linear program (LP)

• integer variables

– x ∈Zn

– (linear) integer program (IP)

• binary variables

– x ∈ {0,1}n

• float and integer variables

– x is split into two groups of variables, xI and xF

– xF ∈Rn1 and xI ∈Zn2

– mixed integer program (MIP)
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3.5 Variations of the standard form

• Optimization problem:

min
x

cT x

Ax ≤ b

• switch min and max

• switch ≤ and ≥
• include constraints with = as separate category

• require all variables to be positive (≥ 0)

• Example Optimization problem:

max
x

cT x

Ax ≤ b

x ≥ 0
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3.6 Comments about formulations

Definition 1. A polyhedron P is a subset ofRn described by a finite set of linear constraints.
P = {x ∈Rn :Ax ≤ b}

Definition 2. A polyhedron P ⊆Rn1+n2 is a formulation for a set X ⊆Zn1 ×Rn2 if and only if X =
P ∩ (Zn1 ×Rn2 ).

Definition 3. A convex combination of points from a set S, x1, x2, ..., xk ∈ S, is any point of form
θ1x1+θ2x2+ ...+θk xk , where θi ≥ 0, i = 1...k,

∑k
i=1θi = 1. A set S is convex iff any convex combina-

tion of points in S is in S.

Definition 4. The convex hull conv S is the set of all convex combinations of points in S

• The formulation has to enclose all feasible integer points, but no infeasible integer points

• Runtime depends on

– number of variables

– number of constraints

– tightness of fit

• Formulation A is at least as strong as B if A ⊆ B

• Formulation A is stronger than B if A ⊂ B

• A formulation A is ideal if conv( feasible solutions ) = A
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3.7 Graphical Example

max
x1,x2

100x1 +64x2

50x1 +31x2 ≤ 250

3x1 −2x2 ≥−4

x1 ≥ 0

x2 ≥ 0

x1, x2 ∈Z

float optimum at (376/193,950/193)

integer optimum at (5,0)
x1

x2

• Rounded solution might not be feasible

• Rounded solution might be far from optimal solution
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3.8 Different Components of Optimization in the literature

• Modeling:

– How to formulate an application problem as a standard optimization problem?

• Algorithm Development:

– How to derive new optimization algorithms for standard optimization problems?

– How to derive new optimization algorithms for specialized optimization problems?

• Optimization Theory:

– Finding convergence guarantees, bounds, ... of optimization algorithms
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3.9 Different Components of Optimization in Visual Computing

• Modeling:

– propose an interesting problem formulation for a new or an existing problem in visual
computing?

• Algorithm Development:

– propose a new algorithm for a specific optimization problem in visual computing

• Modeling + Algorithm Development

• Theory

– typically not done in visual computing, but in optimization and machine learning
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3.10 How to solve an IP Problem?

• use a standard solver such as Matlab, Gurobi, Mosek, ... and see what happens

• create a new heuristic solver
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3.11 Branch and Bound

• How to create upper and lower bounds for (the objective value of) the solution?

– The LP relaxation is a lower bound for the optimal solution

– Any particular feasible solution is an upper bound for the optimal solution

• If we solve the LP relaxation of an MILP problem we distinguish 3 cases:

– LP is infeasible → MILP is infeasible

– Optimal LP solution is feasible solution for MILP problem → optimal solution

– LP is feasible and optimal LP solution is not feasible for MILP → lower bound

• First two cases we are finished, third case we branch (recursively)

• The most common way to branch is to do the following

– Select a variable i whose value x̂i is fractional in the LP solution

– Create two subproblems:

◦ Add constraint xi ≤ bx̂i c
◦ Add constraint xi ≥ dx̂i e

x3 ≤ 5 x3 ≥ 6
x3 = 5.7
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4 Example Problems
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4.1 Knapsack Problem

• Input:

– a set of items i with values vi and weights wi

– a knapsack with maximum capacity c

• Goal: pack a subset of items into the knapsack, such that

– the sum of weights does not exceed the capacity C

– the sum of the values is maximized

• Example

C = 10

w1 = 5, v1 = 3

w2 = 8, v2 = 7

w3 = 3, v3 = 5

• Formulation:

– variables: xi = 1 means we pack item i

–

min
x

vT x

wT x ≤ c

xi ∈ 0,1

• Difficulty:

– NP-hard

– (pseudo-polynomial) Dynamic Programming solution exists for integer weights and ca-
pacity.
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4.2 Matlab Code

C = 750
weights = [70; 73; 77; 80; 82; 87; 90; 94; 98; 106; 110; 113; 115; 118; 120];
values = [135; 139; 149; 150; 156; 163; 173; 184; 192; 201; 210; 214; 221; 229;
240];
LZero = zeros(length(weights),1);
LOne = ones(length(weights),1);
LCount = 1:length(weights);
tic;
intlinprog( -values, LCount, weights’, C, [], [], LZero, LOne)
toc;
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4.3 Map Labeling

• Input:

– a set of map objects i where each object has a discrete set of possible label positions j

– costs c for each label placement

• Goal: place at least one label per object without overlap

• Illustration: two cities one river

x31x11 x12

x13 x14
x21 x22

x23 x24

• Variables

– xi j = 1 if label for object i is placed at position j

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Coverage constraint - each element is labeled exactly once:

∀i
∑

j
xi j = 1

– Non-overlap for conflicting placements:

◦ for each pair of overlapping placements i j and l m

xi j +xlm ≤ 1

• Objective: min
∑

i
∑

j ci j xi j
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4.4 Assignment Problem

• Input:

– n people to carry out n jobs

– ci j : cost of assigning person i to job j

• Goal: assign each person to exactly one job, so that each job has one person assigned to it.

• Illustration:

ci j

people i jobs j

• Variables

– xi j = 1 if person i is assigned to job j

• Objective:
min

∑
i

∑
j

ci j xi j

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Limited work: each person i does exactly one job

∀i
∑

j
xi j = 1

– Coverage constraint - each job is done by one person:

∀ j
∑

i
xi j = 1

• Difficulty:

– Hungarian Method (Kuhn–Munkres algorithm or Munkres assignment algorithm)

– Auction algorithm
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4.5 Tourist Map Layout

• Input:

– overview map with Points of Interest (POIs)

– detail maps for each POI

– positions for detail maps

– costs ci j for assigning POI i detail map position j

• Goal: assign each detail map to one position.

• Illustration:

ci j

m1

m2

m3

POI

• Variables

– xi j = 1 if map i is assigned to position j

• Objective:
min

∑
i

∑
j

ci j xi j

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Each map i is assigned once

∀i
∑

j
xi j = 1

– No overlap between maps:

∀ j
∑

(i , j )∈O j

xi j = 1

◦ O j is the set of all placements that overlap position j

• Literature: Birsak et al., "Automatic Generation of Tourist Brochures", Eurographics 2014.
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4.6 Tiling

• Input:

– a set of tiles i

– a domain consisting of positions j

– costs ci j for assigning tile i to position j

– minimum and maximum number of times tile i is allowed to be used (mi ni ,maxi )

• Goal: cover the domain with the given tiles

• Illustration:

ci j

• Variables

– xi j = 1 if leftmost square of tile i is assigned to position j

• Objective:
min

∑
i

∑
j

ci j xi j

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Each tile i is assigned between its within its allowed limits

∀i mi ni ≤
∑

j
xi j ≤ maxi

– No overlap between squares in the domain:

∀ j
∑

(i , j )∈O j

xi j = 1

◦ O j is the set of all tile placements that overlap position j
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4.7 Shape Matching

• Input:

– two shapes where each shape has n vertices.

– a cost ci j for assigning vertex i from shape 1 to vertex j on shape 2,

• Goal: assign each vertex on shape 1 to exactly one vertex on shape 2

• Formulation: identical to the assignment problem

• Literature:

– Vestner et al., "Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel
Density Estimation in the Product Space", CVPR 2017.
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4.8 Camera Placement

• Input:

– a domain sampled into positions p

– a set of possible camera positions i

• Goal: select a minimal set of cameras that cover the domain

• Illustration:

x1

x2

x3

V2

• Variables

– xi = 1 if camera position i is selected

• Objective:
min

∑
i

xi

• Constraints:

– Binary constraints:
xi ∈ {0,1}

– Position conflict constraints

∀i
∑

j∈Ni

x j ≤ 1

– Ni is the set of locations that conflict with location i

– Visibility constraint:

V x ≥ 1

◦ the i th column of V is a binary mask that encodes what positions are seen by camera
i
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4.9 Graph Review

• Graph (V ,E)

– V is a set of nodes

– E is a set of edges

• E(S) = {e = (i , j ) : i , j ∈ S}

• δ(S) = {e = (i , j ) : i ∈ S and j ∈V \ S}

• δ(i ) are all edges incident to node i .

• A tree is a connected graph with |V |−1 edges.

4.10 Minimum Spanning Tree

• Input:

– a graph (V ,E)

– the cost ce for selecting edge e ∈ E .

• Goal: find a minimum cost spanning tree

• Variables

– xe = 1 if edge e is selected

• Binary constraints:
xe ∈ {0,1}

• Number of edges constraint: ∑
e∈E

xe = n −1

• Cut constraint:
∀S ⊂V ,S 6= ;,V

∑
e∈δ(S)

xe ≥ 1

• Objective function:
min

∑
e∈E

ce xe

• We call the linear relaxation of this formulation Pcut

• Alternative constraint: subtour elimination constraint

∀S ⊂V ,S 6= ;,V
∑

e∈E(S)
xe ≤ |S|−1

• We call the resulting linear relaxation of the formulation Psub

• Notes:

– Psub is the convex hull of the set of feasible solutions.

– Psub is a strictly better formulation than Pcut .
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4.11 Traveling Salesman

• Input:

– a graph (V ,E)

– the cost ce for selecting edge e ∈ E .

• Goal: find a minimum cost tour

• Variables

– xe = 1 if edge e is selected

• Binary constraints:
xe ∈ {0,1}

• Number of incident edges constraint:

∀i
∑

e∈δ(i )
xe = 2

• Cut constraint:
∀S ⊂V ,S 6= ;,

∑
e∈δ(S)

xe ≥ 1

• Objective function:
min

∑
e∈E

ce xe

• Alternative constraint: subtour elimination constraint

∀S ⊂V ,2 ≤ |S| ≤ |V |−1
∑

e∈E(S)
xe ≤ |S|−1

• Similarly, we call the resulting linear relaxations Pcut and Psub

– Pcut = Psub

– Neither is the convex hull of the feasible points
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4.12 City Exploration

• Input:

– a city map as graph (V ,E)

– c ∈R|E | - the attractiveness of each edge

– t ∈R|E | - time it takes to walk along an edge

– T - maximum time for the walk

– a designated start node s and end node e

• Goal: find a walk through the city from from start node to end node that explores the most
attractive edges but stays under the time limit.

• Illustration

ci , ti , xi

v j

s e

• Variables

– xi = 1 if edge i is selected

– v j = 1 if vertex j is selected

• Binary constraints:
xi , v j ∈ 0,1

• Time constraint:
tT x ≤ T

• Connection constraint: ∑
i∈N j

xi = v j
∑

i ∈ Ns xi = 1
∑

i∈Ne

xi = 1

– N j is the set of edges incident to vertex j

• Objective function:

– maxcT x
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• Cycles:

– the formulation can create closed cycles

– solution 1: lazy constraint adding

– solution 2: add constraints that forbid cycles (similar to MST and TS formulations)
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5 MIP Modeling Techniques

5.1 AND of variables

• "y is true if all elements in x are true. y is false otherwise.":

y = x0 ∧x1 ∧ ...∧xN−1

• y and x are Boolean variables. x0, x1, ..., xN−1 are the elements in x. N is the size of x.

• Trivial way to model:
y = x0x1...xN−1

It is not going to work!

• As linear inequalities:
0 ≤∑

x−N y ≤ N −1

• Example:

– Vertex configurations in a 2D triangle-quad hybrid mesh:

E0

E1
E2

E6

E9

E5

E3

E7
E8

E4

E10
E11

vj

Cj,m

C j m is the m-th configuration for vertex v j . C j m contains E1, E4, E6, E9, and E11 out of
v j ’s twelve adjacent edges:

C j m = !E0 ∧E1∧ !E2∧ !E3 ∧E4∧ !E5 ∧E6∧ !E7∧ !E8 ∧E9∧ !E10 ∧E11

As linear inequalities:

0 ≤ (1−E0)+E1+(1−E2)+(1−E3)+E4+(1−E5)+E6+(1−E7)+(1−E8)+E9+(1−E10)+E11−12y ≤ 11
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5.2 OR of variables

• "y is true if any element in x is true. y is false otherwise.":

y = x0 ∨x1 ∨ ...∨xN−1

• As linear inequalities:
−N +1 ≤∑

x−N y ≤ 0

• Example:

– Converge constraint: a vertex is "covered" if and only if at least one of the edges that are
within a close proximity is selected.

vi = e0 ∨e1 ∨ ...∨eN−1

vi is the Boolean variable indicating if the vertex is covered. e0, e1, ..., en−1 are Boolean
variables of edges within a close proximity to the vertex.

◦ For a minimal-vertex cover problem, we may require that the coverage variables of all
vertices are true while minimizing the number of selected edges.
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5.3 XOR of variables

• "y is true if elements in x sum to odd. y is false if elements in x sum to even."

y = x0 ⊕x1 ⊕ ...⊕xN−1

• As linear inequalities:

y = x0 +x1 + ...+xN−1 −2t

t is an integer slack variable. 0 ≤ t ≤ N −1.

• Alternatively, model it as a sequence of 2-inputs XORs (the t variables become Booleans).
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5.4 Special order set (SOS)

• Special Ordered Sets of type 1 (SOS1):

– Given an ordered set of variables, q, at most one element in q can be non-zero.

• Special Ordered Sets of type 2 (SOS2):

– Given an ordered set of variables, q, at most two elements in q can be non-zero. And if
two elements are non-zero, they must be consecutive in their ordering.

• Supported by popular MIP solvers such as Gurobi and IBM CPLEX. These solvers use special
branching strategies to take advantage of SOSs.

• Examples:

– A SOS1 set, x, of Boolean variables x0, x1, ..., xN−1, means that:

x0 +x1 + ...+xN−1 ≤ 1

– SOS2: "knight8" template for translational symmetry in urban layout design:

◦ Integer programming for urban design. Hao Hua, Ludger Hovestadt, Peng Tang, and
Biao Li. European Journal of Operational Research (EJOR), 2018.
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5.5 Exhaustive enumeration of all feasible solutions of a (Boolean) IP problem

• Let Z denotes a feasible solution of a IP problem with only Boolean variables. We can forbid
Z to be feasible, that is,

Z∧F =;
where F is the feasible region of the problem, by adding the following constraint:∑

0≤i≤N−1
(x0 if Zi is true, or (1−xi ) if Zi is false) ≤ N −1

to the IP formulation. x denotes the variables. N is the number of variables.

• An enumeration of unique feasible solutions can be done by repeatedly solving the IP prob-
lem with all previously retrieved solutions forbidden.

• An exhaustive enumeration proceeds until the problem becomes infeasible.

• Examples:

◦ Given a IP with three Boolean variables, x0, x1, and x2, adding the following constraint
would forbid (0,1,0) as a feasible solution:

(1−x0)+x1 + (1−x2) <= 2

– Exhaustive enumeration of triangle-quad tilings in a 12-gon with side length 2.
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5.6 Big-M method

• Use Boolean slack variables with sufficiently large coefficients to allow constraints to be "de-
activated".

• That is, rewriting a linear constraint:

aT x ≤ b

to be:

aT x ≤ b +M y

would allow it to be violated. M is a sufficiently large positive constant and y is a Boolean
slack variable. When it is violated, y is true.

• Optionally, add y to the objective function (to minimize) to introduce penalty for the con-
straints to be violated.
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• Example:

– "Constrain the union of two (mutually exclusive) constraints to be true":

aT
0 x0 ≤ b0 or aT

1 x1 ≥ b1

◦ As linear inequalities:

aT
0 x0 ≤ b0 +M(1− y)

aT
1 x1 ≥ b1 −M y

where M is a sufficiently big positive constant and y is a Boolean slack variable.

◦ Example:

x ≤ 2 or x ≥ 6

is reformulated as:

x ≤ 2+M(1− y),

x ≥ 6−M y

• Discussions

– Many modeling techniques in MIP are variations of the big-M method.

– In general, big-M methods are more preferable than the equivalent non-linear formula-
tions.

– M should be kept as small as possible. Very big M impacts performance.

• Literature:

– Indicator Constraints in Mixed-Integer Programming. Andrea Lodi, Amaya Nogales-Gómez,
Pietro Belotti, Matteo Fischetti, Michele Monaci, Domenico Salvagnin, and Pierre Bonami.
SCIP Workshop 2014.

– Integer Programming Formulations 2. James Orlin. Course notes of Optimization Meth-
ods in Management Science on MIT OCW.
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6 Quadratic Programming
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6.1 General Form

• General form:

min
x

1

2
xTQx+cT x

Ax ≤ b

• x ∈Rn is a vector of variables

• c ∈Rn is a vector with known entries

• Q ∈Rn×n is a symmetric matrix with known entries

• A ∈ Rm×n is a matrix. Each of the m rows of the matrix define the coefficients of a linear
inequality.

• b ∈Rm is a vector. Each entry bi is on the right hand side of inequality i .

6.2 Comments

• if QÂ 0 (the matrix is positive-definite) the optimization is convex
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7 Quadratic Integer Programming Examples

7.1 Quadratic Assignment

• Input:

– a set of n facilities i

– a set of n possible facility location j

– costs ci j kl for assigning facilty i to location j and facility k to location l

• Goal: assign facilities to grid cells to minimize costs

• Variations:

– costs ci j kl can be modeled arbitrarily

– costs ci j kl are modeled as the product ci j kl = fi kd j l , where fi k is a flow between facility
i and k and d j l is a distance between j and l . This is the classical quadratic assignment
problem.

• Variables

– xi j = 1 if facility i is assigned to location j

• Objective:

min
n∑
i

n∑
j

n∑
k

n∑
l

ci j kl xi j xkl

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Non-overlap: each facility i has exactly one position

∀i
∑

j
xi j = 1

– Coverage: each position is covered by exactly one facility

∀ j
∑

i
xi j = 1

• Literature: Loiola et al., "A survey for the quadratic assignment problem", European Journal
of Operational Research 2007.
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7.2 Quadratic Assignment for Images

• Input:

– a set of n images with image distances di j

– a set of n possible image positions with distances gkl

– costs ci j kl = f (di k , g j l )

• Goal: assign images to grid cells to minimize the costs

• Variables

– xi j = 1 if image i is assigned to grid cell j

• Objective:

min
n∑
i

n∑
j

n∑
k

n∑
l

ci j kl xi j xkl

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Non-overlap: each image i has exactly one position

∀i
∑

j
xi j = 1

– Coverage: each position is covered by exactly one image

∀ j
∑

i
xi j = 1

• Literature: Fried et al., "IsoMatch: Creating Informative Grid Layouts", Eurographics 2015.
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7.3 Quadratic Assignment for Shape Matching

• Literature:

– Dym et al., DS++: A Flexible, Scalable and Provably Tight Relaxation for Matching Prob-
lems, ACM TOG 2017.

– Kezurer et al., Tight Relaxation of Quadratic Matching, SGP 2015.

7.4 Joint Segmentation

• Input:

– Two shapes. Each shape is subdivided into smaller patches P1 and P2, respectively

– A set of candidate segments for each shape: S1 and S2. Each segment consists of multiple
patches.

– A cost vector c where cij is the cost selecting a segment j in shape i .

– A cost vectordwhere di j encodes the cost of mapping segment i in shape one to segment
j in shape two.

– A cost matrix Q where qi j kl encodes the cost of mapping segment i in shape one to
segment j in shape two and segment k in shape one to segment l in shape two.

• Variables:

– xi j = 1 if segment j is selected from shape i .

– pi j = 1 if patch j is selected from shape i .

– mi j if segment i in shape one maps to segment j in shape two.

• Literature:

– Huang et al., Joint-Shape Segmentation with Linear Programming, ACM TOG 2011.
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7.5 Fit and Diverse Sampling
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8 Quadratically Constrained Quadratic Programming
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8.1 General Form

• General form:

min
x

1

2
xTQx+c0

T x

xTQix+ci
T x ≤ bi

• x ∈Rn is a vector of variables

• ci ∈Rn are vectors with known entries

• Qi ∈Rn×n are symmetric matrices with known entries

• b ∈Rm is a vector. Each entry bi is on the right hand side of inequality i .
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8.2 Mixed Integer Quadratically Constrained Programming

• Can be solved by commercial solvers
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