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1 SHADER DESCRIPTION
Our shader is defined as a combination of a set of base BSDFs and
mix shaders that return a linear interpolation of two inputs. In the
following description, the numerical ID, BSDF model names and
their parameters are enumerated.
1: Diffuse BSDF (r,g,b albedos), 2: Beckmann Glossy BSDF (r,g,b albe-
dos, roughness), 3:Mix shader (connect 1,2), 4: Beckmann Glass BSDF
(r,g,b albedos, roughness, IOR), 5: Translucent BSDF (r,g,b albedos),
6: Mix shader (connect 4,5), 7: Mix shader (connect 3,6).
The volume absorption for the Glass and Translucent BSDFs are
inherited (and shared) from a separate node. The extended shader
contains a combination of several noise models, a similar mixing
logic and individual weighting factors to control. In the interest of
simplicity, we provide a visual description of this shader in Fig. 2.

2 QUESTIONS & ANSWERS
Q:Thenew recommended samples are generated fromscratch,
and hence, have to be rendered. There is a large database of
shader-image pairs thatwas used to train the neural network.
Instead of synthesizing the corresponding images for new
recommended sample points, why not use the images from
the database?
A: We have experimented with this option and have included the
appropriate source code and database file in our implementation.
The issue of this approach is that it is struck with the curse of di-
mensionality; if one generates n training points on [0, 1]m with
uniform distribution, and the average L2 distance between a new
random query point and the closest database match is 0.71 when
m = 19,n = 17 ·104 (simpler shader) and 1.45 form = 38,n = 17 ·104
(extended shader). This difference is significant as some shader pa-
rameters are non-linear and a difference of 10−1 in the index of
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refraction or glass roughness leads to a drastically different material
appearance or non-physical results. We note that we obtained these
results via a Monte Carlo simulation as a complete proof of this
result would be overly verbose (e.g., the average distance is close to
0.52 form = 2,n = 1 [1, 2]).
Q: Why use 1D convolutions?
A: The input of the network is a set of shader parameters that bear
some locality as e.g., R,G,B albedos for a material node are often
adjacent. However, they have no meaningful 2D spatial relation to
each other, therefore 1D convolutions are preferable.
Q: What about human biases in the gallery scores?
A: We have identified several recurring biases throughout our exper-
iments. For instance, when the gallery is presented as a 2D grid, the
score of a material often depends on its surroundings, e.g., it is typi-
cally rated higher when the material it surrounded by unfavorable
examples. Users are also typically more susceptible to assign a high
score to a mediocre sample early in the process before they have
seen the best matches the shader has to offer. The perception of
different light simulation effects may also introduce imperfections
in the scoring process, e.g., the effect of translucency is difficult to
recognize in moderation, and therefore there are barely any mid-
scoring samples with most scores being either extremely low or
high. In the Results section of the paper, we show that due to these
biases, the Jensen-Shannon Divergence does not recede to zero as
we add more training samples, and that despite these distortions, it
is still possible to perform regression and material recommendations
of formidable quality.
Q:Whatmaterials are synthesized andwhich are given in the
right side of the teaser image with the Microplanet scene? A:
The following materials were synthesized: dandelions (upper part
of the planet, high color variation), daisies (the white color is fixed,
the core follows a slight color variation), staghorn tree (upper left),
sweet pepper bush (lower right), Kentucky blue grass and rye (gen-
eral vegetation covering the planet), the water steam in the middle
(one material, extended shader). The following materials were given:
the bark of the staghorn tree in the upper left, the procedural dirt
material on the surface of the planet and the backgroundHDR image.
Q:Theneural networkpredictions are compared to the ground
truth renderings in the paper. How do they compare against
the training set images in terms of PSNR?.
A: The PSNR values are comparable, i.e., 37.9dB for the predictions
and 40.2dB for the training set when compared against the ground
truth. In the paper, we argue that the visual quality of the predic-
tions are higher because of the denoising property of the neural
network. The measured PSNR is slightly lowered by the fact that
some predicted images are off by a few points of brightness value;
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Fig. 1. The Microplanet scene from the teaser image, magnified.

these are distributed uniformly over the image and are hence im-
perceptible for the user.
Q: In Fig. 5 of the paper with the Toy Tea Set scene, some
of the material sample images seem slightly darker than the
ones inserted into the scene. Why?
A: The volumetric absorption parameter for translucent materials is
heavily scale-dependent: if the scale of the scene is larger than the
one shown in the material preview scene (e.g., the teapots are typi-
cally larger), its increased optical thicknesses will result in darker
outputs. We have slightly adjusted the absorptions to avoid this
effect.
Q: It is noted that if the new recommendations are not ac-
ceptable, the user may rank the newly proposed gallery or
edit past rankings. What is the difference?
A: If the recommendations are in line with the user’s artistic vision,
but require fine-tuning, assigning scores to the newly created gallery
and using them as training data for one more round is expected
to improve the relevance of the recommendations (we used a two-
round scheme for metals and minerals). Since these new samples are
concatenated to the previous scores, it is advisable to first make sure
that the scores from the first round do not contain many conflicting
decisions. If the recommendations are not at all acceptable, it is
advisable to revisit the initial rankings.
Q: There is an abundance of glassy and translucentmaterials
in the provided examples. Why?
A: These cases are considered challenging in the sense that these

materials are relatively unlikely to appear via random sampling: in
the glassy use case, 81% of the samples in the initial gallery were
scored zero. This ratio was 90% for the translucent case. This means
that the recommender system has to learn the appropriate sample
distribution from a modest number of non-zero data points. With
this, we intended to show that our system performs well in the more
challenging cases. Other material classes that represent a larger slice
of the parameter space (e.g., highly diffuse materials) are learned
faithfully from even fewer training samples.
Q: How would testing more novice and expert users change
the modeling timings?
A: We have found that the fixed cost of the direct interaction with a
principled shader is consistent among users. Our expert and novice
users noted that most of their time was spent waiting for noise to
clear up in the rendered images when a parameter is changed. This
effect is particularly pronounced during variant generation, where
the user has to wait until the minute differences between the old
and new variant are revealed. This is a shortcoming that is inherent
in the fact that all images have to be re-rendered and remains true
for all users.
Q: Are the shader-image pairs in the training data sampled
with uniform distribution? Could this be improved?
A: Yes, we have used uniform sampling – the accuracy of the neural
renderer can be further improved through an adaptive, non-uniform
sampling of the parameter space for the training set. The fact that
even the uniform case led to satisfactory results accentuates the
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Fig. 2. Our principled shader for generating a wide variety of possible displacements.

utility of the neural rendering step. Furthermore, uniform sampling
of new principled shaders can take place conveniently without ad-
ditional complexity with few adaptations to our implementation.
Q: Would it be possible to explore the denoising property of
the neural network in a more principled way?
A: The noise filtering property of the neural network is indeed
subject to a tradeoff – adding more layers leads to more faithfully
rendered images at the risk of additionally fitting the noise in the
dataset. We think that a more principled approach could be devel-
oped by using modern neural network visualization techniques to
observe the amount of noise contained within the filters [3].

3 SUPPLEMENTAL FILES
The submission contains a supplementary video with a high-level
overview of our system and a discussion of the results. We have also
attached a compressed archive that contains the following materials:
GPR training data and full workflows for the glassy, translucent,
metals and minerals and glittery materials accompanied by 500
rendered images in the gallery that can be scored by the user, and a
Blender scene containing the description of our principled shader.

Additionally, the code for computing the answer to the first question
in Section 1., and 1D active learning experiments from the Future
Work section of the paper will also be included to foster further
further research in this area.
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Fig. 3. The Toy Tea Set scene showcasing translucent material models learned by our technique.

Fig. 4. Gaussian Process Regression in 1D and the corresponding JSD and execution timings.
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Fig. 5. The Still Life scene from the teaser image, magnified.
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