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1 Additional experiments

1.1 Sparse-View Results

Additional comparison between PCG and PSART results in sparse view tomo-
graphic reconstruction scenario is shown in Figure 1. Interestingly, we found
that the proximal operator for the data term leads to a strongly convex opti-
mization problem and therefore should have a unique optimal solution. However,
CG in practice struggles to find it. This is quite well known in the tomography
community (which is why SART and other methods remain popular for this ap-
plication). For example the figure 1 shows results for comparing different solvers
for the proximal operator. We can see that in all settings all methods seem to con-
verge against a similar result (albeit at different speeds), except for CG (grey),
which stalls at a much lower value. Note that this behavior is observed across dif-
ferent implementations of CG and CGLS. For example in our submission we use
the CG implementation from RTK [1] (as well as the projection/backprojection
implementation from the same source), in the figure we show results from the
ASTRA toolkit[2], and we also have results from our own CG implementation.
So the issue for CG is quite reasonable. The detailed explanation is presented in
the main text.

1.2 Super Resolution results

We compared PSART-TV with PCG-TV on three different datasets and verified
that SART outperforms CG to solve the data term in the scenario of super
resolution. The parameters for the experiments are shown in Table 3 and Table 4.
As shown in Figure 2, PSART-TV achieves visually better results on an artificial
rose, a zone plate pattern, and a real rose.

Figure 3 shows the edge detection results from applying Sobel filter in the
sagittal plane for artificial rose. The size of the volume is 415× 314× 393. 120
original-size projection images are used as input for PSART-STP and the best
reconstructed result is used as the reference volume for the comparison.

In Table 1, we show the detailed metrics measured on the reconstructed
results using different methods, namely PCG-TV, PSART-TV, PSART-SAD,
? now at iRobot Corp
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(b) 30 Projections
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(c) 60 Projections
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(d) 90 Projections

Fig. 1. Comparison of iterative solvers. Plots show SNR per iteration. Relaxation pa-
rameter α = 1, 2.0, and 0.1 are represented with solid, dashed, and dotted lines.
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Fig. 2. Reconstructed results comparison between PSART-TV and PCG-TV.
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(a) PCG-TV (b) PSART-SAD (c) PSART-STP (d) Reference

Fig. 3. a-d: Representative slice visualization in the sagittal plane for edge detection
on a volume reconstructed by PCG-TV, PSART-SAD, PSART-STP, and the reference
volume, respectively.

and PSART-STP. The visualization of the reconstructed results are included in
our paper. Specifically, in our measurements, the volumes reconstructed from
high resolution projections and a full number of projection images for each data
set are treated as ground truth. The metrics PSNR and SSIM are calculated as
quantitative performance measure. We can observe that our proposed PSART-
STP achieves the best performance compared to the other three methods.

Table 1. PSNR and SSIM results from different reconstruction methods.

Method Metric Zone Plate Artificial rose Plumeria Toothbrush

PCG-TV PSNR 22.07 26.83 28.73 27.04
SSIM 0.976 0.958 0.963 0.934

PSART-TV PSNR 22.18 27.00 28.87 27.09
SSIM 0.976 0.958 0.964 0.934

PSART-SAD PSNR 22.63 27.53 28.98 27.62
SSIM 0.978 0.961 0.969 0.938

PSART-STP PSNR 24.83 29.93 30.54 31.30
SSIM 0.986 0.973 0.983 0.973

1.3 Segmentations Results

Table 2. Segmentations Results, the threshold parameter is adjusted so that the results
from PCG-TV and PSART-SAD are close to the Nyquist limit.

Threshold Nyquist
Limit

PCG
-TV

PSART
-SAD

PSART
-STP

Ground
Truth

0.55 6 7 7 11 17
0.6 6 5 5 10 17
0.65 6 4 4 8 17
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Fig. 4. Segmentation results from different methods. From top to bottom: the threshold
parameters are 0.55, 0.60, and 0.65, respectively, making the reconstructed results of
PCG-TV and PSART-SAD closed to the Nyquist limit. From left to right: different
reconstructed methods: PCG-TV, PSART-SAD, and PSART-STP, respectively.
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In this part, we show an additional quantitative evaluation on the zone plate
data set. We compare the proposed PSART-STP with PSART-SAD and PCG-
TV. We use standard image processing algorithms to segment the data. We
simply threshold the result and run a connected component algorithm. We check
how many rings are correctly reconstructed. A ring is correctly reconstructed if
it has no gaps, is not broken into multiple pieces, and if it does not merge with
adjacent rings. We report the number of correctly extracted rings in Table 2 and
visualize the results in Fig. 4 (The five outmost rings are cut away for better
visualization). We can make the following observations:

1. Our method is the best for all threshold values.
2. For higher threshold values, the performance of all methods degrades.
3. We can extract rings over the Nyquist limit.

2 Parameters

Table 1 and Table 2 show the parameters used in the experiments of the paper.

Table 3. CT Parameters for the datasets used in the paper.

zone plate Artificial rose Plumeria Toothbrush
SID (mm) 1800 536.9627 697.0378 243.1662
SDD (mm) 5000 983 983 983

Detector pixel 1024×1024 1916×1536 1916×1536 1916×1536
Detector pixel size (mm) 1 0.127 0.127 0.127

Input pixel 160 168×135 120×96 1916×1536
Input pixel size (mm) 6.4 1.4484 2.027 0.127

Image downsampled factor 6.4× 11.4× 16× 1×
X-ray penetration (kV ) NA 31 25 32
X-ray intensity (µ$A$) NA 725 860 421

Voxel size (mm) 0.5 0.2775 0.3605 0.0314
Number of projections 180 120 180 180

3 Regularization Terms

Different regularization terms have been used for solving the tomography re-
construction problem. Below is a brief overview of the ones considered in this
work:

– Anisotropic TV (ATV): This prior is defined as

h(x) =
∑
ijk

|xi+1,j,k−xi,j,k|+|xi,j+1,k−xi,j,k|+|xi,j,k+1−xi,j,k|, (1)
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Table 4. Parameters used with each method, Time elapsed with each method denotes
the computing time for each main loop iteration.

Zone plate Artificial rose Plumeria Toothbrush
FDK Time elapsed (s) 22.2 8.4 - -

SART

Number of iterations 15 20 - -
Relaxation parameter α 0.3 0.1 - -
Time elapsed (s) 150 44 - -

PCG-TV

Main loop iterations 40 30 25 20
Nested CG iterations 6 4 4 6
Nested TV iterations 1 1 1 1
Prior parameters α 0.8 55 35 0.1
ADMM parameters β 500 8 8 1
Time elapsed (s) 242 36 33 1158

PSART-TV

Main loop iterations 20 25 15 15
Nested SART iterations 1 1 1 1
Nested TV iterations 1 1 1 1
Prior parameters λ 0.003 0.08 0.03 0.1
CP parameters µ, (µ= τ) 0.15 0.1 0.1 0.1
Time elapsed (s) 98 35 33 1182

PSART-SAD

Main loop iterations 20 25 15 15
Nested SART iterations 1 1 1 1
Nested SAD iterations 1 1 1 1
Prior parameters λ 0.003 0.08 0.03 0.1
CP parameters µ, (µ= τ) 0.15 0.1 0.1 0.1
Time elapsed (s) 114 42 38 1228

PSART-STP

Main loop iterations 25 16 28 25
Nested SART iterations 1 1 1 1
Nested STP iterations 1 1 1 1
Prior parameters λ 0.03 0.5 0.03 5.5
CP parameters µ (µ= τ) 0.3 0.3 0.3 0.3
Time elapsed (s) 326 142 95 2347

where xi,j,k is the voxel value at position (i, j, k). This can be represented
as g̃(Mx), where g̃(·) = ‖ · ‖1 is the `1 norm and M = D ∈ R3n×n is the
forward difference matrix. The proximal operator of g̃∗(·) can be shown to
be [3]

proxµg̃∗(u) = ΠB∞(u) =


1 u > 1

u |u| ≤ 1

−1 u < −1
, (2)

where the operations are component-wise, and is equivalent to the projection
on the unit ball B∞ of the `∞ norm. Note that we do not need to store
the matrix D, and multiplication by D (computing the gradient) or by DT

(computing the divergence) can be efficiently computed on-the-fly [4].
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– Isotropic TV (ITV): This prior is defined as

h(x) =
∑
ijk

√
|xi+1,j,k−xi,j,k|2+|xi,j+1,k−xi,j,k|2+|xi,j,k+1−xi,j,k|2,

where it sums the magnitude of the gradient at each voxel. Using the forward
matrix D above and defining a new matrix E ∈ R3n×n that denotes the
positions of the forward differences [4], we can define the function h(x) as a
norm ‖u‖E for u = Dx ∈ R3n defined as

‖w‖E = ‖
√
ETw2‖1 =

∑
v

‖wv‖2,

where the square root and square functions are component-wise, and wv is
the gradient at voxel v = (i, j, k). Now we can express the ITV prior h(x) in
terms of the ‖u‖E norm as

h(x) = ‖Dx‖E = g̃(Dx) where g̃(u) = ‖u‖E .

The proximal operator for g̃∗(·) can be shown to be [4]

proxµg̃∗(u) = ΠB∗(u) =
u

Emax
(√

ETu2, 1
) (3)

which is the projection on the unit ball B∗ of the dual norm ‖u‖E∗ , and
where the division and max operations are performed component-wise.

– Sum of Absolute Differences (SAD): This prior is defined as

h(x) =
∑
ijk

∑
xn∈N(xi,j,k)

|xn − xi,j,k| , (4)

where N(xi,j,k) is the 3 × 3 neighborhood around voxel xi,j,k (excluding
voxel xi,j,k itself). It can be seen as an extension to the ATV prior, just
with a different matrix D where more edges are considered for every voxel
instead of just three. Hence its proximal operator is similar to Eq. (2). It
has been shown [5] to produce excellent results in stochastic tomography
reconstruction.

4 Structure Tensor Prior (STP)

4.1 Structure Tensor

The structure tensor [6] SK(xi) ∈ S3+ for a 3D volume at voxel i is a 3 × 3
positive semi-definite matrix that captures the local structure around a voxel,
and is defined as

SK(xi) =
∑

j∈N (qi)

K(qj − qi)

 (δ1j )2 δ1j δ2j δ1j δ
3
j

δ1j δ
2
j (δ2j )

2 δ2j δ
3
j

δ1j δ
3
j δ2j δ

3
j (δ3j )

2


=

∑
j∈N (qi)

K(qj − qi)
(
∇xj∇xTj

)
,

(5)
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where qi = [i1, i2, i3]
T ∈ R3 is the coordinates of voxel i and xi = xi1,i2,i3 is

the voxel value, K(qj − qi) : R3 → R is a 3D rotationally-symmetric smoothing
kernel that down-weights the contributions of voxel j in the set N (qi) of the l
neighboors of the voxel i and∇xj ∈ R3 is the local gradient at voxel j. δkj = ∇kxj
is its kth component

∇xj =

∇1xj
∇2xj
∇3xj

 =

xj1+1,j2,j3 − xj1,j2,j3
xj1,j2+1,j3 − xj1,j2,j3
xj1,j2,j3+1 − xj1,j2,j3

 . (6)

So we can regard the structure tensor as a weighted average of the outer product
of the local gradients at the neighborhood of the voxel.

The eigenvalue decomposition of the structure tensor SK(xi) gives an idea
about the neighborhood. Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the
structure matrix [7]. We have three cases:

1. λ1 � λ2 ≈ λ3: the area around the voxel is sheet-like (a surface in 3D), in
which case we have one large eigenvalue and two small ones.

2. λ1 ≈ λ2 � λ3: the area around the voxel is line-like (or resembles a tube or
filament), in which case we have two large eigenvalue and a small one.

3. λ1 ≈ λ2 ≈ λ3: the area around the voxel is isotropic, in which case we
have three almost equal eigenvalues. It might be that it is a constant area
in which case the eigenvalues are very small, or that the changes are equal
in all directions (an isotropic region) in which case they might have larger
values.

4.2 Definition

The STP regularizer was introduced by [8, 7]. It includes the standard TV as a
special case, when the smoothing kernel is a Dirac delta i.e. it is a local structure
tensor at each voxel [7]. Intuitively, the STP tries to estimate the volume such
that its structure tensor is low rank, by minimizing the deviation of voxel values
in the region around it. We will introduce the STP and develop its solver by
extending it from the case of images in [8, 7] to 3D volumes and by employing
more efficient proximal algorithms for its computation.

The STP at a voxel i is defined as the `p norm of the square roots of the
eigenvalues of the structure tensor SK(xi) defined in Eq. (5). Let Λ (SK(xi)) ∈ R3

be the vector of eigenvalues of SK(xi):

STPp(xi) = ‖
√
Λ (SK(xi))‖p =

 3∑
j=1

(√
λj

)p 1
p

. (7)

In the case when the kernel is the Dirac delta K(q) = δ(q), the STP becomes
the standard isotropic TV regularizer i.e. the `2 norm of the gradient vector [7]
because the structure tensor simplifies to the outer product of the gradient

Sδ(xi) = ∇xi∇xTi
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which has a rank of 1 and only one non-zero eigenvalue λ1 whose value equals
to the gradient magnitude square (its trace):

STPp(xi) =
√
λ1 = ‖∇xi‖2.

In general, however, the structure tensor will aggregate information in the neigh-
borhood of the voxel that will help in having a better regularization of the vol-
ume.

Next, we will define how to represent the STP in a form that fits Eq. 1 in the
main paper. Define the “patch-based Jacobian” [7] as a linear map JK : Rn →
Rnl×3 between the space of volumes and a set of weighted gradients that are
computed from the l-neighborhood of each of the n voxels. We can write the
patch-based Jacobian at voxel i as JK(xi) ∈ Rl×3 by stacking the weighted local
gradients side-by-side:

JK(xi) =
[
κj1∇xj1 · · · κjl∇xjl

]T ∈ Rl×3, (8)

where {j1, . . . , jl} = N (qi) denotes the indices of the neighbors of voxel i (includ-
ing i itself), and κjk =

√
K(qi − qjk). The patch-based Jacobian for the whole

volume JKx ∈ Rnl×3 is now formed by stacking "local" components JK(xi) on
top of each other

JKx =

 JK(x1)
...

JK(xn)

 ∈ Rnl×3. (9)

Using this linear operator JK , Equation 5 can be rewritten as follows:

SK(xi) = JK(xi)
TJK(xi), (10)

which means that the singular values of JK(xi) are actually equal to the square
root of the eigenvalues of SK(xi)

σ (JK(xi)) =
√
Λ (SK(xi)), (11)

where σ (JK(xi)) ∈ R3
+ is the vector of singular values of patch-based Jacobian

JK(xi).
From Eq. (7) and (11) we get the definition of STPp as

STPp(x) =

n∑
i=1

‖JK(xi)‖Sp , (12)

where ‖B‖Sp is the p−Schatten norm of B i.e. the `p norm of its singular values

‖B‖Sp = ‖σ (B) ‖p. (13)

There are usually three options for Sp [3]:
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1. p = 1 is equivalent to the nuclear norm i.e. the sum of singular values of the
matrix:

S1(B) =
∑
i

|σi(B)| = ‖B‖∗.

2. p = 2 is equivalent to the Frobenius norm:

S2(B) =

√∑
i

σ2
i (B) = ‖B‖F .

3. p =∞ is equivalent to the spectral norm i.e.

S∞(B) = max
i
|σi(B)| = ‖B‖2.

Now we can write this regularizer in a more compact compound norm:

STPp(x) = ‖JKx‖1,p

where the (1, p) norm for a matrix J = JKx ∈ Rnl×3 is defined as

‖J‖1,p = ‖JKx‖1,p =
n∑
i=1

‖Ji‖Sp , (14)

where Ji ∈ Rl×3 represents the patch-based Jacobian at some voxel i.
Now, we can define the regularizer function g(·) as

g(JKx) = λ‖J‖1,p. (15)

4.3 Proximal Operator for STP

To solve the reconstruction problem we need to solve

min
x
‖Ax− b‖22 + λSTPp(x) ≡ min

x
‖Ax− b‖22 + λ‖JKx‖1,p, (16)

where
f(x) = ‖Ax− b‖22 (17)

represents the `2 data fidelity term assuming Gaussian measurement noise, and

g(Mx) = λ‖JKx‖1,p (18)

is the regularization term where λ is the tradeoff parameter with linear mapping
M = JK . We will first start with the (1, p) norm, whose dual norm is the (∞, q)
[9] defined as

‖J‖∞,q = max
i=1...n

‖Ji‖q ∀J ∈ Rnl×3 (19)

with q such that 1
p +

1
q = 1. Now we can write (18) as in [10]

‖J‖1,p = max
H∈B∞,q

〈H,J〉Rnl×3 (20)
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where
〈H,J〉Rnl×3 =

∑
i

tr(HT
i Ji) (21)

is the inner product in Rnl×3 that induces the norm

‖H‖2Rnl×3 =
√
〈H,H〉Rnl×3 , (22)

and B∞,q is the unit ball for the dual norm defined as

B∞,q , {H ∈ Rnl×3 : ‖Hi‖Sq ≤ 1 ∀i = 1, . . . n}. (23)

Using (20) we can write (18) as

λ‖J‖1,p = λ max
H∈B∞,q

〈H,J〉Rnl×3

= max
H∈B∞,q

〈λH, J〉Rnl×3

= max
V/λ∈B∞,q

〈V, J〉Rnl×3

= max
V ∈λB∞,q

〈V, J〉Rnl×3 (24)

where we defined V = λH =⇒ H = V/λ and λB∞,q is the norm ball of radius
λ i.e.

λB∞,q , {H ∈ Rnl×3 : ‖Hi‖Sq ≤ λ ∀i = 1, . . . N}. (25)

Using (24) we can write (16) as the following saddle point problem [10]

min
x

max
H∈λB∞,q

〈H,JKx〉Rnl×3 + ‖Ax− b‖22, (26)

which is equivalent to

min
x

max
H
‖Ax− b‖22︸ ︷︷ ︸

f(x)

+ 〈H,JKx〉Rnl×3 − ıλB∞,q
(H)︸ ︷︷ ︸

g∗(H)

(27)

where ıλB∞,q is the indicator function of the norm ball of radius λ

ıλB∞,q
(H) =

{
0 H ∈ λB∞,q
∞ otherwise

(28)

and g∗(·) is the convex conjugate of g(·) [3]

g∗(H) = max
J∈Rnl×3

〈H,J〉 − g(J).

Note that solving Eq. (27) is equivalent to solving Eq. (18), and we will use the
efficient primal-dual CP algorithm [11] to solve it. We will need to define the
proximal operators [3, 12] of f and g∗:
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– The proximal operator for f(x) is

proxµf (u) = argmin
x
‖Ax− b‖22 +

1

2µ
‖x− u‖22. (29)

which can be solved directly using SART proximal operator .
– The proximal operator for g∗(H)

proxηg∗(H) = argmin
J

ıλB∞,q (J) +
1

2η
‖J −H‖2F (30)

which is the projection on the convex set λB∞,q, and decomposes over the
n components Hi of H. The projection of Hi is defined as

ΠλB∞,q
(Hi) = UΣ̂V T (31)

where Hi = UΣV T is its SVD and Σ̂ = diag(σ̂i) with

σ̂ = Πλ`q (σ) (32)

which is the projection of the vector of singular values of Hi on the q norm
ball with radius λ. For example, when p = 1, we have q = ∞ and the
projection function simplifies to simple truncation of the singular values of
Hi

σ̂ = Πλ`∞(σ) = min (σ, λ) . (33)

The steps to solve the reconstruction problem in Eq. (16) are outlined in Algo-
rithm 2.

4.4 Implementation Details

Chambolle-Pock Primal-Dual algorithm (Algorithm 1) We calculate the
norm of matrix [13] M to set the optimal values for µ and η in our PSART
framework for faster convergence. The parameter θ is set to 1 in all experiments.

STP regularizer (Algorithm 2) To compute the STP, we used a truncated
3D Gaussian kernel with support of 3 × 3 × 3 voxels (i.e. l = 27) and standard
deviation σ = 0.5 voxels . The linear mapping JK that computes the patch-
based Jacobian is not stored explicitly, and is computed on the fly using discrete
forward differences and scaling. In particular, we can decompose JK ∈ R3nl×n

into two operators
JK = CD

where D ∈ R3n×n is a discrete forward-difference matrix that computes local
gradients for the voxels and C ∈ R3nl×3n extracts the patch-based Jacobian for
each voxel over its neighborhood and scales them appropriately using the kernel
K(·). The adjoint J∗K = D∗C∗ is also computed on the fly.
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However, the output of the application of the linear map JK to the volume
x, i.e. the patch-based Jacobian JK(x), needs to be stored in the memory. In
particular, for every voxel xi, we need to store a matrix JK(xi) ∈ Rl×3 that has
the weighted local gradients at its l − 1 neighbors and itself (e.g. l = 27 for a
neighborhood of 3 pixels in each dimension). This means that we need a storage
of 82 times the size of the volume to be reconstructed (81 for JK(x) plus 1 for
the volume itself). Moreover, the temporary and slack variables in Algorithm
2 have also to be stored. In the experiments, the largest volume reconstructed
has 690 × 668 × 776 voxels, and the memory required for storing the volume
and the patch-based Jacobian is 109 GB using single-precision (4-byte) floating
point numbers.

5 SART For Solving The Data Term

For the SART algorithm, the update equation for each voxel xj in the volume x
is:

x
(t+1)
j = x

(t)
j + α

∑
i∈S c

(t)
i aij∑

i∈S aij
, (34)

where

c
(t)
i =

bi − b̂
(t)

i∑
k aik

(35)

is the normalized correction factor for ray i that measures the residual between
the measured projection value bi and the current estimate at iteration t:

b̂
(t)

i =
∑
k

aikx
(t)
k , (36)

α is a relaxation parameter usually 0 < α < 2, S is a set of projection rays under
consideration, and aij is the element in row i and column j of the system matrix
A and defines the contribution to ray sum i from voxel j. Basically the update
operations in the equation can be decomposed into three steps [14]:

1. Forward projection: computes the estimated projection b̂
(t)

i for each ray
i from the current volume x(t) (Eq.(36)). This corresponds to a volume ren-
dering operation.

2. Correction: computes c(t)i , the normalized deviation of this estimate from
the true projection bi, where the correction is normalized by the contribution
of this ray to all the voxels it goes through (Eq.(35)).

3. Backprojection: where this correction factor is distributed back to all the
voxels that contribute to this ray sum (Eq.(34)).
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5.1 Definition

We will show how to use SART to solve the data term proximal operator. In
particular, we want to solve

proxλf (u) = argmin
x
‖Ax− b‖22 +

1

2λ
‖x− u‖22. (37)

Recall that SART solves a minimum norm problem. Eq. (37) is equivalent to
solving the following problem

min
x

2λ‖Ax− b‖22 + ‖x− u‖22. (38)

We will introduce new variables as follows: let y =
√
2λ(p−Ax) and z = x− u.

The problem now becomes

min
y,z

‖y‖22 + ‖z‖22

subject to y +
√
2λAz =

√
2λ(p−Au). (39)

Rewriting Eq. (39) we arrive at the system

miny,z

∥∥∥∥[yz
]∥∥∥∥2

2

subject to
[
I
√
2λA

] [y
z

]
=
√
2λ (p−Au) ,

which can be written as

minx̃ ‖x̃‖22
subject to Ãx̃ = b̃, (40)

where x̃ ∈ Rm+n, Ã ∈ Rm×m+n, and b̃ ∈ Rm. This is now an under-determined
linear system, and can be solved using the SART algorithm.

5.2 Algorithm

Although we introduced new variables y and z and increased the dimensionality
of the problem from n to n + m, we can solve the modified SART efficiently
with very little computational overhead. Instead of solving SART explicitly for
the optimal y?and z?, we can manipulate the algorithm to solve it directly for
the optimal x?. In particular, the Eq. (34) for the augmented system Ãx̃ = b̃
becomes (by substituting all variables)

x̃
(0)
j = 0,

x̃
(t+1)
j = x̃

(t)
j + α

∑
i∈S

b̃i−
∑

k ãikx̃
(t)
k∑

k ãik
ãij∑

i∈S ãij
, (41)
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which can be expanded in terms of y, z, and A as

y
(t+1)
j = y

(t)
j +

α
∑
i∈S

b̃i−
√
2λ

∑
k aikz

(t)
k −y

(t)
i√

2λ
∑

k aik+1
δij

1
,

z
(t+1)
j = z

(t)
j + α

∑
i∈S

b̃i−
√
2λ

∑
k aikz

(t)
k −y

(t)
i√

2λ
∑

k aik+1

√
2λaij

√
2λ
∑
i∈S aij

,

where δij = 1 if i = j and 0 otherwise. Using the fact that z = x − u and
simplifying we get

y
(t+1)
j = y

(t)
j + α

∑
i∈S

√
2λbi −

√
2λ
∑
k aikx

(t)
k − y

(t)
i√

2λ
∑
k aik + 1

δij ,

x
(t+1)
j = x

(t)
j + α

∑
i∈S

√
2λbi−

√
2λ

∑
k aikx

(t)
k −y

(t)
i√

2λ
∑

k aik+1

√
2λaij

√
2λ
∑
i∈S aij

.

Algorithm 3 summarizes the steps for the modified version of the SART
algorithm used to solve the proximal operator. We note the following:

1. The initialization is different since we need to initialize y and x.
2. The update for y is very fast because only one index yj is updated for every

projection pixel i = j.
3. The update for x is very similar to standard version of the SART with the

exception of the term y
(t)
i in the formula for c(t)i .
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