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Figure 1: We propose an algorithm that generates networks for design scenarios like mid-scale urban street layouts (a-c) and floorplans for
office spaces (d). The user simply specifies an input mesh as the problem domain along with high-level specifications of the functions of the
generated network. Examples include preference for interior-to-boundary traffic (a) or interior-to-interior traffic (b), networks with specified
destinations (i.e., sinks) on the boundary (c,d) and local feature control, such as reducing T-junctions (b) or forbidding dead-ends (c). For
(a-c), the average travel time (distance) for interior-to-boundary traffic as estimated by the traffic simulator SUMO is indicated in green.

Abstract

Connectivity and layout of underlying networks largely determine
agent behavior and usage in many environments. For example,
transportation networks determine the flow of traffic in a neighbor-
hood, whereas building floorplans determine the flow of people in
a workspace. Designing such networks from scratch is challeng-
ing as even local network changes can have large global effects.
We investigate how to computationally create networks starting
from only high-level functional specifications. Such specifications
can be in the form of network density, travel time versus network
length, traffic type, destination location, etc. We propose an integer
programming-based approach that guarantees that the resultant net-
works are valid by fulfilling all the specified hard constraints and
that they score favorably in terms of the objective function. We
evaluate our algorithm in two different design settings, street lay-
out and floorplans to demonstrate that diverse networks can emerge
purely from high-level functional specifications.

Keywords: network layout, functional specifications, urban plan-
ning, optimization, computational design

Concepts: •Computing methodologies→ Shape analysis;

1 Introduction

Behaviors in an urban neighborhood are largely dictated by the un-
derlying networks, both at global and at local scales. For example,
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in the context of urban planning, the transportation network deter-
mines the traffic flow in a neighborhood; or, in the context of build-
ing interiors, the layout of corridors dictates the access times for
internal foot-traffic and exit times.

While designing a complete city from scratch is less often required,
urban planners are often asked to redesign or rejuvenate a street net-
work in a local neighborhood. We interviewed several academics
and professionals in traffic engineering, urban planning, and archi-
tecture to inquire about their current design practices. In such sce-
narios, urban planners often propose network connections drawing
from their knowledge and prior experience. The designs are then
tested by traffic engineers to provide performance feedback to the
planners, who then refine the layouts. This slows down the itera-
tive design process. Further, manually designing traffic networks
is very difficult for a human as it is non-trivial to predict how a
network will function only based on visual inspection.

In such a setting, a designer would instead want to create networks
by simply describing how the target environments should function.
We refer to such high-level descriptions as functional specifications.
For example, functional specifications can come in the form of de-
sired network density, transportation patterns, through-traffic, ac-
cess times, local features, etc.

In this paper, we study how to design networks starting only from
such functional specifications. We observe that in network planning
the designer has to primarily balance between conflicting require-
ments: networks should be densely connected in order to obtain
low average transportation times; at the same time, the total length
of the network should be small to leave space for other assets (e.g.,
houses, shops). We produce a desirable network layout based on a
novel integer programming (IP) based approach that takes as input
a set of functional specifications and boundary description of the
target domain. Technically, the proposed IP formulation guarantees
that the designed networks are valid by ensuring that they are free
of islands (see Figure 4 for examples) and that they offer sufficient
coverage over the target domain, while having desirable quality as
measured by the target functional specifications.
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Figure 2: Example results. Sink vertices are marked in red. The coverage range is two edges wide. The distance values of active half-edges
are colored (see legends for color ranges). Boundary edges are excluded from the calculations. We forbid deadends and edges that are too
close to each other. (a) to (c): A typical urban layout scenario such that all boundary vertices are sinks. The first two use different weights to
optimize for (a) numbers of network edges and (b) sum of distance values. Note that we do not specifically constrain the maximum distance
values. (c): A result that also optimizes for distance values but with the point-to-point constraint enabled (sampled vertices are marked in
yellow). (d): We now constrain a boundary vertex (top middle) to be the sole sink. (e) to (g): A typical floorplan scenario such that a few inner
vertices are sinks (e.g., elevators). Similarly, they differ by different relative weights and whether the point-to-point constraint is enabled.

The proposed algorithm is evaluated in the context of urban street
layouts and floorplans. We identify a set of commonly appearing
functional specifications (see Section 3) and propose how to effec-
tively model them (see Section 4). For example, Figure 1 shows
different networks created by our algorithm using different func-
tional specifications. In summary, our main contributions are:

• proposing the problem of network design directly from func-
tional specifications;

• formulating the task as an integer program that supports com-
mon functional specifications; and

• evaluating the method in different design contexts.

2 Related Work

Street modeling. Initial work on street network modeling focused
on algorithms to synthesize street networks that resemble exist-
ing ones. One approach is to grow street segments greedily until
the available space is filled [Parish and Müller 2001; Weber et al.
2009]. An alternative approach is to first sample points on the street
network that are connected in a subsequent algorithm step [Aliaga
et al. 2008]. Chen et al. [2008] proposed the use of tensor fields
to guide the placement of street segments. One way to improve
synthesis algorithms is to optimize the quality of street networks to
include local geometric and quality metrics, such as street network
descriptors [AlHalawani et al. 2014], sunlight for resulting build-
ings [Vanegas et al. 2012], shape of individual parcels [Yang et al.
2013; Peng et al. 2014b], or the shape of individual roads interact-
ing with the environment [Maréchal et al. 2010]. There were some
initial attempts to include global traffic considerations into the lay-
out process. A first attempt was to compute a traffic demand model
and use this model to modify street width or to guide expansion of
the street network [Vanegas et al. 2009; Weber et al. 2009]. The
connectivity of the road network is also a fundamental requirement
for generating high-level roads connecting cities and villages [Galin
et al. 2011]. A recent paper describes how to design traffic behav-
ior in an urban environment [Garcia-Dorado et al. 2014]. This work
touched on aspects of traffic design that complement our proposed
system. While most of the proposed components are orthogonal to
our paper, one important component of that system is an algorithm
to modify an existing street network by making low-level random
modifications. Instead, we focus on directly generating the topol-
ogy and geometric layout of the initial coarse network only from
functional specifications.

Layout modeling. In the search for creating realistic virtual en-
vironments, layouts have been modeled in computer graphics for
diverse settings. For certain target scenarios, transportation net-
works have no significant role, e.g., in the distribution of vegeta-
tion [Deussen et al. 1998], or the distribution of window configu-
rations in urban facades [AlHalawani et al. 2013]. However, there
are many examples of layouts that have at least some network as-
pect to them. In furniture layouts by Yu et al. [2011], the exis-
tence of obstacle-free walking paths was a consideration in model-
ing the objective function. Several biologically inspired simulations
also model networks. For example, Runions et al. [2005] generate
leaf venation patterns that result in fascinating graphs; Genevaux et
al. [2013] model river networks using hydrological principles; Liu
et al. [2013] investigate precast fabrication-friendly floorplan lay-
outs, and Bao et al. [2013] explore shapes of good building layouts.
Also important is the layout of building floorplans [Merrell et al.
2010], game levels [Ma et al. 2014], or warehouses [AlHalawani
and Mitra 2015], as the rooms, hallways, and storage aisles also
induce networks.

Traffic engineering. In the context of urban planning, the more
technical aspects of designing road networks are studied in traffic
engineering. A good review of traffic engineering can be found in
the textbook by Ortuzar and Willumsen [2011]. A more theoret-
ical branch of traffic engineering draws inspiration from network
design [Yang and Bell 1998], which can be formulated as an ab-
stract problem of assigning edge weights and capacities between
nodes. Some existing methods also use IP in their problem for-
mulation, e.g., [Koster et al. 2010; Luathep et al. 2011]. However,
the approaches are different as we consider networks as graphs to
be embedded in a 2D plane. Our results avoid intersections be-
tween edges, provide reasonable block shapes and avoid unreason-
able road shapes (e.g., zig-zag roads). Further, the number and lo-
cation of the crossings are treated as unknowns in our formulation.

Traffic simulation. Once a network has been designed, it can be
analyzed using traffic simulation. There are several popular toolkits
available, e.g., [MATSim 2015; VISSIM 2015]. In computer graph-
ics, there are also multiple simulators that produce compelling vi-
sual output [Sewall et al. 2010; Sewall et al. 2011; Wilkie et al.
2013], but we focus on network performance (e.g., traffic through-
put) rather than visual characteristics. After consultation with mul-
tiple urban planners and traffic engineers, we picked the state-of-
the-art system SUMO [Krajzewicz et al. 2012] for our evaluation
as it computes traffic-dependent dynamic route assignments.



3 Functional Specifications

Our goal is to allow users to create networks simply from a set
of functional specifications describing how a synthesized network
should behave. In an effort to understand current design practices,
we interviewed multiple academics and processionals with exten-
sive experience in urban design and planning. We also consulted
the relevant literature in the field [Meyer and Miller 2000; Handy
et al. 2003; Southworth and Ben-Joseph 2003; Board 2010]. In this
section, we summarize our findings and identify a set of relevant
functional specifications to support.

Current design practice. The process for creating spatial com-
positions relying on foundational network topologies is necessar-
ily complex and interdisciplinary. Traditionally, designers rely on
a wide range of inputs, including intuition, experience, rules-of-
thumb, analytic modeling and simulation, all combined in an itera-
tive design-and-test process. As described by Marshall [2005], un-
derlying frameworks for this design process are either prescriptive
or preferred hierarchies for patterns of streets. The process of de-
signing urban environments is a multi-disciplinary endeavor involv-
ing urban designers and planners, landscape architects, transport
planners and traffic engineers, each with particular sets of knowl-
edge to apply and optimal conditions to design.

Iteration occurs through gradual testing and refining design op-
tions to aim toward better performance and preferred traffic flows,
through gradual adoption of inputs and modifications from design
consultants. While some of these inputs are formulated as spe-
cific or quantifiable requirements, others are more complex and in-
scrutable, relying on intuition and perception. Further, these disci-
plines each have particular functional or feature requirements. For
example, transport planners may have modal split targets; traffic en-
gineers may deduce the need for X- or T- intersections; and urban
designers may aim for vibrancy and activation of shopping streets.
Much of the design process is spent in aligning such qualitative and
quantitative requirements, which are often conflicting.

Currently, there is limited support for automatic generation of ur-
ban street layouts. Existing techniques for measuring the perfor-
mance of a given network (e.g., space syntax considerations, traf-
fic simulation, etc.) analyze only a given input network. The few
tools that do automatically synthesize networks usually operate in a
framework based on geometric resemblance to existing precedents
(i.e., example-driven synthesis [Nishida et al. 2015]), do not di-
rectly support functional requirements, have difficulty responding
to particular conditions of the sites context, and in general can be
too brittle for use in the real design process. Hence, the majority of
current urban designs and network layouts is composed, modeled
and adjusted manually, while computational support is used only
for (forward) analysis.

Transport modeling. A transportation network can be ab-
stracted as a graph with nodes and edges (see below).
Important components in transport modeling are supply,
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demand, and assignment.
We explain these three
concepts, namely supply,
demand and assignment,
using the example of road
networks. Supply is de-
fined by the existing road
network and regulations,
while demand is con-
cerned with the desired
movement of people or goods from one location to another. Sup-
ply is what we would like to model in our system. As input, we

consider a partial road network where at least the nodes and edges
on the boundary of a region are given. Our goal is to construct a
network inside the region by computing the number and location
of nodes (intersections) as well as the location and connectivity of
the edges. Further, we assign a speed limit to each edge. Demand
is specified for each pair of nodes in the network, e.g., 300 cars
per hour want to travel from node A to node B in the network.
Such demand typically depends on land use, e.g., where residen-
tial houses, jobs, and stores are located and in what density, and the
available road network, e.g., people are more likely to make a trip to
the store if the trip is short. Travel demand can be measured using
sensors, simulated using large-scale urban simulation, or predicted
by simple models. While supply and demand are connected, a rea-
sonable assumption, especially in developing smaller areas, is that
there is a fixed demand or a set of fixed demand scenarios (i.e., sup-
ply changes do not result in new demand requirements). Following
this strategy, we assume a fixed travel demand for trips potentially
passing through the developed region – an assumption that is typi-
cally valid for mid- and small-scale networks.

Another component in transport modeling is the assignment of de-
mand (e.g., trips) to paths in the road network. Classical models for
assignment follow Wardrop’s first principle [Wardrop 1952], i.e.,
the equilibrium principle. These assignment models assume that
individuals try to minimize their travel cost, evaluated as a combi-
nation of factors, such as distance, travel time, tolls paid, number of
stops, and scenery. We choose a simple cost model that mainly de-
pends on travel time, but other choices are also compatible with our
system. We validate our results using a state-of-the-art traffic sim-
ulator, which implements more sophisticated assignment and travel
cost models.

Design requirements. In this work, we focus on designing small
and medium scale layouts purely from functional specifications. In-
corporating functional requirements holistically into a design op-
tion is difficult, especially when the interactions between these re-
quirements are numerous and complex. Both the connectivity of
the networks and their geometric realizations (e.g., nicely shaped
neighborhood blocks) are important in this setting.

We identified a set of recurring functional specifications as follows:

(i) Density: The desired density of a network encodes the average
spacing between the network’s edges (e.g., density of streets).

(ii) Network lengths versus travel distances: In networks with com-
parable densities, two extremes are possible. On one extreme, the
total network length can be minimized. On the other extreme, net-
works can facilitate more efficient travel, usually toward certain
destination locations predefined on the domain. In our framework,
the user can stipulate a relative preference for the two.

(iii) Traffic types: We support three types of traffic: interior-
to-boundary, interior-to-interior, and boundary-to-boundary traffic.
Networks arising from different types of traffic specifications tend
to look quite different (e.g., Figures 6a, 6e, 6d). Users can indicate
a preference among the three.

(iv) Sink locations: A key function of networks is to facilitate access
to certain predefined destination locations, i.e., sinks. We allow the
shape of a network to be controlled by the distributions of such
sinks. Intuitively, a network tends to look like a root-like structure
grown from the destination locations. The user can select the sink
location to be: (a) all of the boundary, (b) only at a subset of the
boundary, or (c) at the interior of the target domain (e.g., shopping
malls).

(v) Local features: There are certain local features that can have
profound effects on the appearance of the target networks. Exam-



Figure 3: Pipeline. For each sub-region, as determined by the input major roads, we generate layouts in three levels of decreasing coverage
ranges. For each level, a rough street network is first generated by the IP-based approach (shown in gray). Afterwards, the geometry of the
generated street network is refined by a smoothing process. Dead-ends are typically allowed only at the last level.

ples are deadends, branches, and T-junctions. We allow users to
indicate if such features should be forbidden or should appear in-
frequently.

(vi) User specifications: We provide two ways to directly control
the generated networks. The first is specifying certain locations as
obstacles that the generated network must avoid. The second is
enforcing certain routes to appear in the generated network. An
example is a direct route between two boundary locations to boost
through-traffic.

4 IP-based Network Design

4.1 Formulation

In this section, we introduce an integer-programming (IP) based
optimization to design networks from the functional specifications
(see Section 3). We assume that the input problem domain, given
as a piecewise linear 2D polygon, is discretized into a polygonal
mesh, M . Our goal is to select a subset of the edges in M as the
final network. We consider a selected network to be valid if it satis-
fies two constraints: (C1) a no-island constraint that ensures access
to specified destination locations (i.e., sinks) predefined on the do-
main; (C2) a coverage constraint that ensures that the network suf-
ficiently covers the whole domain (i.e., all vertices in M are within
a specified distance to the network).

We judge the set of such valid networks based on a set of qual-
ity measures: (Q1) we prefer a network with smaller total length as
longer networks are more expensive to build and maintain, and they
take up more usable space from the domain; (Q2) we prefer a net-
work with shorter travel distances to the sinks (from every vertex
in the network). Our objective function is a weighted sum of these
two competing measures. We start with some definitions before
explaining the constraints and the quality measures.

Definition 4.1 A network is a subset of the edges in M . An edge is
active if it is in the subset; otherwise, it is inactive. A vertex is active
if any of its adjacent edges are active; otherwise, it is inactive. The
sinks are a predefined subset of the vertices in M .

We use Boolean indicator variables, Em, to model the ac-
tive/inactive states of every edge, em, for m ∈ [0, NE) with NE

being the number of edges in M .

(C1) No-island constraint. We require valid networks to be free
of islands (i.e., unreachable parts), while still allowing loops in the
networks. First, without changing the definition of a network, we
distinguish each half-edge, ei→j (i.e., goes form vertex vi to vj), as
active or inactive, by a Boolean indicator variable Ei→j , for i, j ∈
[0, NV ) with NV being the number of vertices in M . Our goal is
to assign each active half-edge, ei→j , a distance value that roughly

encodes the distance of vj to the closest sink vertex along the active
half-edges in the network. We model the distance value of half-edge
ei→j as a non-negative continuous variable, Di→j , for Di→j ∈
[0,∆all] where ∆all is the sum of the lengths of all half-edges in
M . This translates to the following requirement:

Proposition 4.2 For a half-edge, ei→j , to be active, at least one of
its succeeding half-edges (i.e., the half-edges that go from vj but not
go back to vi) is also active and is assigned a distance value smaller
than the distance value of ei→j , except if vj is a sink vertex.

We encode this requirement (see Appendix for proof) as: For every
succeeding half-edge, ej→k, for k ∈ Nj \ {i}, where Nj is the
one-ring neighborhood of vj , of every half-edge ei→j in M such
that vj is not a sink vertex,

Li→j;j→k ≤ Ej→k and (1)

Dj→k −Di→j + ∆allLi→j;j→k ≤ ∆all −∆i→j (2)

where, Li→j;j→k are auxiliary Boolean variables associated with
every half-edge, ei→j , one for each of its succeeding half-edges,
ej→k, for i, j ∈ [0, NV ), k ∈ [0,K). The length of half-edge
ei→j is ∆i→j . Note that Li→j;j→k can be true only if (i) ej→k

is active (enforced by Inequality (1)), and (ii) ej→k has a smaller
distance value than the distance value of ei→j by at least the length
of ei→j (enforced by Inequality (2)).

Next, the following inequality ensures that for ei→j to be active, at
least one of its auxiliary variables must be true: For every half-edge

Figure 4: The impact of no-island constraints. The coverage range
is one edge wide. (a) The problem domain is first discretized into a
mesh. (b) A network (i.e., a subset of the edges) that sufficiently cov-
ers the domain using the fewest possible number of edges. However,
the solution may consist of many disconnected parts. (c) Simply for-
bidding degree-1 vertices is not enough to guarantee the network to
be free of islands, as it is still possible to form disconnected loops.
(d) Our no-island constraint guarantees that the network is entirely
connected to the sink (red vertex). Here, we show the distance val-
ues assigned to each active half-edge.



Figure 5: Optimization results with changing λL (to minimize network lengths) versus λD (to minimize travel distances). A larger λL leads
to shorter network lengths but longer travel distances, while a larger λD leads to the opposite.

in M , ei→j , such that vj is not a sink vertex,

Ei→j −
∑

0≤k<K

Li→j;j→k ≤ 0. (3)

The inset illustrates the no-island constraint using the
top-middle part of Figure 4(d) with vertex in-
dices. As all edges have uniform lengths, con-
stants ∆i→j , i, j ∈ [0, NV ), all equal to one.
Continuous variables D0→1, D1→2, D1→3,
and D1→4 are assigned to be 2, 0 (arbitrary),
2, and 1, respectively. Therefore, by Inequality (2), L0→1;1→2 and
L0→1;1→3 are false and L0→1;1→4 is true. This allows E0→1 to
be true by Inequality (3). Note that the requirement does not forbid
loops in networks, as shown in Figure 4.

Finally, we say that an edge is active if and only if at least one of its
two half-edges is active: For every edge in M , ex,

−1 ≤ Ei→j + Ej→i − 2Ex ≤ 0, (4)

where Ei→j and Ej→i are the Boolean indicator variables of ex’s
two half-edges. The Boolean indicator variable of ex is Ex.

Note: The above formulation was inspired by an IP formulation
of the Traveling Salesman Problem [Miller et al. 1960]. However,
unlike theirs, our formulation allows loops involving the starting
nodes (i.e., sink vertices).

(C2) Coverage constraint. To ensure that the network sufficiently
covers the whole domain, we require that an active vertex covers
itself and its nearby vertices within a distance threshold. (Different
coverage models can instead be used for different design scenar-
ios.) A network sufficiently covers M if all the vertices in M are
covered. We model this as described next.

We denote the active/inactive states of every vertex in M , vy , as
Boolean indicator variables Vy , y ∈ [0, NV ). Since a vertex is
active if and only if at least one of its adjacent edges is active, we
have the following constraint: For every vertex in M , vy ,

1− |Ey| ≤
∑
x∈Ey

Ex − |Ey|Vy ≤ 0, (5)

where Ey is the set of edges that are adjacent to vy . We now express
the coverage requirement as, for every vertex v ∈M ,∑

x∈V cover
v

Vx ≥ 1, (6)

where V cover
v is the set of variables of the vertices that covers v.

Objective function. We balance between two quality measures:
(Q1) the total length of the network, and (Q2) the total travel dis-
tances to the sinks. The first term can be expressed as the summa-
tion of all edge indicator variables multiplied by each edge’s length.
The second term can be expressed as the summation of all distance
values of half-edges. Thus, the objective function takes the form:

min
Ei→j ,Di→j ,Li→j;j→k,Ex,Vy

λL

∑
x

∆xEx + λD

∑
i,j

Di→j ,

where ∆x is the length of edge ex, λL is the weight of the total
length term, and λD is the weight of the total travel distance term.
Note that when λD is set to zero, the distance values may not be
assigned correctly and may need to be calculated in a post-process.
In Figure 5, we analyze how the assignments of λL versus λD affect
the optimization results.

4.2 Extensions: Optional Functional Specifications

We also support two optional quality measures: (L1) ensures quick
access between any two locations in the network by a point-to-point
constraint (note that this is not guaranteed if we only optimize for
quick access to the sinks); and (L2) introduces measures for con-
trolling the local features (e.g., deadends, zigzags, and T-junctions)
in a network.

(L1) Point-to-point constraint. Here, our goal is to constrain
the travel distances between any two vertices in the network, not
just the travel distances to the sinks. While explicitly modeling
such constraints is possible, it would be prohibitively expensive
since we need to model every possible path between every possi-
ble pair of vertices. Inspired by the construction of k-spanners for
graphs [Baswana and Sen 2007], we describe a cost-effective way
to approximate our goal.

We first partition M into a set of sub-meshes (i.e., a connected set
of faces). We assume the partition is modeled by the user. We
say that two sub-meshes are adjacent to each other if they share
common edges. Next, we randomly sample one vertex in every sub-
mesh. For sampling, we consider vertices that are not adjacent to
any other sub-mesh, unless such vertices do not exist. For every pair
of adjacent sub-meshes, we exhaustively enumerate the set of paths
(i.e., a consecutive sequence of edges) connecting the two sampled
vertices with topological lengths not greater than the length of a
shortest path between the two vertices plus a tolerance value (we



use 2). We can now set constraints to require at least one of the
paths is selected (i.e., consisting of active edges). In summary, we
require the network to connect every pair of adjacent sub-mesh by
connecting their respective sampled vertices.

The inset shows an example for Figures 2c and 2g. We now
describe the modeling. Let Pa→b,x be a Boolean indicator
variable indicating the presence of the
x-th path among the set of paths con-
necting two sampled vertices va (of sub-
meshMa) and vb (of sub-meshMb), for
a, b ∈ [0, NS) and x ∈ [0, X2) with X2

being the size of the set. Let Ea→b,x
n ,

n = 0, 1, ..., N − 1 denote the edges on
path Pa→b,x, where N is the size of the
path. We have:

−N + 1 ≤ NPa→b,x −
∑
n

Ea→b,x
n ≤ 0. (7)

For every set of paths connecting sampled vertices va and vb,∑
x

Pa→b,x ≥ 1, (8)

indicating that at least one such path is selected. As shown in Fig-
ures 2c and 2g, enforcing such constraints leads to networks that are
more tightly connected, which in turn have quicker access between
any two vertices in the network. Users can control the strength of
the point-to-point constraint by the density of the partitions. While
this approach is computationally cheap, it can overconstrain the re-
sulting network.

(L2) Local feature control. We now introduce quality measures
controlling local features.

(i) Deadend avoidance: We may desire networks that have no dead-
ends, i.e., an active vertex that is adjacent to just one active edge. To
achieve this, we give every half-edge, ei→j (from vertex vi to vj),
a non-emptiness Boolean indicator variable, νi→j , which is true if
any of the vj’s adjacent edges, excluding the edge of ei→j , is ac-
tive. It is false otherwise. Thus, for every half-edge ei→j in M ,

−|Ej \ {i→ j}|+ 1 ≤
∑

Ex − |Ej \ {i→ j}|νi→j ≤ 0 (9)

with x ∈ Ej \ {i→ j}, where Ej is the set of edges adjacent to vj .

Deadends can then be avoided by the following constraints: for
every half-edge ei→j in M ,

Ei→j − νi→j ≤ 0. (10)

(ii) Branch avoidance: It is simple to avoid branches (i.e., a vertex
with more than three adjacent active edges) in a network by the
following constraint: For every vertex in M , vy ,∑

Ex ≤ 2, (11)

where x ∈ Ey and Ey are the set of edges adjacent to vy . Enabling
the branch avoidance constraint leads to cycle-like networks.

(iii) Zig-zag avoidance: As shown in the
inset, for each half-edge, ei→j , we identify
two undesirable configurations. The pres-
ence of each configuration on ei→j is de-
noted by a Boolean indicator variable,Zk

i→j ,
where k equals 0 for zig-zags and 1 for

edges that are too close to each other. This is modeled as follows:
For every Zk

i→j that denotes the presence of the k-th undesirable
configuration on half-edge ei→j ,

0 ≤
∑

Ex − |Ex|Zk
i→j ≤ |Ex| − 1 (12)

with x ∈ Ei→j,k, where Ei→j,k denotes the set of edges comprising
the k-th undesirable configuration on ei→j . To forbid the presence
of any of such configurations, we simply force all Zk

i→j to be false.
As this constraint can be too strict, we can instead minimize the oc-
currence of such configurations by adding the weighted summation
of Zk

i→j to the objective function.

(iv) T-junction avoidance: We can disallow or minimize the occur-
rence of T-junctions. For each half-edge pointing to a valence-4
vertex, ei→j , the presence of a T-junction on ei→j is denoted by a
Boolean indicator variable, Ti→j , modeled as: For every half-edge
ei→j ∈M ,

0 ≤ E1 + E2 + E3 + (1− E0)− 4Ti→j ≤ 3, (13)

where E0 is the edge indicator variable of ei→j’s edge, and E1 to
E3 are the edge indicator variables of the other
three edges adjacent to vj (see inset). Again, we
can forbid T-junctions by enforcing all Ti→j to
be false, or by minimizing their occurrence by
adding the weighted summation of Ti→j to the
objective.

(v) User specifications: Users can explicitly specify certain combi-
nations of vertices and/or edges to be inactive or active in a network.
It is straightforward to impose these specifications by constraining
the corresponding vertex or edge indicator variables to be true or
false. Examples of such specifications can be seen in Section 5.

Extended objective function. The final IP takes the form

min
ei→j ,Di→j ,Li→j;j→k,Ex,Vy,Z

k
i→j ,Ti→j

λL

∑
x

∆xEx+

λD

∑
i,j

Di→j +
∑
k,i,j

λk
ZZ

k
i→j + λT

∑
i,j

Ti,j

(14)

subject to linear constraints in Equations 1 - 13 where ∆x is the
length of edge Ex, λL is the weight for the total length term, λD

is the weight of the total travel distance term, λk
Z , k = 0, 1, are

the weights of minimizing the occurrences of the two undesirable
configurations, and λT is the weight of minimizing the occurrence
of T-junctions. (Please note that some of the functional constraints
are optional.) Figure 2 shows an example.

5 Applications

5.1 Urban street layouts

We aim to generate street layouts at small and medium scales.
Based on the hierarchical nature of real-world road networks, we
lay out the streets in four stages. First, we build a coarse network of
major roads (e.g., freeways or arterial roads) that create a boundary
of the target region and provides exterior traffic information. Sec-
ond, for each region, we create a denser network of collector roads
with the purpose of collecting traffic from the local roads. Third,
grown from the collector roads, we develop an even denser network
of local roads that roughly span the whole sub-region. Fourth, there
may be cul-de-sacs grown around streets at the previous two levels.

We assume that the network of major roads is specified by the user.
Afterwards, for each sub-region, street layouts are generated as fol-
lows (see Figure 3). First, we find a dense network of street segment



Figure 6: Diverse street layouts resulting from different functional specifications. The first two layouts are optimized for (a) minimal network
lengths and (b) minimal travel distances to the boundary, using different specifications of the optimization weights. The travel distances are
shown in the bottom-left corners. (c) A layout with a single exit on the left. We also prefer a tree-like structure for this case, which is realized
by allowing deadends on the second (collector roads) level. (d) A layout that encourages through-traffic in the vertical direction. This is
realized by enforcing a shortest path connecting the two user-specified vertices (green) without inner branches on the second level. Note that
through-traffic in other directions (e.g., horizontal) is implicitly discouraged. (e) A network that better supports interior-to-interior traffic,
realized by the point-to-point constraint with a user-specified partition.

candidates in the form of a semi-regular (i.e., most vertices are of
valence 4) quad mesh, M , wherein the quads are roughly of uni-
form size and their shapes are close to a square. This assumption
is based on the observation that real-world urban street layouts of-
ten favor 90-degree intersections. In practice, the input problem
domain is quadrangulated by the patch-wise quadrangulation algo-
rithm [Peng et al. 2014a]. Beginning at the sub-region level, we
compute an initial street network by selecting a subset of segments
of the dense network using the IP-based approach described in Sec-
tion 4. The geometry of the street network (i.e., positions of the
vertices along the street edges) is further improved by snake-based
smoothing [Kass et al. 1988] (see Appendix). If the last level is
not reached, we generate a denser network for the next lower level.
In particular, we increase the resolution of the mesh by a Catmull-
Clark subdivision scheme without vertex repositioning for greater
degrees of freedom of the IP computation. We then generate the
next level of roads working on the subdivided mesh. Figures 1, 6,
and 7 show various street networks designed using our system.

In Figure 1a-c and Figure 6, we show how distinct street networks
for the same sub-region can be created by different functional spec-
ifications. In Figure 7, we consider a practical scenario of designing
a street layout for an empty section of land surrounded by existing
streets.

We evaluated the functionality of the generated layouts using
SUMO [Krajzewicz et al. 2012], as recommended by three urban
planners and one of the authors [Marshall 2005] we consulted. The
evaluation with SUMO is to demonstrate the correlation between
design and practice, i.e., the predicted functional behavior closely
matches the simulated one. The correlation indirectly justifies our
choice of objective functions and functional constraints.

Design study. A professional urban planner used our tool to scope
out a real-world scenario. The target was to redesign street net-
works to rejuvenate a very busy urban neighoborhood (see Fig-
ure 8). The exercise was a feasibility study to estimate the implica-
tions of converting a rail station into a residential area, possibly by
moving the train network underground. A target density of the resi-
dential neighborhood was provided, which was used to set the den-
sity and coverage values for the functional specifications. Further,

a traffic model of the dominant external traffic flow was created and
had to be conformed to. Figure 8a shows the specified external traf-
fic flow with arrows of the same color denoting source-destination
pairs in the traffic demand model. Figure 8b shows the current street
network. Our system generated different networks subject to differ-
ent sets of specifications: 8c and 8d indicate scenarios by varying
the balance between road length and travel distance to the sinks; 8e
shows a setup with three boundary sinks (their locations were not
explicitly specified); 8f encourages through-traffic by specifying a
collector road from top to bottom; 8g shows the effect of two obsta-
cles in the form of a park and man-made water body (see Figure 10
for parcelling result); and 8h shows a network favoring interior-to-
interior traffic.

Feedback from our urban planner consultants was mostly positive.
They commented that having such a tool would vastly improve the
communication between urban planners and traffic engineers and

Figure 7: Planning a street layout for an empty section of land
surrounded by existing streets and with a historic site that should
be preserved. To optimize travel times, instead of designating all
boundary vertices as sinks, we place sinks only on the intersections
of the existing streets (red vertices). The historic site is preserved
by marking the corresponding vertices (black) as obstacles. On the
right, we show the IP result of the level-2 roads. The distribution of
the active half-edges indicate the shortest paths to the intersections
(sinks) while the distance values encode the shortest distances.



that it would allow targeted evaluation of different functional sce-
narios (see Figure 8). They particularly liked the synthesized sce-
narios 8e, 8g, and 8h. A more systematic evaluation will be con-
ducted in the future.

Evaluation. We measured the quality of the generated layouts by
evaluating how well the specified functional specifications were
met. The generated networks were all determined to be valid, i.e.,
free of islands and meeting the required coverage constraints. Cer-
tain quantities, e.g., length of the street network, were evaluated
geometrically and directly measured from the network. The results
are presented in black, in Figure 8.

We made reasonable simplifying assumptions about the computa-
tion of travel time and trip assignment. We therefore can compare
the average travel times and travel distances computed by our opti-
mization framework with the output from the state-of-the-art traffic
simulator, SUMO [Krajzewicz et al. 2012]. We tested the network
only under low and medium level traffic, but not full congestion. In
our settings, we used a traffic model of 250 cars/km2 per hour with
speed limits of 40 mph, 30 mph, 20 mph, 20 mph for the major,
collector, local roads, and cul-de-sacs, respectively. We distributed
the traffic uniformly across the interior region. In case of the de-
sign study (Figure 8), we additionally specified 1000 cars/hour uni-
formly distributed among the three main external sources/sinks.
SUMO’s measures are presented in green.

(a) (b)

(c) (d) (e)

(f) (g) (h)

0 50

L: 18063
d: 210
SUMO: 185

L: 19417
d: 199
SUMO: 169

L: 18115
d: 568
SUMO: 537

L: 17569
d: 218
SUMO: 188

L: 16373
d: 203
SUMO: 179

L: 18426
d: 225
SUMO: 203

L: 16849
SUMO: 222

200m

Figure 8: Case study: Various scenarios created using functional
specifications (see text for details). L denotes the total street length
in meters, d the average travel distance for specified traffic demand,
and SUMO indicates the average travel distance per the SUMO
traffic simulator. The color-coded street network shows the traffic
distribution over different road segments (gray indicates no traffic).

In all the cases, the functional specifications were satisfactorily met.
For example, increasing total street lengths resulted in reduced av-
erage distance (to the boundary), or redistribution of through-traffic
(see Figure 8b for original). Using SUMO simulation, we could
also verify that Figure 8h has the shortest average travel distances
among the six variations. Considering only interior-to-interior traf-
fic, the second best scenario, 8d, has 9% and the worst scenario, 8b,
has 44% longer travel distances. Overall, we observe that our op-
timization is very consistent with SUMO. Comparing the average
travel times of the six different scenarios for trips from the inte-
rior to the boundary, we obtain the following results: (c) 20/17,
(d) 18/16, (e) 50/43, (f) 20/17, (g) 19/16, and (h) 22/19 in the for-
mat SUMO/ours. While we systematically underestimated travel
time, it was by an almost constant factor.

5.2 Floorplans

We used our method to model corridors (i.e., the passage areas
connecting rooms) in a building floorplan, as described next. We
assume that the given building footprint is discretized into a quad
mesh, M . A computed network represents the corridors for the
building. The user first defines a set of room templates [Peng et al.
2014b] describing the admissible room shapes as combinations of
squares, such as a 2x2 square room, a 3x2 long room, and an L-
shaped room, with the possibility of having four non-valence ver-
tices within (see Figure 9a top). We then enumerate the potential
placements of the rooms on M , each placement being a connected
set of faces on M (see Figure 9a bottom).

Our goal is to find a subset of all possible potential room placements
such that no two overlap and together they fully cover M ’s faces.
We denote the presence of each potential room placement in the
subset as Boolean indicator variables, Rx, for x ∈ [0, Nr) with
Nr being the number of all potential placements. The coverage
constraint is simply adapted as, for every face on M , f ,∑

i

Rcover
i = 1, (15)

where Rcover
i , i ∈ [0, X6), denotes the set of indicator variables of

the potential room placements that cover f . For faces denoted as
obstacles, we change the right-hand side of the equation to zero.

In addition, a room has to be connected to the corridors (i.e., ac-
tive edges of the network) and cannot have corridors in its interior,
modeled as follows: for every potential room placement, Rx,

X7Rx −
∑

0≤i<X7

(1− Ei) ≤ 0, (16)

where Ei, i ∈ [0, X7), denotes the set of indicator variables of the
inner edges of Rx, and

Rx −
∑

0≤j<X8

Ej ≤ 0, (17)

where Ej , j ∈ [0, X8), denotes the set of indicator variables of the
boundary edges of Rx. In summary, the IP formulation for floor-
plans comprises the original network IP formulation (see end of
Section 4) with the coverage constraints (Equations 4 - 6) replaced
by the room tiling constraints (Equations 15 - 17).

Our floorplans approach inherits all the functional specifications for
modeling networks/corridors (see Section 5.1) except that the den-
sity aspect is now determined by the user-specified admissible room
shapes. In addition, as the presence of rooms is explicitly expressed
as a Boolean variable, users can precisely control the occurrences



(a) (b)

Figure 9: (a) Top: a set of room templates. Bottom: several potential room placements on a mesh. (b) Floor plans for a four-story office
building. Note that they consist of both the corridor network and the tiling with the room templates. (1) A floor plan with a single sink
predefined as the building’s entrance (bottom middle). The network is constrained to pass through the four elevator locations. Some faces
are denoted as obstacles to be occupied by the elevators. (2) A floor plan sharing the same locations of the elevators (as sinks). (3) A floor
plan that has a single sink and a large obstacle area for a roof garden. (4) Another floor plan with a single sink. Deadends are allowed in
the network.

of each room type using linear constraints. In Figure 9b, we show
several floor plans for an office building with distinct functions. In
Figure 1d, we show a floor plan for a large facility.

5.3 Timing and Analysis

We implemented our algorithms using C++. We report timings on a
desktop computer with a 2.4 GHz eight-core CPU and 8 GB mem-
ory. We used Gurobi [2014] to solve the IP problems. The timing
statistics are shown in Table 1. In practice, as it is difficult to find a
global optimum, we also accept sub-optimal solutions (fulfilling all
hard constraints) computed within reasonable time limits.

The IP can become infeasible due to hard constraints. For exam-
ple, it becomes infeasible if the coverage constraint requires that all
vertices need to be covered and that too-close edges are forbidden.
However, the Gurobi solver flags this as infeasible.

In practice, a real mid-sized layout plan easily takes several months
due to the manual efforts of layout generation and the inevitable
trial-and-error iterations caused by function test failures. Reduc-
ing the time to the order of minutes can significantly increase the
number of design iterations.

Figure 10: Parcel and building layout using CityEngine based on
street layout in Figure 8g. Note that since our algorithm ensures
that the streets are appropriately spaced parcelling for the buildings
remains a simple task without requiring any street modifications.

Although the algorithm can be made to finish in seconds by remov-
ing the global constraints (like the L1 point-to-point constraint),
such an approach is not attractive. Our main contribution is han-
dling such global constraints that dictate behavior on the mid-scale.

Gurobi uses LP relaxation and branch-and-bound to solve the IP
problem and can achieve optimality if the gap between the current
objective value and the valid lower bound (from all the leaf nodes
of the search tree) is negligible (0.01% in our implementation).

Limitations. The main limitation is the lack of interactivity. As it
usually takes a few minutes to solve a medium-sized urban layout
problem, our system is not interactive. Also, while we ensure va-
lidity of the networks, we may only achieve a local minimum with
respect to the quality measures. A restriction of the IP formulation
is that new additions/modifications should be linear; otherwise, the
problem becomes too expensive to solve. Finally, we only model
bidirectional roads and do not support one-way traffic in our current
formulation.

5.4 Comparisons with Other Approaches

In this section, we show the advantages in terms of performance of
formulating network problems into IP form and solving them with
a specialized IP solver (e.g., Gurobi).

Manual solution. We first compare our solutions to some trivial
solutions created manually. In Figure 11, we manually create solu-
tions to achieve the same optimization goals as in Figure 2a. Such
solutions use more edges than our IP-based solution. We also at-
tempted to create floorplan results by hand. We found that it is very
challenging to create full room tilings manually, let alone simulta-
neously finding a valid network that satisfies the given constraints.

Stochastic search. For comparison, we implemented a stochastic
search-based approach to solve the network problems. Beginning
at a trivial solution (e.g., every edge is active), the approach itera-
tively performs the following types of operations to alter the current
solution: (i) deleting a single edge, (ii) deleting a pair of adjacent
edges, (iii) deleting a triple of consecutive edges, and (iv) adding
a single edge. At each iteration, we enumerate all possible fea-
sible operations, rank them according to the new objective values
(the lower the better), and pick one to perform. We pick operations
in a simulated annealing sense (i.e., the higher ranked, the greater
chance to be picked, and such tendency becomes more absolute at



Table 1: For every example shown in the paper, we show the num-
ber of edges in the mesh, the parameters for the IP, and the times
to obtain the shown solutions. inf (i.e., infinite) means the corre-
sponding features is forbidden. Y means the feature is allowed and
N means forbidden. For urban street layouts, the times to calculate
the results of level-2, level-3, and level-4 are shown.

Mesh λL, λD , Dead Time
edge vars λ0

Z , λ1
Z , λT end Branch PtP (seconds)

Fig 1a 657 6092† 5 , 1 , 5 , inf , 0 N Y N 379/366/49
Fig 1b 657 7470† 0 , 1 , 5 , inf , 10‡ N Y Y 168/274/34
Fig 1c 657 6231† 1 , 0 , 5 , inf , 0 N Y N 456/467/-
Fig 1d 1012 11338 1 , 0 , 5 , inf , 0 N Y N 920
Fig 2a 312 2241 1 , 0* , 5 , inf , 0 N Y N 132
Fig 2b 312 2241 0 , 1 , 5 , inf , 0 N Y N 35
Fig 2c 312 2281 0 , 1 , 5 , inf , 0 N Y Y 11
Fig 2d 312 2766 0 , 1 , 5 , inf , 0 N Y N 24
Fig 2e 312 3865 1 , 0* , 5 , inf , 0 N Y N 74
Fig 2f 312 3865 0 , 1 , 5 , inf , 0 N Y N 56
Fig 2g 312 4751 0 , 1 , 5 , inf , 0 N Y Y 26
Fig 3L3 1200 6960 1 , 0 , 5 , inf , 0 N Y N 86
Fig 3L4 1200 1930 1 , 0 , 5 , inf , 0 Y Y N 2
Fig 6a 535 4432 1 , 0* , inf , inf , 0 N Y N 121/218/23
Fig 6b 535 4432 0 , 1 , 5 , inf , 0 N Y N 174/318/76
Fig 6c 535 5304 0 , 1 , 5 , inf , 0 Y Y N 70/294/46
Fig 6d 535 5036 5 , 1 , 5 , inf , 0 N Y N 12/223/43
Fig 6e 535 5651 5 , 1 , 5 , inf , 0 N Y Y 73/195/114
Fig 7 543 4415 0 , 1 , 5 , inf , 0 N Y N 229/500/1
Fig 8c 662 6508† 5 , 1 , 5 , 100 , 0 N Y N 390/336/15
Fig 8d 662 6508† 1 , 5 , 5 , 100 , 0 N Y N 328/392/10
Fig 8e 662 6508† 5 , 1 , 5 , 100 , 0 N Y N 370/377/12
Fig 8f 662 4346† 5 , 1 , 5 , 100 , 0 N Y N 229/303/4
Fig 8g 662 4338† 5 , 1 , 5 , 10 , 0 N Y N 128/121/5
Fig 8h 662 7280† 5 , 1 , 5 , 100 , 0 N Y Y 359/372/8
Fig 9b1 520 7986 1 , 0 , 5 , inf , 0 N Y N 1018
Fig 9b2 520 7876 1 , 0 , 5 , inf , 0 N Y Y 188
Fig 9b3 520 7944 1 , 0 , 5 , inf , 0 N Y N 201
Fig 9b4 520 7944 1 , 0 , 5 , inf , 0 Y Y N 1507

*: 1e-4. †:L1. ‡:L4.

each iteration). The approach stops when there is no feasible solu-
tion or when a time limit is reached. As shown in Figure 12, we find
that such a stochastic approach cannot compete with the IP-based
approach in terms of speed and result quality.

6 Conclusions and Future Work

We proposed an algorithm for the computational design of networks
for layout computation, such as street networks and building floor-

Figure 11: (a) Our IP-based solution to find a network that cover
the mesh (coverage range is two edges wide) with the fewest pos-
sible number of edges while avoiding zig-zags and edges that are
too close. (b) and (c) Two manual results for comparisons. Our
strategy is to start at one side of the boundary or a corner and grow
edges as far as possible. Zig-zags and edges that are too close are
avoided. (d) An optimal solution that allows zig-zags and edges
that are too close, found by our IP approach.

Figure 12: Comparing our method to a stochastic search-based
approach. We run multiple passes and pick the best solution. Even
with a much longer time, the stochastic approach cannot find solu-
tions of comparable qualities.

plans. The user provides high-level functional specifications for the
target problem domain, while our algorithm jointly realizes the con-
nectivity and the detailed geometry of the network. While there is
a considerable amount of work on using functional specifications
for evaluating networks, to the best of our knowledge, this is the
first attempt to synthesize these layouts purely based on functional
specifications.

In future work, it would be interesting to consider multi-modal
transportation networks (e.g., public transportations) for a richer
variety of urban street layouts. We would also like to tackle other
network design problems by our IP-based approach, such as the
layouts of residential houses, automated warehouses, and electrical
layouts. In addition, while the meshes used in this paper are all
quadrilateral because of our target applications, new design prob-
lems may necessitate the need for more kinds of mesh tessellations,
such as a hybrid of quad and triangle meshes.

Finally, it would be interesting to extend our framework for network
synthesis to game layouts, layouts for virtual worlds, and large-
scale urban planning.
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Appendix

Proof for Proposition 4.2. We now prove the requirement that
forbids islands in networks. Assume a network contains one or
more islands and the requirement is still met. Then, there exists
at least one weakly connected component that is not connected to
the sink vertices (i.e., an island). Within this island, there can-
not exist any active half-edge that has no succeeding active half-
edges; otherwise the requirement is immediately violated. There-
fore, there must exist at least one loop of active half-edges in the
island, denoted as e0→1, e1→2, ... en−1→0, where n is the num-
ber of vertices in the loop. Since none of these vertices is a sink,
D0→1 > D1→2 > ... > Dn−1→0 > D0→1, a contradiction.

Snake-based smoothing. We use the active contour model
(snakes) [Kass et al. 1988] to smooth the coarse street networks
generated by the IP approach. These networks tend to contain many
sharp turns (e.g., stair-shaped) due to the nature of quad meshes. We
give a summary of the algorithm as follows.

A snake is a distinct non-empty sequence of active edges that con-
nects a distinct sequence of vertices (i.e., no branches or loops).
Moreover, the valence of the first and last vertices of a snake cannot
be 2; that is, a snake must end at non valence-2 vertices. We first
decompose a street network into snakes. It is straightforward to see
that a network can be decomposed into non-overlapping snakes that
together fully cover the network. Snakes can include intersection
vertices of the street network, i.e., an active vertex that connects to
more than two active edges, from its interior. After the snakes are
extracted, we subdivide each snake so that the smoothing algorithm
has a higher degree of freedom.


