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Figure 1: (Left) Random models generated from a probabilistic building grammar. Although these models are visually plausible, they do not
comply with a design scenario which also requires architectural plausibility, i.e. matching styles of ground floors, upper floors, and roofs
(B1, see Table 2). (Right) Our framework takes user specified preference scores as input and learns a new model probability density function
(pdf) which samples models (with consistent style) proportionally to their predicted preference scores. In this design scenario, office buildings
received a higher preference score.

Abstract

A shape grammar defines a procedural shape space containing a
variety of models of the same class, e.g. buildings, trees, furniture,
airplanes, bikes, etc. We present a framework that enables a user to
interactively design a probability density function (pdf) over such
a shape space and to sample models according to the designed pdf.
First, we propose a user interface that enables a user to quickly
provide preference scores for selected shapes and suggest sampling
strategies to decide which models to present to the user to evaluate.
Second, we propose a novel kernel function to encode the similarity
between two procedural models. Third, we propose a framework
to interpolate user preference scores by combining multiple tech-
niques: function factorization, Gaussian process regression, auto-
relevance detection, and l1 regularization. Fourth, we modify the
original grammars to generate models with a pdf proportional to
the user preference scores. Finally, we provide evaluations of our
user interface and framework parameters and a comparison to other
exploratory modeling techniques using modeling tasks in five ex-
ample shape spaces: furniture, low-rise buildings, skyscrapers, air-
planes, and vegetation.
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1 Introduction

Procedural modeling using grammars is a very effective tool to gen-
erate a large variety of similar models. Grammars have been suc-
cessfully used for modeling vegetation, buildings, building interi-
ors, streets, sea shells, furniture, feathers, etc. Even though gram-
mars are a great tool for modeling, generating good grammars is
difficult and requires some programming skills. After talking to



many users of the procedural modeling software CityEngine1, we
can identify two groups of users of grammar-based procedural mod-
eling. Non-expert users such as architects, urban planners, and reg-
ular artists without training in computer science, mainly use exist-
ing grammars, possibly with minor customizations. Expert users,
typically technical artists or computer scientists with some art back-
ground, can generate new grammars from scratch. A common prob-
lem that both groups of users face is the difficulty to control the
distribution of models generated by a grammar. In our paper we
use the term shape space to describe the set of all models that can
be generated by a grammar. Further, the probability density func-
tion (pdf) of a grammar determines how likely a model is to be
generated. We propose new interactive interfaces and techniques
to design the pdf of a given grammar, without editing the grammar
rules directly. To motivate our research we discuss three example
workflows of non-expert and expert users.

The goal of the first workflow is to generate a single interest-
ing model. A user, e.g. an architect, might like to navigate the
shape space of a grammar to get a design idea for a new build-
ing. Currently, the main solution is to randomly regenerate a model
many times. Following pioneering work in exploratory modeling,
e.g. [Marks et al. 1997; Talton et al. 2009], we would like to give
the user the ability to navigate the shape space by designing a suit-
able pdf with high density in the neighborhood of the previously
liked models.

The goal of the second workflow is to customize the pdf of an ex-
isting grammar (for non-expert users) or to fine tune a grammar
written by an expert user for large-scale modeling, e.g. a complete
city. For example, a user might want to control the distribution of
building heights, building styles, building functions (e.g. residen-
tial vs. commercial), and the assets (meshes and textures) used for
windows, doors, and ornaments. In simple cases these distributions
can be controlled by a single parameter in the grammar, but in many
cases the user will be interested in influencing aspects of the distri-
bution that involve more than one parameter. Due to the context-
free nature of most shape grammars, this is difficult to encode and
would need major changes to the grammar rules. For example, it
requires some work to encode that tall buildings should be predom-
inantly gray and small buildings should be mainly brown.

The goal of the third workflow is to write a grammar that can gen-
erate a large variety of models. An expert user might start with a
deterministic grammar that is able to generate a single high quality
model. In a subsequent step, the user can introduce initial random-
ness to generate some minor variations, most of them having high
quality. As the user adds more and more rules and randomness to
the grammar, the probability of generating low quality models in-
creases due to the trade-off between model variety and model qual-
ity. The reason for this degradation is again a limitation of context-
free rules. The rules make design choices without global context,
and it is difficult to coordinate design choices made by different
rules. In Fig. 1 we illustrate two example problems: matching the
style of ground floor and upper floors, and matching the roof style
of a building with its facade style. The price for having a large
shape space to choose from will typically be a larger percentage
of undesirable models. Our work enables an expert user to focus
on writing simpler rules encoding the structure of models and then
using our proposed framework to model a pdf that eliminates most
undesirable models.

This paper makes the following contributions to the state of the art:

• On the application side, we are the first to extend the concept
of exploratory modeling from selecting a single model to in-
teractively designing a pdf for a procedural shape space.

1http://www.esri.com/software/cityengine

• On the user interface side, we propose strategies to display,
sort, and sample models to enable the user to quickly provide
preference scores.

• On the technical side, we integrate concepts from machine
learning with context-free shape grammars. First, we propose
a novel kernel function to encode the similarity between two
procedural models. Second, we propose a framework to inter-
polate preference scores given by a user combining multiple
techniques: function factorization, Gaussian process regres-
sion, autorelevance detection, and l1 regularization. We show
that our framework leads to better results than the kernel den-
sity estimation framework proposed by Talton et al. [2009].
Third, we propose the first algorithm to automatically gener-
ate a new grammar that approximates the target pdf well.

2 Related Work

Procedural modeling. Our work is applicable to rule-based pro-
cedural modeling using grammars, L-systems, or production sys-
tems in general. The original shape grammars were proposed by
Stiny [1975], but they are too complicated for most modeling tasks.
Therefore, most work in computer graphics is based on a simpli-
fied version of shape grammars, set grammars [Stiny 1982]. L-
systems, are very similar to grammars, but they use a parallel re-
placement strategy. They have been successfully used for model-
ing plants [Prusinkiewicz 1986; Prusinkiewicz and Lindenmayer
1990] and have been extended to query and interact with their envi-
ronment during derivation to tackle more challenging plant model-
ing problems [Prusinkiewicz et al. 1994; Měch and Prusinkiewicz
1996]. Several grammars have been proposed for modeling streets
and buildings, e.g. [Parish and Müller 2001; Wonka et al. 2003;
Müller et al. 2006]. In our paper we build on CGA-shape [Müller
et al. 2006] because there is commercial software available to au-
thor the grammars and to generate models. Other grammar exten-
sions include the question of interactive modeling of grammar rules
and modifications [Lipp et al. 2008] and guiding procedural mod-
eling for additional control [Beneš et al. 2011; Talton et al. 2011].

In general, there is a trade-off between grammar complexity and
expressiveness. Algorithms that try to learn grammar structure or
grammar parameters tend to build on very simple, typically context-
free grammars or only learn rule parameters [Müller et al. 2007;
Bokeloh et al. 2010; Št’ava et al. 2010; Simon et al. 2011; Wu et al.
2014]. Similarly, since we would like to learn a grammar pdf based
on user preferences, we mainly use context-free rules in our input
grammars. For more details about procedural modeling we refer
the reader to a recent survey [Smelik et al. 2014].

Grammar induction. Currently, high-quality grammars are pre-
dominately written by hand. Grammar induction is a tool to auto-
matically create grammars by generalizing a set of training mod-
els. A common approach to induce shape grammars is based on
Bayesian inference using a minimum description length prior on
the grammar structure [Talton et al. 2013; Martinovic and Van Gool
2013]. The grammar structure can be optimized using randomized
algorithms (such as Markov chain Monte Carlo) with local moves
including both splitting and merging operations. While our ap-
proach to grammar generation shares the use of the splitting opera-
tion, the goals as well as the techniques involved are fundamentally
different.

Design exploration. We have recently seen several research ef-
forts for exploratory modeling in the graphics community. An early
inspiration for these efforts is the concept of design galleries intro-
duced by Marks et al. [1997].

An important category of exploratory modeling efforts focus on ex-



ploring a pre-defined, discrete design space such as a collection
of websites [Lee et al. 2010] or 3D shapes [Kleiman et al. 2013].
Several papers have proposed to use high-level feature attributes
and utilized crowdsourcing tools to learn the relevance of such at-
tributes [O’Donovan et al. 2014; Chaudhuri et al. 2013]. Averkiou
et al. [2014] compute a hierarchical embedding of a large shape
collection. In addition to exploring the given shape collection, they
also compute the most dominant variation modes in this embedding
as basis vectors. They utilize these basis vectors to define an inverse
mapping from the embedding to the shape space and to generate
new shapes. Our algorithm, on the other hand, operates on large
design spaces defined by production grammars or other generative
processes.

One approach to explore large design spaces is to provide the users
with a discrete set of samples in an interactive framework. Sam-
ples can be generated by utilizing probabilistic models [Merrell
et al. 2011] or evolutionary algorithms [Xu et al. 2012]. In an-
other thread, researchers have proposed to locally explore the de-
sign space in the neighborhood of an optimized sample with respect
to an energy function [Umetani et al. 2012; Yang et al. 2011; Deng
et al. 2013]. Bao et al. [2013] have extended this idea to enable
global exploration by extracting good pathways between different
local spaces. In the context of procedural modeling, Lienhard et
al. [2014] propose a strategy to sample a procedural space to gen-
erate representative thumbnail images.

Several researchers have adopted a parametric model to explore
large design spaces assuming a direct mapping between the changes
in the parameters and the output design. For example, Kerr and Pel-
lacini [2010] have proposed to use sliders for the parameters of the
design space to help the users select different materials. Koyama
et al. [2014] fit a goodness function by defining a goodness value
on a set of discrete samples based on crowdsource data and inter-
polating these values in the corresponding parameter space using
radial basis functions. Kovar and Gleicher [2001] aim to construct
the legal space of PostScript drawings by requiring user feedback
on a set of initial samples and generate new samples by interpo-
lation in the corresponding parameter space. Talton et al. [2009]
explore parametric design spaces of trees and human shapes where
they focus on avoiding invalid shapes by defining a density func-
tion based on manually selected valid models. Shapira et al. [2009]
present an exploratory interface for recoloring images by parame-
terizing the design space using Gaussian Mixture Models. Brochu
et al. [2010] present a Bayesian optimization approach to explore
parametric animation spaces.

Our work is inspired by these research efforts focusing on explo-
ration of large design spaces. In contrast, however, our main goal is
to model the output of a production process such as a grammar as
a density function and manipulate this function based on the user’s
preferences. This framework not only enables the user to navigate
to the desired regions of the design space as most of the related
work, but also to model complex distributions of the output designs.
Moreover, since we do not assume an explicit parameterization of
the design space, our approach is general and applicable to a variety
of production systems.

3 Overview

3.1 Framework overview

The input to our framework is a shape grammar. The default values
of the rule probabilities and rule parameters defined by the gram-
mar impose a default density function over the procedural space S
from which output shapes can be sampled. Our goal is to model a
new density function that reflects the user preferences as closely as

possible and then to generate a new grammar that samples shapes
according to this new density function.

Our framework has the following major components: 1) A user in-
terface that enables a user to provide preference scores for selected
models in the shape space of a given input grammar (see Sec. 4).
2) A regression algorithm that interpolates the user defined prefer-
ence scores (see Sec. 5). 3) An algorithm to generate new models
according to the derived pdf (see Sec. 6).

3.2 Definitions

We use attributed, stochastic, context-free shape grammars that
generate models by shape replacement. Each shape has a list of
attributes and a label from the set of non-terminal symbols NT or
from the set of terminal symbols T . While the number of attributes
can vary depending on the grammar, we require at least the follow-
ing: an oriented bounding box, called scope, a polyhedral mesh that
is transformed to fit inside the scope, and a material identifier. We
use an example grammar, called toy grammar, shown at the end of
this subsection to illustrate various concepts in this paper. Random
samples of this grammar are shown in Fig. 2. A shape grammar is
defined as a tuple:

G = 〈NT, T, ω, P,Θ〉, (1)

where ω ∈ NT is the starting symbol. The set of all symbols is
denoted by SYM = NT ∪ T . P is a set of context-free rules of
the form

idi probi : shapei → ShapeOpi, (2)

where shapei ∈ NT and ShapeOpi is a sequence of shape opera-
tions that generates replacement shapes (succi1, . . . , succik) with
succij ∈ SYM . The number j is called the child index and it
can be used to identify a particular shape among the k replacement
shapes. The probability of the rule being selected is probi so that
the probabilities for all rules that have shapei on the left hand side
need to sum up to one. The rule id idi is generated automatically
and mainly used so we can refer to rules in the paper. The param-
eter vector Θ includes all information about probabilistic choices
available in the grammar. These are a) the rule probabilities and
b) all parameters of the distributions used to sample random values
in shape operations, e.g. the minimum and maximum values of the
uniform distributions to sample the heights h1 and h2 in the toy
grammar. There are quite a few details about how shape operations
could be specified, but these details are not important for the core
contribution of the paper. In our examples we use grammars that
are compatible with CityEngine and we use shape operations that
modify the scope of a shape, e.g. via translation, rotation, and scal-
ing, set the mesh of a shape (see the i() operation in rules id2 to
id4), split shapes into multiple smaller shapes, or combine multiple
shapes.

Figure 2: Random samples of the toy grammar in Sec. 3.2.



70 70 70

(a) (b) (c)

Figure 3: Main components of the user interface. (a) Display: Models (sampled from the current pdf) are shown with their predicted
preference scores (orange) and prediction uncertainties (blue, see Sec. 5.3) (b) Sorting: Models are sorted by the similarity to the selected
model (green) (c) Selection and assignment: Multiple models can be selected and assigned the same preference score at once.

In the toy grammar the rule id1 stacks two shapes with height h1

and height h2 on top of each other to yield a top shape and a bottom
shape. The rules id2, id3, and id4 generate either a box, cylinder,
or star geometry with equal probability 1/3. id5 is an example for
a redundant rule. Finally id6 to id8 select a color for the generated
geometry. This grammar already illustrates a limitation of context-
free grammars. For example, it is not possible to modify the param-
eter vector Θ to ensure that the bottom shape has the color orange
and the top shape has a random color. That requires changing the
structure of the grammar (the rules in P ) by duplicating and chang-
ing the rules id2 to id8. If there were 5 shapes stacked on top of
each other it would already become unmanageable to encode the
probabilities for various geometry and color combinations. Unfor-
tunately, any context-free grammar requires an exponential number
of rules to encode general joint probability distributions of multiple
variables. Nevertheless, we can automatically generate context-free
grammars approximating a given pdf. The grammar might be too
complex to be human readable, but it is compatible with existing
derivation engines and can be used for fast model generation.

Toy Grammar� �
NT = {MASS, MESH, MESH2}
T = {TerminalMesh}

attr h1 = rand(1, 5)
attr h2 = rand(1, 5)

id1 1 : ω → split(y) { h1: MASS | h2: MASS }
id2 1/3 : MASS → i(‘‘box’’) MESH
id3 1/3 : MASS → i(‘‘cylinder’’) MESH
id4 1/3 : MASS → i(‘‘star’’) MESH
id5 1 : MESH → MESH2
id6 1/3 : MESH2→ setMaterial(‘‘orange’’) TerminalMesh
id7 1/3 : MESH2→ setMaterial(‘‘blue’’) TerminalMesh
id8 1/3 : MESH2→ setMaterial(‘‘green’’) TerminalMesh� �
4 User Interface

In the following we will describe the user interface and the interac-
tion possibilities and then give the details for the technical realiza-
tion in Sec. 5. The main idea of the user interface is to enable the
users to provide simple feedback about their preferences on a set of

shapes and then use this feedback to compute a preference function
that can assign a preference score to each model in the procedu-
ral shape space. The density function is the normalized preference
function. Two important characteristics of the user interface are
how quickly a user can provide a preference score and how much
knowledge is gained by scoring the shown models.

The user interface is shown in Fig. 3. Models sampled from the pro-
cedural space are scaled and organized in one or two regular grids.
Our framework not only predicts the preference score of each model
but also can estimate the prediction uncertainty (see Sec. 5.3). Thus,
for each model we optionally show its predicted preference score by
an orange bar (in the range 0-100) and the uncertainty of the pre-
diction in blue. Note that the range of scores will be normalized
later so that only the ratio between scores is important and not their
absolute values.

The user can choose how many models are shown in the grid(s).
We typically use smaller grids, e.g. 4× 4, to rate models and larger
grids, e.g. 10 × 10, to check the results. The user can also zoom
and pan to see individual models in more detail.

Further, the user can decide how the models are generated to pop-
ulate the grid. There are five choices: a) uniform, b) grammar, c)
density function, d) uncertainty, and e) already ranked. Uniform
sampling selects candidates that are as dissimilar as possible using
furthest point sampling among a set of candidates generated by the
grammar. The grammar option simply samples models using the
pdf of the original grammar. When the user selects the density func-
tion option we sample one grid from a pdf that is proportional to the
preference function and a second grid to sample from the comple-
mentary pdf (100 minus the preference score and then normalized).
Showing these two grids helps us to identify models that are un-
desirable, but have a predicted high preference value and models
that are desirable, but have a predicted low preference value. The
option d) allows sampling models according to their prediction un-
certainty. The last option e) is used to review already ranked models
to check for mistakes.

The user can also choose different sorting strategies. The models in
the grid can be sorted according to their preference score, randomly,
or according to an individual feature (see Sec. 5.1 for a description
of features). The user can also select a set of models and sort the
remaining models according to the highest similarity score when
comparing to the selected models. The user is able to use standard
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Figure 4: Feature mapping. A model m generated from the toy
grammar is shown together with its derivation tree. We show se-
lected features as possible tree paths with effective length 2 (p2)
and the mapping of the shown model into feature space Φ(m). The
mapping assigns a value v if the corresponding path exists v times
in the derivation tree.

selection techniques to provide preference scores for selected mod-
els. After changing scores for one or more models the user can
trigger an update to re-estimate the density function and resample
models shown in the visualization. This process is repeated until
the user is satisfied with the modeled density function.

More complex density functions can be modeled as the normalized
product of individual preference functions, also called factors. Typ-
ically, these factors describe the users preference about particular
aspects of the shapes in the shape space. For example, for the sim-
ple grammar in Fig. 2 the user might want to specify her preference
for the color and the geometry of the models separately. To enable
the user to work with factors, we provide options to create, delete,
and name preference functions (factors). Further, the user can set
an active preference function to indicate which preference function
she wants to work with.

5 Learning the Probability Density Function

The user interface described in the previous section enables the user
to assign preference scores to selected models of the shape space.
We now describe our technical solution to obtain a probability den-
sity function for the complete shape space using the following steps:
1) We map procedural models into a feature space (see Sec. 5.1) in
which we assume preference scores are smoothly varying. 2) We
define an overall preference function (see Sec. 5.2) by combining
individual preference functions (factors). 3) We use a non-linear
regression technique to interpolate the user preference scores spec-
ified for a set of models to the rest of the shape space. In this part
we explain the regression model, the regularization, and the esti-
mation of hyperparameters of the kernel function using automatic
relevance detection (see Sec. 5.3).

5.1 Features

Finding a good function that maps a procedural model m to a fea-
ture space X is a challenging problem. We initially experimented
with geometric features, but realized that such features need to be

specifically designed for each grammar separately. For parametric
models, e.g. Talton et al. [2009], one can simply use the model pa-
rameters as features directly and obtain good results. While gram-
mar parameters have been used as features previously [Simon et al.
2011], this approach only works for simple grammars where all
models have the same structure. For more interesting grammars,
each generated model can be encoded by its derivation tree so that
the fundamental problem of feature design is to encode the dis-
criminative properties of the derivation tree (see Fig. 4 for an ex-
ample). The nodes of the derivation tree represent shapes and they
are labeled by the corresponding shape labels, i.e. terminal and non-
terminal symbols of the grammar. The edges of the tree represent
rules labeled by a tuple consisting of the rule id and the child index.
The child index consistently numbers all shapes generated by the
rule. In the following we propose to use the information encoded in
the derivation tree to automatically extract features.

We can identify a path in the derivation tree by the sequence of la-
bels on its edges. For example, for the derivation tree in Fig. 4 we
can observe a path (〈id1, 2〉, 〈id4, 1〉). While there are many pos-
sible paths in the tree, in the following we only consider paths that
follow the order of derivation, i.e. go from parents to children. We
can observe that the paths encode the relationships between shapes
and shape attributes. For example, if (〈id4, 1〉, 〈id5, 1〉, 〈id6, 1〉)
exists, there exists an orange star in m (either at the top or the bot-
tom), while (〈id1, 1〉, 〈id2, 1〉, 〈id5, 1〉, 〈id8, 1〉) indicates that the
bottom shape is a green box.

A model m generated by the grammar G is mapped into the feature
space with a mapping function Φ(m) with the following compo-
nents:

• the values θm assigned to all random parameters of shape op-
erations ShapeOpi used to derive m (In a recursive grammar,
we combine the parameters of all recursive rules up to a pre-
defined level of recursion.)

• the number of times each shape label (∈ SYM ) occurs in the
derivation tree

• the number of times a path occurs in the derivation tree.

Since there can be a large number of uniquely identifiable paths, we
need to select a useful subset of such paths. We make the important
observation that rule sequences of different lengths have varying
discriminating power. While shorter sequences are capable of dis-
tinguishing models via the presence of more general properties (e.g.
an orange box versus an orange cylinder), longer sequences sepa-
rate more specific models (e.g. an orange box on the bottom versus
an orange box on top). After analyzing many useful preference
functions, we concluded that most basic concepts can be explained
by short paths. Therefore, we start out using only paths of up to
length k. We then gradually add longer paths as features if the cur-
rent feature set becomes incapable of discriminating shapes that are
assigned different preference scores by the user or the user requests
more complex features.

There are several details to consider. First, some rules have
no discriminative information. For example, in the toy gram-
mar, if rule id4 is executed, the child shape will always be re-
placed with rule id5. We define the effective length of a path
by discarding these non-informative rules. For example, the path
(〈id4, 1〉, 〈id5, 1〉, 〈id6, 1〉) has length 3, but effective length 2
since id5 is not counted. We therefore categorize paths by their ef-
fective length instead of length. Second, since superfluous features
increase the chance of overfitting, we typically start out setting path
length k = 1. In Fig. 4 we show the extraction of selected features
from a derivation tree.
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Figure 5: A factorized preference function for the toy grammar.
Two factors are trained separately and later combined to obtain the
overall preference function. The factors are described in the text.

5.2 Preference function factorization

In our system we allow the user to either model a single global
preference function or to model the preference function as a product
of individual preference functions, called factors. The idea of using
multiple preference functions is that the user might want to specify
preferences about particular aspects of the models instead of the
models as a whole. Examples for factors would be the preference
for certain materials, roof shapes, mass models, or window styles.
A similar concept, visual attributes, has been employed in computer
vision for various tasks such as object recognition [Farhadi et al.
2009].

As an example, consider the following two factors for the toy
grammar from Sec. 3.2. 1) Color: The user prefers models that
have the same color for the bottom and the top mesh with pref-
erence 100 for orange and 50 for green and blue. 2) Geometry:
The user is interested in mass models where the bottom mesh is
a box with preference 100, a cylinder with preference 50, and a
star with preference 0. In Fig. 5 we show preference scores for
the individual preference functions (factors) as well as their com-
bination. A factor can involve one or multiple features. Most im-
portantly, in most cases the sets of features necessary to evaluate
different factors are not identical. This is what makes learning
with individual factors more efficient compared to specifying a sin-
gle preference function. Specifically, let m be a procedural shape
which can be mapped into a D-dimensional feature space X by
Φ(m) = x = [x1, x2, . . . xD]T (in the rest of the paper we will
use m and x interchangeably). We model the user preference func-
tion, u(m) = u(x), in this space as the product of K factors:

u(x) =

K∏
i=1

ui(x). (3)

To train a factor ui, the user provides preference scores for a set
of models, considering only the corresponding semantic aspects of
that factor. We then interpolate these scores to the rest of the shape
space. We accomplish this task by using a kernel-based Bayesian
regression technique called Gaussian Process Regression (GPR).

5.3 Gaussian Process Regression

GPR assumes a Gaussian Process prior over the prefer-
ence function ui. Thus, any finite set of n observations

[ui(m1), . . . , ui(mn)]T can be considered as an n-dimensional
point sampled from an n-variate Gaussian distribution. This
method can work well with small training sets, which is necessary
for our active learning framework where we expect reasonable re-
sults starting from the first iteration. For a more detailed discus-
sion of GPR, we refer the reader to the work of Rasmussen and
Williams [2005].

Similar to parameterizing a Gaussian distribution by its mean and
the covariance matrix, a Gaussian Process prior over ui is specified
by a mean function indicating the prior bias of ui and a kernel func-
tion k(m,m′) which specifies how similar ui(m) and ui(m′) are.
In our framework, we assume a zero-mean Gaussian Process prior
and learn the kernel function from user input. This initially assumes
that all models are not wanted, an assumption that was successfully
employed in similar contexts, e.g. music ranking [Platt et al. 2001].

Prediction. Given a set of n models m = [m1,m2, . . . ,mn]T

and the corresponding user preference scores, ui =
[ui(m1), ui(m2), . . . , ui(mn)]T , our goal is to predict the
preference ui(m∗) of any other model m∗.

Assuming ui(m) has a zero-mean Gaussian Process prior with the
kernel function k(m,m′), [ui, ui(m∗)]T has a joint (n+1)-variate
zero mean Gaussian distribution with the following covariance ma-
trix:

Cn+1 =


k(m1,m1) . . . k(m1,mn) k(m1,m

∗)
...

k(mn,m1) . . . k(mn,mn) k(mn,m
∗)

k(m∗,m1) . . . k(m∗,mn) k(m∗,m∗)

 .
The conditional distribution p(ui(m∗)|ui) is also a Gaussian dis-
tribution, which leads to a closed form solution for ui(m∗) defined
at the mean of this distribution as:

ui(m∗) = kTC−1
n ui, (4)

where Cn is the top-left n× n block of Cn+1 and

k =

k(m1,m
∗)

...
k(mN ,m

∗)

 .
In addition to predicting ui(m∗), GPR also provides the prediction
uncertainty which measures the confidence of the prediction. This
uncertainty is defined as the variance of p(ui(m∗)|ui) and calcu-
lated as follows:

σ2(m∗) = k(m∗,m∗)− kTC−1
n k. (5)

We utilize the variance values in our sampling strategy based on
prediction uncertainty (see Sec. 4) to determine the models pre-
sented to the user.

Kernel function. Given a kernel function, we interpolate the user
preference scores from a set of shapes to the procedural space us-
ing GPR. The choice of the kernel function heavily influences the
results of this regression process. Instead of using a fixed kernel
function, we propose to use a family of parametrized kernel func-
tions and learn the kernel parameters from user input.

To encode the similarity between procedural models m and m′,
we use an anisotropic kernel function k defined over the D-
dimensional feature space X as:

k(m,m′) = θ0 exp

(
− 1

2

D∑
d=1

θd(xd − x′d)2

)
+ β−1δmm′ ,
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Figure 6: Auto-relevance detection (ARD). We assign preference
scores for the 16 models on the left to train the “Color” factor of
the toy grammar (Sec. 5.2). Then we take the green box model high-
lighted by a red rectangle and create a lot of variations by chang-
ing the heights h1 and h2. The plots on the right show the predicted
preference scores for h1 and h2 varying from 1 to 5. The preference
scores learned with ARD are shown in orange and without ARD in
cyan. As the orange lines remain almost constant when h1 and h2

change, this suggests that those two parameters are irrelevant to
the preference scores.

where xd and x′d are the features of m and m′ respectively.
β−1δmm′ is a small added noise to ensure positive-definite covari-
ance matrix where δmm′ is the Kronecker delta. The kernel hy-
perparameters θd, d ∈ [1, D] are adapted every time a new user
preference score is specified. They are feature weights indicating
the relevance of the corresponding features. Intuitively, features
with small weights do not have a high influence on the preference
scores. We learn these parameters by automatic relevance detection
via maximizing the likelihood of the training data as explained next.

Automatic relevance detection. Typically, the influence of a
feature depends on the preference function a user wants to model.
Thus, instead of assigning a fixed θd to each feature, we adapt the
hyperparameters of the kernel function based on user input. Addi-
tionally, our goal is to discard the irrelevant features by assigning
them a 0-weight. We achieve this goal by optimizing for the hyper-
parameters θ = (θ0, θ1, . . . θD) that maximize the log likelihood
of the training samples:

log p(ui|θ,m) = −1

2
log |Cn| −

1

2
uiTC−1

n ui − n

2
log(2π).

In order to avoid overfitting, we add a Lasso regularization term and
minimize the following energy function:

E(θ) = − log p(ui|θ,m) + λ

D∑
d=1

|θd|.

We define the hyperparameters to be non-negative, leading to
|θd| = θd. Instead of defining constraints to avoid negative θd, we
optimize for log(θd) using the Conjugate Gradient method. The
additional Lasso term also favors as few non-zero hyperparameters
as possible resulting in the assignment of 0-weights to irrelevant
features.

When training two attributes of the toy grammar (see Sec. 5.2), the
block heights (h1 and h2) are irrelevant to the preference scores.
This can be detected by our framework, as illustrated in Fig. 6.

6 Generating Models According to a PDF

After learning the preference function u(m), the next step is to
generate procedural models with a pdf proportional to u(m). We
provide three options for this task including 1) Parameter learning:
modifying the grammar parameters without changing the rule struc-
ture. 2) Structure learning: generating a new context-free grammar
by changing both rule structure and rule parameters. 3) Rejection
sampling: standard rejection sampling as a post-process on gener-
ated models.

Parameter learning is very simple, but not very flexible. Thus the
learned pdf does not match the target pdf well in most cases. Rejec-
tion sampling produces results exactly according to the target pdf,
but it is slow and not compatible with existing grammar derivation
engines. Structure learning is the default solution of our frame-
work. It approximates u(m) well and sampling can be done by the
computed context-free grammar directly.

Parameter learning. This approach keeps the rule structure of
the input grammar and only modifies rule parameters, specifically
rule probabilities. We use the standard histogram-based estima-
tion of rule probabilities of probabilistic context-free grammars
(c.f. [Johnson 1998]). This naive solution does not perform well
as shown in Table 3. The main problem is that it ignores the depen-
dency between rule choices. For example, the choice of table bases
may depend on how many legs this table has.

Structure learning. We propose this second option to deal with
the aforementioned drawback. We use a splitting operation to split
the original grammar and then train a mixture of grammars. While
this generates a context-free grammar with more rules, it gives
us the flexibility to encode conditional dependencies between rule
choices.

We propose to use a splitting operation that is inspired by the con-
cept of parent annotation in natural language processing [Johnson
1998]. The splitting operation splits a symbol in the original gram-
mar into multiple different symbols by indexing it with the par-
ent edge labels (see Sec. 5.1). The splitting operation therefore
changes rules where the symbol appears on the right hand side and
it duplicates all rules having the original symbol as left hand side.
For example, in Fig. 7 a V-shape block at the ground level of the
Skyscraper grammar can obtain a different symbol from a V-shape
block in the upper level. The splitting operation does not change the
shape space, but it increases the degrees of freedom to manipulate
its pdf. Recursively splitting every symbol in the original grammar
leads to an exponential growth in the number of rules. Thus, we
only split the symbols involved in the relevant features detected by
the learning process in Sec. 5.3.

After performing the described splitting operations we train a new
grammarG′ as the combination ofK component grammarsG′i. (K
is determined by the algorithm described later.) In this mixture, a
component grammar G′i is selected with a probability αi:

αi : G′ → G′i.

We start with a training set T = (m1,m2, . . .mN ) sampled from
the target pdf u(m) (using rejection sampling). We then find a
set of hyperparameters η consisting of αi and the grammar pa-
rameters of G′i to maximize the log likelihood of the training set
L(T : G′) =

∑N
i=1 log p(mi|G′). The value of p(m|G′) for gen-

erating a model m using G′ is a weighted combination of the pdfs



from all component grammars G′i:

p(m|G′) =

K∑
i=1

αip(m|G′i).

Similar to learning Gaussian Mixture Models (GMMs), we opti-
mize for η using an Expectation-Maximization approach. Both E-
step and M-step (see Appx. A) are identical to those in the GMM
case, except that in the M-step, we train grammar parameters in-
stead of Gaussian parameters. To initialize the grammar mixture,
we cluster the training set T using the kernel function learned pre-
viously, and train one grammar for each cluster using the afore-
mentioned histogram-based method. To compute the clustering, we
build a neighborhood graph, where two models are connected if
their pairwise difference is smaller than a threshold. The pairwise
difference between models is derived from the learned kernel. The
threshold is set to 0.001 of the maximum difference. We then iter-
atively look for the model with the most neighbors, put it together
will all its neighbors in a new cluster, and remove all elements of
the new cluster from the graph.

Splitting symbols and clustering the training set significantly re-
duces the number of rules in our design scenarios. Nonetheless, for
an artificially designed worst case preference function, an exponen-
tial growth of rules (see Sec. 3.2) cannot be avoided.

Rejection sampling. This algorithm does not compute a new
grammar, but instead modifies the sampling as a post-process. For
each generated model m, we calculate its generation pdf p(m) by
multiplying the associated rule probabilities and the pdf of parame-
ters of shape operations (e.g. floor height). This model is accepted
with the rate u(m)

Cp(m)
, where the constant C is the upper bound of

u(m)
p(m)

found empirically by sampling a large amount of models in
a preprocessing step. Since rejection sampling is a post-process, it
can be used in conjunction with the original grammar, as well as
grammars generated by parameter learning or structure learning.

7 Evaluation

Example grammars. We designed four grammars for our tests:
Furniture, Building, Skyscraper, and Airplane. To compare to pre-
vious work we also use the Weber & Penn parametric tree model
implemented in Arbaro2. Table 1 shows some statistics describing
the complexity of the grammars and the parametric model.

Implementation. Our framework is implemented in C++ and we
used a MacBook Pro with Intel i7 2.6 Ghz CPU for our tests.

Design scenarios. We generate a set of design scenarios with
varying complexity shown in Table 2. For each scenario, we define
the ground truth pdf by labeling a pre-generated set of up to 5000

2http://arbaro.sourceforge.net

NΘ NSYM NP

Furniture 50 38 75
Building 26 80 122

Skyscraper 39 27 61
Airplane 8 44 26

Tree 73 N/A N/A

Table 1: The table shows the number of parameters (NΘ), the num-
ber of symbols (NSYM ) and the number of rules (NP ) for our input
grammars and the parametric tree model.
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Figure 7: (a) Random samples of the Skyscraper grammar. (b)
Design scenario S1. (c) Design scenario S2. See Table 2 for the
descriptions of S1 and S2. While S1 can be achieved using our
initial set of features (random parameters of the shape operations,
counts of the occurrence of shape labels in the derivation tree, and
counts of paths, with effective length 1 in the derivation tree), S2
requires paths of length 2 as features. Jensen-Shannon divergence
(S1 - blue, S2 - orange) are shown to evaluate the goodness of fit.

models. In order to validate our results, we use Jensen-Shannon di-
vergence (also known as information radius) [Manning and Schütze
1999] to compare the density functions designed using our interface
and the ground truth density functions. We additionally measure
the correlation between these two density functions and provide the
correlation scores in the supplementary material. These values are
computed based on the pre-sampled models.

We show the outputs of our design scenarios for the Skyscraper
grammar in Fig. 7, the Airplane grammar in Fig. 8, and the Fur-
niture and the Building grammar in Fig. 16. Each design task is
represented by a 4 × 4 grid of models sampled from the designed
density function. Bigger grids of size 10 × 10 can be found in the
supplementary material.

Evaluation of the user interface. We provide multiple tests to
evaluate the performance of our framework. In the first test, we
evaluate the four different sampling strategies (see Sec. 4) used to
sample the models to display. The results in Fig. 9 (a-b) empirically
show that sampling from the current pdf gives good convergence
rate and we choose this as the default strategy. We next evaluate the
effect of the batch size, i.e. the number of models a user ranks (see
Fig. 9 (c-d)). In each step, we show two grids of size n × n, one
sampled from the current pdf and the other from the complementary
pdf, query for the preference scores, recompute the pdf and then re-
sample the models to show in the grids. There are two aspects we
consider when choosing a batch size. First, the learning efficiency:
We can see from our experiments that smaller batch sizes lead to
more informative samples. Second, the user interface speed: in our
interface, the user can quickly rank multiple models without recom-
puting the pdf (using a combination of sorting and selection). This
favors larger batch sizes. Considering both aspects, we propose that
showing two 4× 4 grids to the user is a good trade-off. In the third
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Figure 8: (a) Random samples of the Airplane grammar. (b) De-
sign scenario A1 (see Table 2). The JS divergence plot compares
our method (orange) and Talton et al.’s method (cyan).

test, we show the benefit of factorizing the preference function. We
compare a factorized preference function and non-factorized prefer-
ence function in Fig. 12. Using a factorized preference score leads
to much better convergence. We also present an informal user study
to test the speed and accuracy achieved with our interface in addi-
tional materials.

Evaluation of the feature design. In Fig. 10 we evaluate the
parameter k (path length) (see Sec. 5.1) on the Furniture grammar

Preference scores
F1 Valid tables with one leg (70), two legs (20) and four legs (10),

non-standing tables (0)
F2 Round top & light wood tables (60), rectangular top & dark

wood tables (40), others (0)
F3 Valid tables with steel materials (70) and wooden materials (30),

non-standing tables (0)
F4 Valid tables with round top (70) and rectangular top (30), non-

standing tables (0)
B1 Building styles: office (40), R1 (20), R2 (20), R3 (20), mixed

styles (0)
B2 Big building (5-6 floors)& L-shape (50), small building (2-3

floors) & rectangular shape (50), others (0)
B3 Building shapes: L-shape (60), rectangular shape (40), others (0)
B4 Building size: big building (80), small building (20), others (0)
T1 Plausible tree (100), non-plausible tree (0)
S1 Skyscrapers with all rectangular blocks (60), V-blocks (20),

cylindrical blocks (20), mixture of block types (0)
S2 Skyscrapers with rectangular base (100), cylindrical base (50),

V-base (0)
A1 Old-style airplanes (Biplane or Fokker) (100), modern airplanes

(commercial, transport and jet fighter) (50), airplanes with non-
matching components (0)

Table 2: Design scenarios for Furniture (Fi), Building (Bi),
Skyscraper (Si), Airplane (A1) and Weber & Penn trees (T1). Valid
tables are tables that stand by themselves. For aesthetic reasons,
we also require legs and bases to match. Building styles are defined
as follows. Office: glass windows, glass door and flat roof. R1: res-
idential blocks with bright wall colors, Paris-like windows, ground
floor shops. R2: residential blocks with simple windows and doors.
R3: residential blocks with old-style windows and doors. Example
models with their preference scores are given in the supplementary
material.
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Figure 9: (a) - (b) Comparison of different sampling strategies for
the factor F1 (a) and B1 (b): sampling randomly (red), uniformly
(green), by prediction uncertainty (orange) and based on the cur-
rent pdf (cyan). (c) - (d) Comparison of sampling batch size for
the factor F1 (c) and B1 (d) when using two grids sampled from the
current pdf and the complementary pdf of size n×n. Note that these
curves start at different points due to different numbers of training
data inserted in the first iteration.

(Fig. 10a, scenario F4) and the Skyscraper grammar (Fig. 10b, sce-
nario S2). For each scenario, we obtain 4 sets of features asso-
ciated with paths in the production trees with maximum effective
lengths of 1, 2, 3 and 4. While the convergence does not vary sig-
nificantly in F4, the set of features with maximum length 4 (black)
slows down the convergence in comparison to our proposed scheme
(maximum length 2, orange). Note that the feature set of maximum
length 1 (red) is not sufficient to learn the scenario S2.

Evaluation of framework parameters. We also show an eval-
uation of the noise level of the kernel function (Fig. 11a) and the
weight for Lasso regularization (Fig. 11b). We empirically select
the noise level of 0.01 and a weight of 0.1 for Lasso regularization.
Our results are generated based on these parameters.
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k = 2 (136 features)
k = 3 (178 features)
k = 4 (196 features)

k = 1 (65 features)
k = 2 (102 features)
k = 3 (174 features)
k = 4 (306 features)

k = 1 (78 features)

Figure 10: Convergence of the pdf learning process when using
sets of features associated with different maximum effective path
lengths. We evaluate the convergence rate on the Furniture gram-
mar (scenario F4, (a)) and the Skyscraper grammar (scenario S2,
(b)). The feature sets with maximum effective path length 1 are
shown in red, length 2 in orange, length 3 in cyan and length 4 in
black.
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Figure 11: (a) Evaluation of noise levels of the kernel function on
the design scenario F1. Excessive noise (black) or limited noise
(red) both result in undesirable convergence rate. (b) Evaluation
of the lasso regularization factor λ on the design scenario B3. A
suitable amount of lasso regularization improves the convergence
in comparison to no regularization (red).

Evaluation of generation strategies. Finally, in Table 3, we
evaluate the performance of parameter learning and structure learn-
ing by comparing the JS divergence scores of their learned pdfs with
the target pdf for all design scenarios. We also provide the correla-
tion scores of the pdfs in the supplementary material. By modifying
only the grammar parameters, parameter learning cannot approx-
imate the target pdf well (around 0.20 divergence score). Much
better results can be achieved with structure learning. One excep-
tion is B3, where the design scenario involves only one rule, which
is simple enough to achieve by parameter learning. Nonetheless,
structure learning performs equivalently well. To separately evalu-
ate the effect of the split operation in structure learning, we train a
mixture of original grammars (without any previous splitting oper-
ations). We perform this test on the design scenario S2 and observe
a JS score of 0.18096 compared to 0.0816 for a full implementa-
tion of structure learning. This low-quality output is expected as
S2 requires paths of effective length 2 as features to describe the
geometry of the ground block.
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Figure 12: (a) Benefit of factorizing the preference function. Train-
ing two factors F3 and F4 separately (orange) gives a better con-
vergence than training their combination (cyan). (b - d) Our
method (orange) converges faster than Talton et al.’s method (cyan)
in the Furniture (F1) (b), Building (B1) (c) and Skyscraper (S1) (d)
grammars.

F1 F2 F3 F4 S1 S2
Original 0.32824 0.44492 0.28037 0.28969 0.24646 0.31335
P-Learning 0.21976 0.25386 0.16915 0.18537 0.08854 0.19631
S-Learning 0.06850 0.06678 0.07820 0.08400 0.00090 0.08162

B1 B2 B3 B4 A1
Original 0.34923 0.34829 0.09858 0.11973 0.21040
P-Learning 0.10541 0.28129 0.00710 0.12177 0.16748
S-Learning 0.06661 0.08254 0.00712 0.07774 0.06269

Table 3: JS divergence score w.r.t the target pdf to compare param-
eter learning (P-Learning) and structure learning (S-Learning).
The design scenarios (F1-F4, S1, S2, B1-B4, A1) are described in
Table 2. Structure learning achieves significantly lower divergence
scores. The JS scores from the original grammars (Original) are
also included as a baseline for comparison.

Comparison to kernel density estimation. Fig. 15 compares
our framework to a kernel density estimation method based on Tal-
ton et al. [2009] using the same number of training examples. We
modify the original kernel density estimation used by Talton et al.
to account for models having different preference scores by using
these scores as weights. This reduces the amount of training exam-
ples needed by the original method. Still, we can observe a better
convergence using our framework. In Fig. 12 (b-d) and Fig. 8 we
compare the convergence of our method and Talton et al.’s method
for different design scenarios of our grammars. In the Furniture
grammar (F1), our framework needs 245 models to achieve a di-
vergence score of 0.01 while the density estimation requires 438
models. The convergence rate is clearly better with our method
in the Building grammar (B1), the Skyscraper grammar (S1), and
the Airplane grammar (A1). One practical difference between our
framework and Talton et al. is that we can directly give feedback
about models we do not want (by giving a preference score of 0).

8 Limitation and Future Work

Limitations. There are several limitations of our framework.
First, our system starts sampling models using the pdf of the orig-
inal grammar. As a result, models having very low initial proba-
bility are unlikely to be sampled. Second, in some design scenarios
which involve discontinuities in the preference scores of continuous
variables, our framework cannot learn the pdfs exactly with a finite
number of training samples. Two examples are given in Fig. 13.
This is a typical problem in Gaussian Process Regression as one
cannot represent exactly a discontinuity using a finite number of
gaussians. Nonetheless, our framework can learn these scenarios
when the variables are discretized. The next limitation concerns
the convergence of complex design scenarios involving features as-
sociated with long tree paths. Fig. 14 shows a slow convergence
rate associated with a new design scenario of the Skyscraper gram-
mar which requires a large feature set (maximum path length 4).
Finally, as our features only contain branches in the production
tree, our framework cannot handle complicated scenarios which re-
quire subtrees of the production tree as features. For example, in
the Skyscraper grammar, one may prefer skyscrapers with a black
cylinder block above a green box block but not a blue box block. As
window colors and block geometries are in different branches, fea-
ture sets with only tree branches are not sufficient for this situation.
Simply adding subtree features to our framework might not be a so-
lution as this increases the number of features exponentially. This
example also illustrates the fact that the success of the regression
depends on how the initial grammar is written. We leave further
improvement in our feature design for future research.

Future work. In future work we would like to extend our ap-
proach to the analysis of large shape repositories. While current
approaches mainly use probabilistic models to encode shape vari-
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Figure 13: We compare the learning accuracy of scenarios asso-
ciated with continuous variables (orange) and discrete variables
(with 100 discrete values each, cyan). We generate a box with three
variables width, depth and height which take random values from
1.0 to 10.0. In (a), the scenario involves one variable (all boxes
with height < 5.0 are preferred). In (b), the scenario requires a
non-linear combination of these three variables (all boxes with vol-
ume < 125.0 are preferred). For continuous variables, it will re-
quire infinite number of training samples to learn the pdfs exactly.
Nonetheless, our framework can learn these two scenarios with dis-
crete variables.
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Figure 14: We design an additional scenario for the Skyscraper
grammar which requires the feature set with maximum path length
4. In this scenario only skyscrapers with 3 blocks are preferred and
the preference score depends on the window color of the top block,
in particular, skyscrapers with black windows in the top block re-
ceive a score of 50, green windows 30, blue windows 20 and other
colors 0. The slow convergence is observed due to the size of the
feature set.

ations (e.g. [Kalogerakis et al. 2012]), we believe that it is more
useful to use grammars and probabilistic models in combination.
Grammars are great to encode variations in model topology (i.e.
how parts are combined) and probabilistic models are great to en-
code part variations and part compatibility. Further, we would like
to extend our framework to learn spatial distributions. For example,
we could try to learn the distribution of residential, commercial, and
industrial areas in a city or the distribution of tree species in a forest.

9 Conclusion

We presented a framework that enables a user to interactively de-
sign a probability density function for a shape grammar and to gen-
erate models according to the designed pdf. We thereby extended
existing exploratory modeling tools that are suitable to select a sin-
gle model from a shape space to modeling a distribution of shapes.
We proposed a user interface to display, sort, and sample models to
enable a user to quickly assign preference scores. To propagate user
assigned preference scores to the complete procedural shape space,
we proposed a novel kernel function to encode the similarity be-
tween two procedural models. This kernel function is then used for
Gaussian process regression with auto-relevance detection and l1
regularization. Finally, we introduced a structure learning method
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Figure 15: (a) Weber & Penn trees with random parameters are
often undesirable (red). Both Kernel Density Estimation [Talton
et al. 2009](b) and our method (c) can bias the model distribution
towards good tree samples. In verification with the ground truth
using Jensen-Shannon divergence, our method (orange) converges
faster than Talton et al.’s method (cyan).

to automatically generate a new context-free grammar which ap-
proximates the learned pdf well. Our approach can benefit both
non-expert and professional users to more effectively design with
procedural and parametric models.
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A Training a Mixture of Grammars

E-step We find the affinity ofG′k to each modelmn. This affinity
measures how likely mn has been generated from G′k

wkn = p(G′k|mn,η) =
αkp(mn|G′k)∑K
i=1 αip(mn|G′i)

.

M-step The sum of affinity of each component grammar Nk =∑N
n=1 wkn is the effective number of models that have been gener-

ated from G′k. We can then update the mixture weights as follows:

αnew
k =

Nk

N
.

To update the rule probabilities of G′k, we count the number of
appearance of each rule in every modelmn, weighted by the affinity
wkn and then normalize the rule counts as in the normal histogram-
based approach.
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Figure 16: Using our framework, a user can design different probability density functions to bias the procedural generation towards models
with desired attributes (factors). These factors can then be mixed to obtain a combined density function. We show 4 × 4 samples for the
initial distribution (random), the factors, and the factor combinations. See Table 2 for the descriptions of the factors. The designed pdfs are
compared with ground truth using Jensen-Shannon divergence. Color codes: F1, B1 - orange, F2, B2 - brown, F3, B3 - red, F4, B4 - green.

References

AVERKIOU, M., KIM, V., ZHENG, Y., AND MITRA, N. J. 2014.
ShapeSynth: Parameterizing Model Collections for Coupled
Shape Exploration and Synthesis. Comp. Graph. Forum (Eu-
rographics) 33, 2, 125–134.

BAO, F., YAN, D.-M., MITRA, N. J., AND WONKA, P. 2013.
Generating and Exploring Good Building Layouts. ACM Trans.
Graph. (Siggraph) 32, 4, 122.
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