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ABSTRACT
Investigations into brain connectivity aim to recover net-
works of brain regions connected by anatomical tracts or by
functional associations. The inference of brain networks has
recently attracted much interest due to the increasing avail-
ability of high-resolution brain imaging data. Sparse inverse
covariance estimation with lasso and group lasso penalty has
been demonstrated to be a powerful approach to discover
brain networks. Motivated by the hierarchical structure of
the brain networks, we consider the problem of estimating
a graphical model with tree-structural regularization in this
paper. The regularization encourages the graphical model
to exhibit a brain-like structure. Specifically, in this hier-
archical structure, hundreds of thousands of voxels serve as
the leaf nodes of the tree. A node in the intermediate layer
represents a region formed by voxels in the subtree rooted
at that node. The whole brain is considered as the root of
the tree. We propose to apply the tree-structural regular-
ized graphical model to estimate the mouse brain network.
However, the dimensionality of whole-brain data, usually on
the order of hundreds of thousands, poses significant compu-
tational challenges. Efficient algorithms that are capable of
estimating networks from high-dimensional data are highly
desired. To address the computational challenge, we de-
velop a screening rule which can quickly identify many zero
blocks in the estimated graphical model, thereby dramat-
ically reducing the computational cost of solving the pro-
posed model. It is based on a novel insight on the relation-
ship between screening and the so-called proximal operator
that we first establish in this paper. We perform experi-
ments on both synthetic data and real data from the Allen
Developing Mouse Brain Atlas; results demonstrate the ef-
fectiveness and efficiency of the proposed approach.
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1. INTRODUCTION
The rich behavior of numerous complex systems is rooted

in the underlying networks governing element interactions.
For example, cells are best described as networks of molecules
connected by chemical reactions; brains are commonly rep-
resented as networks comprising a set of neurons intercon-
nected by their communication pathways; our society is char-
acterized by a network of individuals connected by social
relationships. In reality, it is usually the behaviors of in-
dividual elements, rather than their interactions, that are
directly measurable. This gives rise to the central problem
of how to identify system interaction structures by reason-
ing backwards from the observed behaviors of the individual
elements, a process known as network modeling.

Undirected graphical models explore relationships among
a set of random variables through their joint distribution.
The estimation of undirected graphical models has applica-
tions in many domains, such as biology and medicine [10,
12, 33, 27]. One instance is the analysis of gene expression
data. As shown in many biological studies, genes tend to
work in groups based on their biological functions, and there
exist some regulatory relationships between genes [6]. Such
biological knowledge can be represented as a graph, where
nodes are the genes, and edges describe the regulatory rela-
tionships. Graphical models provide a useful tool for mod-
eling these relationships, and can be used to explore gene
interactions. One of the most widely used graphical models
is the Gaussian graphical model (GGM). In the GGM, the
variables are assumed to follow a Gaussian distribution [4,
35]. Then the problem of learning a graphical model is equiv-
alent to estimating the inverse of the covariance matrix (pre-



cision matrix), since the nonzero off-diagonal elements of the
precision matrix represent edges in the graph [4, 35].
The main challenge of estimating a sparse precision ma-

trix for problems with a large number of nodes (variables) is
its intensive computation. Witten et al. [30] and Mazumder
and Hastie [21] independently derived a necessary and suffi-
cient condition for the solution of a single graphical lasso to
be block diagonal (subject to some rearrangement of vari-
ables). This can be used as a simple screening test to identify
the associated blocks, and the original problem can thus be
decomposed into a group of smaller sized but independent
problems corresponding to these blocks. When the num-
ber of blocks is large, it can achieve massive computational
speedup. However, these formulations only assume that the
graph is sparse. In many applications, domain structural
knowledge exists and can potentially be exploited to im-
prove the learning performance; in this case, structural reg-
ularization can be used to improve the estimation of graph-
ical model. However, due to the complexity of structural
regularization, it is challenging to derive screening rules for
general structural regularization.
To attack the above central challenge, we derive a screen-

ing rule for structural Graphical Lasso in this paper. Specifi-
cally, we show that the derivation of the screening rule is crit-
ically dependent on the so-called “proximal operator” asso-
ciated with the structural regularization, e.g., Lasso, group
Lasso, or tree Lasso penalty. In recent years, tremendous
efforts have been devoted to the efficient computation of the
proximal operators, which plays a central role in structured
sparse learning [3, 34]. In many cases, the proximal oper-
ators, such as Lasso penalty, group lasso penalty, and tree
group penalty, have closed form solutions, thereby leading to
very efficient computation [17]. One of our major contribu-
tions in this work is to establish a bridge between the com-
putation of the proximal operator associated with a struc-
tural regularization and the derivation of a screening rule for
structural Graphical Lasso. To the best of our knowledge,
our work represents the first attempt to construct screen-
ing rules for the Structural Graphical Lasso based on
general structural regularization.
The major contributions of this work are summarized as

follows:

• We propose a structural Graphical Lasso formulation
based on a general structural regularization imposed
on the nodes, e.g., a tree structure. The proposed
formulation estimates a sparse precision matrix which
is encouraged to satisfy certain structures.

• We derive a screening rule to identify a block diago-
nal structure of the resulting network. The original
large-size precision matrix can thus be decomposed
into a set of smaller sized blocks. Such decompo-
sition can potentially lead to massive computational
speedup. One of our key technical contributions of this
work is the establishment of the intrinsic relationship
between screening rules and proximal operators.

• The proposed screening is safe in the sense the screen-
ing does not affect the final solution. In addition, the
proposed screening only relies on the data and the pa-
rameters, thus it can be combined with any existing
algorithms to reduce the computational cost.

• We evaluate the proposed screening rule and the pro-
posed model using both synthetic data and real data
from the Allen Developing Mouse Brain Atlas. Results
demonstrate the effectiveness and efficiency of the pro-
posed methods.

Notation: In this paper, ℜ stands for the set of all real
numbers, ℜn denotes the n-dimensional Euclidean space,
and the set of all m×n matrices with real entries is denoted
by ℜm×n. All matrices are presented in bold format. The
space of symmetric matrices is denoted by Sn. If X ∈ Sn is
positive semidefinite (resp. definite), we write X ⪰ 0 (resp.
X ≻ 0). The cone of positive semidefinite matrices in Sn

is denoted by Sn
+. Given matrices X and Y in ℜm×n, the

standard inner product is defined by ⟨X,Y⟩ := tr(XYT ),
where tr(·) denotes the trace of a matrix. The determinant
of a real symmetric matrix X is denoted by det(X). Given
a matrix X ∈ ℜn×n, diag(X) denotes the vector formed by
the diagonal of X, i.e., diag(X)i = Xii for i = 1, . . . , n.

Organization: The rest of this paper is organized as fol-
lows. We introduce the structural graphical lasso formula-
tion as well as the screening rule in Section 2. The exper-
imental results for both synthetic data and real data are
shown in Section 3. Related work is discussed in Section 4.
We conclude the paper in Section 5.

2. STRUCTURAL GRAPHICAL LASSO
Suppose we are given a data setX ∈ ℜn×p with n samples,

and p features (or variables). The n samples are indepen-
dently and identically distributed with a p-variate Gaussian
distribution with zero mean and positive definite covariance
matrix Σ. Even if all features are correlated, there are
usually many conditional independences among these fea-
tures. In other words, a sparse precision matrix Θ = Σ−1 is
of interest in most cases. This Gaussian graphical model
(GMM) is also referred to as Gaussian Markov Random
Field (GMRF). The negative log likelihood for the data X
takes the form of

L(Θ) := − log det(Θ) + tr(SΘ), (1)

where S is the sample covariance matrix given by S = 1
n
XTX.

Minimizing (1) leads to the maximum likelihood estimation
(MLE) Θ∗ = S−1. However, there are some issues with
MLE. In particular, it fails in the high-dimensional setting
(n < p), where MLE Θ∗ does not exist due to the singu-
larity of S. To handle this issue, regularization is usually
employed, resulting in penalized maximum likelihood esti-
mation. For applications with prior domain knowledge, dif-
ferent regularization terms can be employed to encourage the
estimated model to satisfy the desired structural property.
For example, a common assumption is that the graphical
model is sparse. In this case, the ℓ1 regularization has been
employed to encourage sparsity [8]. In this paper, we con-
sider the general structural graphical lasso, which integrates
the structural regularization as follows:

min
Θ≻0

− log det(Θ) + tr(SΘ) + ϕ(Θ), (2)

where ϕ(Θ) is the convex structural regularization. We refer
to problem (2) as structural graphical lasso (SGL). Exam-
ples include but are not limited to

• Sparsity: ϕ(Θ) = λ∥Θ∥1



c1 c2

Figure 1: Illustration of two precision matrices (bot-
tom) whose nodes are in different order correspond
to the same graph with two connected components
(top). The white color in the precision matrices rep-
resents a zero entry.

Figure 2: Illustration of the brain2. Yellow: frontal
lobe; green: parietal lobe; red: temporal lobe; blue:
occipital lobe. Number represents brain regions
within lobes.

• Group sparsity: ϕ(Θ) = λ
∑

i,j ∥ΘGi,Gj∥F .

The penalized log likelihood function with a convex reg-
ularizer, i.e., problem (2), is strictly convex, however, the
minimum of problem (2) may not be achievable. This is
usually dependent on the property of the sample covariance
matrix S. For example, diag(S) > 0 is a sufficient condition
for problem (2) to have a unique solution [32] when the ℓ1
regularization exists. For simplicity of presentation, we as-
sume throughout the paper that the minimum of problem
(2) can be achieved, i.e., problem (2) has a unique solution.
The remainder of this section is organized as follows. We

introduce a Tree-Guided Graphical Lasso formulation in Sec-
tion 2.1. In Section 2.2, we present a second-order method
to efficiently solve the proposed model. In addition, we de-
rive a sufficient condition for estimating many zero blocks
in the graph in Section 2.3. Based on this property, we pro-
pose a simple screening rule which significantly reduces the
complexity of the optimization problem, thus improving the
computational efficiency. The proposed screening only relies

2 http://www.umich.edu/~cogneuro/jpg/Brodmann.html

on the data and the parameters, thus it can be combined
with any existing algorithms to reduce the computational
cost. We discuss two special cases in Section 2.4.

2.1 Tree-Guided Graphical Lasso Formulation
In this subsection, we present a hierarchical graphical model

framework where the features exhibit a hierarchical struc-
ture. A motivating example is the estimation of brain net-
works. The brain is a multi-level system, and the brain
network has a native hierarchical structure as shown in Fig-
ure 2: hundreds of thousands of voxels form regions, and
regions form systems.

We employ the tree-structural group regularization to en-
courage the estimated graph to have a hierarchical structure.
Specifically, in this hierarchical structure, hundreds of thou-
sands of voxels serve as the leaf nodes of the tree. A node
in the intermediate layer represents a region formed by vox-
els in the subtree rooted at that node. The whole brain is
considered as the root of the tree. Mathematically, we solve
the following formulation:

min
Θ≻0

− log det(Θ) + tr(SΘ) + ϕ(Θ) (3)

where

ϕ(Θ) =
∑
j

∑
i̸=i′

wj
ii′∥ΘG

j
i ,G

j

i′
∥F + wj

ii∥ΘG
j
i ,G

j
i ,off

∥F

 ,

Gj
i is the i-th group at depth j (the groups of a tree are de-

fined in Definition 1 below; see Figure 3 for an illustration),
Θ

G
j
i ,G

j

i′
denotes the submatrix of Θ consisting of features

in Gj
i , G

j
i′ , and wj

ii′ = wj
i′i is a positive weight for Θ

G
j
i ,G

j

i′
.

Θ.,.,off represents the matrix Θ.,. excluding the diagonal
elements. We do not penalize the diagonal elements of Θ
since Θ is required to be positive definite. For simplicity of
notation, we use Θj

ii′ to represent Θ
G

j
i ,G

j

i′
, and Θj

ii/ to rep-

resent Θ
G

j
i ,G

j
i ,off

. It is clear that Θj
ii′ = (Θj

i′i)
T , thus we

require wj
ii′ = wj

i′i. The regularization ϕ(Θ) encourages the
estimated precision matrix to be tree-structural (see Figure
4 for an example). We formally define a tree structure as
follows:

Definition 1. [18] For an index tree T of depth U , we
let Tu = {G1, . . . , Gni} contain all the nodes corresponding
to depth u, where n0 = 1, G0

1 = {1, . . . ,K} and ni ≥ 1, i =
1, . . . , U . The nodes satisfy the following conditions:

• The nodes from the same depth level have non-overlapping
indices, i.e., Gu

j ∩ Gu
k = ∅, ∀u = 1, . . . , U, j ̸= k, 1 ≤

j, k ̸= ni;

• Let Gu−1
j0 be the parent node of a non-root node Gu

j ,

then Gu
j ⊆ Gu−1

j0 .

2.2 Algorithm
We propose to employ the second-order method to solve

the tree-guided graphical lasso problem in (3) as it has been
shown to be quite efficient for solving the Graphical Lasso
formulation with ℓ1 regularization [11]. Let f(Θ) be the
smooth function in (3) such that

f(Θ) = − log det(Θ) + tr(SΘ).



Figure 3: A sample index tree. Root: G0
1 =

{1, 2, 3, 4, 5, 6, 7, 8}. Depth 1: G1
1 = {1, 2}, G1

2 =
{3, 4, 5, 6}, G1

3 = {7, 8}. Depth 2: G2
1 = {1}, G2

2 = {2},
G2

3 = {3, 4, 5}, G2
4 = {6}, G2

5 = {7}, G2
6 = {8}.
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Figure 4: Illustration of a hierarchical graphical
model. The features exhibit a hierarchical struc-
ture specified by tree groups {Gj

i}. The blue blocks
represent the nonzero blocks in the precision matrix.

(3) can be rewritten as

min
Θ≻0

f(Θ) + ϕ(Θ). (4)

In the second-order method, we solve a “quadratic” model
of (3) at each iteration defined by

min
Θ

1

2
tr(WtDWtD) + tr((S−Wt)D) + ϕ(Θ), (5)

where Wt = Θ−1
t and D = Θ − Θt, and t represents the

t-th Newton iteration.
The subproblem (5) can be solved by non-monotone spec-

tral projected gradient (NSPG) method [31]. When applied
to (5), NSPG needs to solve the proximal subproblem in the
form of

min
Θ

1

2
∥Θ−Gr∥2F + αϕ(Θ), (6)

where

Gr = Θr − α(S− 2Wt +WtΘrWt)

Algorithm 1: Tree-Guided Graphical Lasso (TGL)

Input: S, {Gj
i}, {w

j
ii′}

Output: Θ
1 Initialization: Θ0 = (Diag(S))−1;
2 while Not Converged do
3 Compute the Newton direction D by solving (5)

and (7).
4 Choose Θt+1 by performing the Armijo

backtracking line search along Θt + βD.
5 end
6 return Θt+1;

and r denotes the r-th inner iteration in NSPG. Denote

R = Θr −Θr−1

and

ᾱ = tr(RWtRWt)/∥R∥2F ,

then α is given by

α = max(αmin,min(1/ᾱ, αmax)),

where [αmin, αmax] is a predefined safeguard.
After obtaining the optimal solution of (5) Θ∗, the New-

ton direction D can be computed as

D = Θ∗ −Θt. (7)

Once the Newton direction is obtained, we need to find an
appropriate step size β ∈ (0, 1] to ensure a sufficient reduc-
tion in the objective function in (4). Because of the positive
definite constraint in (4), we need to ensure the next iterate
Θt+1 = Θt + βD to be positive definite. It is not hard to
show that such step size satisfying the above requirements
always exits [11]. Thus, we can adopt the Amrmijo’s back-
tracking line search rule to select a step length β ∈ (0, 1]. We
use the Cholesky decomposition to check the positive defi-
niteness of Θt+1 = Θt+βD. In addition, the log det(Θt+1)
and Θ−1

t+1 can be efficiently computed as a byproduct of the
Cholesky decomposition of Θt+1. The algorithm is summa-
rized in Algorithm 1.

Under the assumption that the subproblem (5) is solved
exactly, the convergence rate of the second-order method is
locally quadratic when the exact Hessian is used [11, 14,
28]. If the subproblem (5) is solved inexactly, the conver-
gence rate of the second method is locally superlinear by
adopting an adaptive stopping criterion in NSPG [14]. Due
to the use of Cholesky decomposition and the need of com-
puting tr(WtDWtD) in (5), the complexity of Algorithm 1
is O(p3).

2.3 Screening
Due to the existence of the log determination, it is com-

putationally expensive to solve the penalized log likelihood
model (3) by applying Algorithm 1 directly. The screening
strategy has commonly been employed to reduce the size of
optimization problems so that a massive computational gain
can be achieved. In this section, we derive a sufficient con-
dition for the solution of SGL to be block diagonal (subject
to some rearrangement of features; see Figure 1 for illus-
tration), thus significantly reducing the complexity of the
problem.



Let C1, . . . , CL be a partition of the p features into L non-
overlapping sets such that

Cl ∩ Cl′ = ∅, ∀l ̸= l′.

We say that the solution Θ̂ of SGL (2) is block diagonal
(subject to some rearrangement of features) with L known

blocks Cl, l = 1, . . . , L if Θ̂ij = Θ̂ji = 0 for i ∈ Cl, j ∈
Cl′ , l ̸= l′. Without loss of generality, we assume that a

block diagonal solution Θ̂ with L blocks Cl, l = 1, . . . , L
takes the form of

Θ̂ =


Θ̂1

. . .

Θ̂L

 , (8)

where Θ̂l is the |Cl| × |Cl| symmetric submatrix of Θ̂ con-
sisting of features in Cl.
Since the elements in off diagonal blocks are zero, the

original optimization problem can thus be reduced to a much
smaller problem restricted to the elements in the diagonal
blocks, resulting in a great computational gain. Our main
result is summarized in the following theorem:

Theorem 1. Suppose Ud+1 = −S, where d is the depth
of the tree structure. For different groups Gj

i at the depth j,
define U j recursively as follows:

Uj
ii′ =

 0 ∥Uj+1
ii′ ∥F ≤ wj

ii′
∥Uj+1

ii′ ∥F−w
j

ii′

∥Uj+1

ii′ ∥F
Uj+1

ii′ ∥Uj+1
ii′ ∥F > wj

ii′
(9)

A sufficient condition for the solution of SGL to be block
diagonal with blocks C1, . . . , CL is that Uj at some layer j
has the same block diagonal structure such that

Uj
ii′ = 0,∀Gj

i ⊆ Cl, G
j
i′ ⊆ Cl′ , l ̸= l′

and there is no group Gj
i across two blocks, that is, there do

not exist x1 ∈ Cl, and x2 ∈ Cl′ , such that {x1, x2} ⊆ Gj
i .

Proof. By the first-order optimality condition, Θ̂ is the
optimal solution of problem (2) if and only if it satisfies

−(Θ̂)−1 + S+ ∂ϕ(Θ̂) = 0. (10)

Suppose that Uj at layer j has the block diagonal struc-
ture C1, . . . , CL such that

Uj
ii′ = 0,∀Gj

i ⊆ Cl, G
j
i′ ⊆ Cl′ , l ̸= l′

and there is no group Gj
i across two blocks. According to

[18], it is not hard to show that Uj is the solution of the
following problem:

min
X

1

2
∥X+ S∥2F + ϕ̃(X), (11)

where

ϕ̃(Θ) =

d∑
k=j

∑
i̸=i′

wk
ii′∥Θk

ii′∥F + wk
ii∥Θk

ii/∥F

 ,

and U0 is the solution of

min
X

1

2
∥X+ S∥2F + ϕ(X).

According to Theorem 1 in [18], we have Uk

G
j
i ,G

j

i′
= 0, k =

0, . . . , j − 1 if Uj
ii′ = 0. Thus, we have

S
G

j
i ,G

j

i′
+ ∂ϕ̃(0)

G
j
i ,G

j

i′
= 0.

As Uk

G
j
i ,G

j

i′
= 0, k = 0, . . . , j−1 if Uj

ii′ = 0, it can be shown

that 0 ∈ ϕ(Θ)k
G

j
i ,G

j
i

, for k = 0, . . . , j − 1 since the minimum

of ∥ · ∥F is achieved at 0. Then, we have

S
G

j
i ,G

j

i′
+ ∂ϕ(0)

G
j
i ,G

j

i′
= 0,

since 0 ∈ ϕ(Θ)k
G

j
i ,G

j
i

, for k = 0, . . . , j − 1. Therefore, the

first-order optimality condition holds for the elements in off
diagonal blocks.

Next we show how to construct a Θ̂ which satisfies the first
optimality condition. Let Θ̂ be a block diagonal matrix with
blocks Cl, l = 1 . . . , L. It is clear that the optimality con-
dition of (2) for off diagonal elements are satisfied. We can

let the elements in the diagonal blocks of Θ̂ be the solution
of the following problem:

min
Θl,l=1,...,L

L∑
l=1

(− log det(Θl) + tr(SlΘl)) + ϕ(Θ)

s.t. Θi,j = 0,∀i ∈ Cl, j ∈ Cl′ , l ̸= l′.

Since Uk

G
j
i ,G

j

i′
= 0, for k = 0, . . . , j−1 if Uj

ii′ = 0, the first

optimality condition (10) holds for Θ̂, thus Θ̂ is the optimal
solution of (2). This completes the proof of the theorem.

Theorem 1 can be used as a screening rule to determine
the elements in the identified off-diagonal blocks to be zero
in advance. Assume that there are L blocks of the same size
identified by the screening rule, p2(1 − 1

L
) elements do not

need to be computed as the optimal values for these elements
are determined as 0 by the screening. Recall that the com-
plexity of the proposed second-order method is O(p3) due to
Cholesky decomposition and computation of tr(WtDWtD).
The complexity of solving the proximal operator (11) for
the tree group structural regularization is O(p2) [18]. By
applying the screening rule, the complexity of Cholesky de-
composition and computation of tr(WtDWtD) are reduced
to O(p3/L2), and the complexity of solving (11) is reduced
to O(p2/L). Therefore, the complexity of the second-order
method with screening is O(p3/L2) since L ≤ p. When L is
large, application of the screening rule can achieve a great
computational gain.

2.4 Discussions
We want to emphasize that Theorem 1 provides a screen-

ing rule for a large family of graphical model problems.
Several examples in the literature can be reformulated into
problem (2) with specific constraints. In the following, we
provide several examples as follows.

ℓ1 regularization: When the ℓ1 regularization is used, SGL
degenerates to standard graphical lasso [4, 8] given by:

min
Θ≻0

− log det(Θ) + tr(SΘ) + λ∥Θ∥1.

The proximal operator in (11) can be written as

min
X

1

2
∥X+ S∥2F + λ∥X∥1. (12)



According to Theorem 1, the sufficient condition for the op-
timal solution (i.e., the solution of graphical lasso based on
the ℓ1 regularization) to have a block structure C1, . . . , CL

is that the optimal solution X̂ of (12) has the same block di-
agonal structure, i.e., C1, . . . , CL. It is not hard to see that
the following first order optimality condition is satisfied

−λ ≤ Sij ≤ λ, ∀i ∈ Cl, j ∈ Cl′ , l ̸= l′,

which is exactly the same as the screening condition for
graphical lasso proposed in [21, 30]:

|Sij | ≤ λ, ∀i ∈ Cl, j ∈ Cl′ , l ̸= l′.

Thus, the screening rule in [21, 30] is a special case of the
proposed rule.

Group regularization: The graphical lasso with group
regularization has been studied in [13]. The formulation of
group graphical lasso is given by

min
Θ≻0

− log det(Θ) + tr(SΘ) + λ
∑
i,j

∥ΘGi,Gj∥F ,

where ΘGi,Gj is a submatrix of Θ, and Gi is the i-th group
of features. Note that ∪Gi = {1, . . . , p} and different groups
do not overlap. In [13], Kolar et al. proposed a sufficient
condition for the solution of group graphical lasso to be block
diagonal, which is given by

∥SGi,Gj∥F ≤ λ, ∀ Gi ⊆ Cl, Gj ⊆ Cl′ , l ̸= l′. (13)

It is clear that condition (13) is the first-order optimality
condition for the solution of (11) to have the block diagonal
solution C1, . . . , CL. Thus, the screening rule in [21, 30] is
also a special case of the proposed rule.
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Figure 5: The ontology hierarchy of the Allen De-
veloping Mouse Brain Atlas from level 0 to level 5.
Each brain region is colored using the color code of
the Allen Developing Mouse Brain Reference Atlas.

3. EXPERIMENTAL EVALUATION
In this section, we conduct experiments to demonstrate

the effectiveness and efficiency of the proposed screening
rule and the proposed tree-guided graphical lasso (TGL).
We used both synthetic and real mouse brain gene expres-
sion data to evaluate our methods. The experiments are
performed on a PC with quad-core Intel i7 3.4GHz CPU
with 16GB of RAM. The TGL formulation is implemented in
MATLAB, while the sub-routine for solving the subproblem
(6) is implemented in C. We compare TGL with standard
graphical lasso (GLasso) in the experiments.

3.1 Synthetic Data
We first evaluate our method using synthetic data. We

follow [32] in generating the synthetic covariance matrix.
Specifically, we first generate the ground truth precision ma-
trix Θ with random block nonzero patterns. Each nonzero
block has a random sparse structure. Given the precision
matrix Θ, we sample from a Gaussian distribution to com-
pute the sample covariance matrix. The weights for tree-
structural group regularization take the form of

wj
ii′ = ρ/

√
|Θj

ii′ |,

where ρ is a given positive parameter and |Θj
ii′ | is the num-

ber of elements in Θj
ii′ . To make a fair comparison between

different methods, we control the regularization parameters
of TGL and GLasso to ensure the numbers of edges obtained
from both estimations to be the same.

Figure 6 shows the comparison between TGL and GLasso
in terms of edge detection. The first column of Figure 6
shows the nonzero patterns (i.e., edges) of two ground truth
precision matrices. In both cases, the same index tree is
used, which is given by

G3
i = {i}, i = 1, . . . , 100,

G2
i = {20i+ 1 : 20(i+ 1)}, i = 0, . . . , 4,

G1
1 = {1 : 60},

G1
2 = {61 : 100}.

(14)

We can observe from Figure 6 that the nonzero patterns of
the precision matrices estimated by TGL are more similar to
the ground truth than GLasso. These results demonstrate
that TGL outperforms GLasso in terms of detecting true
edges in the precision matrices.

We conduct experiments to demonstrate the effectiveness
of the proposed screening rule. We terminate NSPG using
the following stopping criterion:

∥Θ(k)
r −Θ

(k)
r−1∥∞

∥Θ(k)
r−1∥∞

≤ 1e-6.

Additionally, TGL is terminated when the relative error of
the objective value is smaller than 1e-5. The used index tree
is given by

G3
i = {i}, i = 1, . . . , p,

G2
i = { ip

2L
+ 1 :

(i+ 1)p

2L
}, i = 0, . . . , 2L− 1,

G1
i = { ip

L
+ 1 :

(i+ 1)p

L
}, i = 0, . . . , L− 1.

(15)



Table 1: Timing comparison of the proposed TGL with and without screening in terms of average com-
putational time (seconds). TGL-S denotes TGL with screening. The computational time of TGL-S is the
summation of screening and TGLs. p stands for the dimension, and L is the number of blocks. ∥Θ∥0 repre-
sents the total number of nonzero entries in the ground truth precision matrix Θ, and ∥Θ∗∥0 is the number
of nonzeros in the solution.

Data setting Computational time (seconds)

p L ∥Θ∥0 ∥Θ∗∥0
TGL-S

TGL
screening TGLs

1000
5

11442 11914 0.0109 0.1715 2.8219
2000 23694 23854 0.0395 1.0839 12.2679

1000
10

11142 9782 0.0105 0.2286 6.481
2000 23308 23862 0.0366 0.4257 19.1117

where L is the number of blocks. The time comparison re-
sults are given in Table 1. We can observe that the compu-
tational time of screening is negligible compared with that
of solving the TGL. Since the complexity of identifying the
connected components is O(∥Θ∗∥0), the computational time
of screening is almost linear with respect to ∥Θ∗∥0. Results
in Table 1 demonstrate that the screening rule can achieve
very significant computational gain. The larger the L is,
the higher the speedup is. These results demonstrate the
potential of our method for identifying structured networks
for large-scale data.

3.2 Allen Developing Mouse Brain Atlas Data
We also evaluate our methods using the Allen Develop-

ing Mouse Brain Atlas data. The Allen Developing Mouse
Brain Atlas contains spatiotemporal in situ hybridization
(ISH) gene expression data across multiple stages of mouse
brain development [26, 1]. The primary data consist of 3-D,
cellular resolution ISH expression patterns of approximately
2000 genes in sagittal plane across four embryonic (E11.5,
E13.5, E15.5, and E18.5) and three early postnatal ages (P4,
P14, and P28). The ISH image series are passed through
an informatics data processing pipeline by which they are
converted to grid-level expression summaries in the same
coordinate space [2].
After the ISH image series are mapped to the reference

space, a gridding module is applied to divide the 3-D refer-
ence space into regular grids, creating a low resolution 3-D
summary of the gene expression. The resolution of the data
grids varies with age. For each grid voxel, expression density
is the number of expressing pixels divided by the number of
image pixels in the voxel; expression intensity is the averaged
inverted ISH gray-scale value at expressing pixels within the
span of the grid voxel; expression energy is defined as the
product of expression intensity with expression density. Our
analysis in this work is also based on the grid-level expres-
sion energy. In this work, we use data from the first three
developmental ages with 7796, 9963, and 8258 structural
voxels, respectively. We use a data set of 1724 genes.
We apply the proposed TGL method to the voxel-level

gene expression data to demonstrate the effectiveness of
TGL and the proposed screening rule. In the Allen Develop-
ing Mouse Brain Atlas, the brain regions are organized into a
tree-structural hierarchy as shown in Figure 5. This provides
an ideal setting for evaluating our proposed tree-structural
graphical Lasso formulation. We use such hierarchical struc-
ture as the input prior knowledge to our algorithm TGL. We
compare TGL with the standard GLasso on this data. Fig-

ure 7 shows the comparison between the precision matrices
estimated by TGL and GLasso. We can observe that, al-
though the data inherently exhibits certain tree structures,
the results obtained by GLasso do not recover these struc-
tures clearly. In contrast, our proposed TGL method suc-
cessfully recovers the hierarchical structures. Nevertheless,
GLasso recovers some overall structures that are largely con-
sistent with the hierarchy with the corruption of some noises.

To demonstrate the power of the proposed screening, we
report the running time of the TGL with and without screen-
ing. We use the data from the first stage for our evaluation.
We stop the computation of the algorithm after we obtain
a solution with precision 1e-6. The computational time of
TGL without screening is 57189.6 seconds. With the screen-
ing, the total computational time of TGL-S including the
time for screening is reduced to 2781.5 seconds, demonstrat-
ing the superiority of the proposed screening rule.

4. RELATED WORK
Brain connectivity describes how the brain regions are

connected, thereby providing information pathways in the
brain. Graphical modeling is a statistical tool to capture
the connectivity between multiple random variables. Thus
graphical models are natural tools for brain connectivity
analysis. However, the dimensionality is usually very large
for brain data, and this prohibits the direct application of
many existing methods. Therefore, large-scale brain net-
work estimation is considered as a big data problem and has
raised several challenges and opportunities [20].

The task of estimating the whole brain connectivity is im-
portant, but also very challenging. There are two major
types of connectivity analysis; namely functional connectiv-
ity and effective connectivity. There are a few simple ap-
proaches for estimating functional connectivity, i.e., these
based on pair-wise correlations, clustering, and independent
component analysis (ICA) [9]. Effective connectivity aims
to find directional relationships between brain regions. Pop-
ular approaches for effective connectivity include dynamic
causal modeling, structural equation models, and Granger
causality. These tools are complex in computation and mod-
eling, thus they are usually applicable for a small number
(e.g. < 100) of preselected voxels or regions. Recently, voxel
correlations are used to provide more accurate selection of
voxels for a certain region of the brain. However, the results
may be sensitive to the selection of regions, and the network
inference can be biased if the influence from other omitted
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Figure 6: Comparison between TGL and GLasso in terms of edge detection. Left: the ground truth precision
matrix; middle: the precision matrix estimated by GLasso; right: the precision matrix estimated by TGL.

regions is large [20]. To date, several challenges remain in
inferring large-scale direct connectivity.
Sparse Gaussian graphical models (sGGM) [4, 8, 21, 22,

35] are proposed to estimate large-scale brain connectivity.
This type of models has a solid probabilistic foundation for
distinguishing direct connections from indirect connections.
Suppose we have a multivariate variable X following a p-
variate normal distribution N(µ,Σ), and we are given n
i.i.d observations. sGGM represents the relationships be-
tween the p variables by a network of p nodes, where each
node represents a variable and there are connections between
nodes. Formally, inference of the connections between the
p nodes is reduced to estimating a sparse inverse covariance
Θ = Σ−1, where a nonzero off-diagonal entry in Θ indi-
cates that the corresponding row and column variables are
connected. Similarly, a zero entry indicates the absence of
connection. The sGGM approach performs well on a simu-
lation study using a small number of regions [20].
In recent years, considerable research efforts have been de-

voted to estimating the precision matrix and the correspond-
ing sGGM [11, 12, 15, 16, 19, 23, 24]. Numerous methods
have been developed for solving this model. For example,
Banerjee et al. [4] and Friedman et al. [8] proposed block co-
ordinate ascent methods for solving the dual problem. The
latter method [8] is widely referred to as Graphical lasso
(GLasso). Yuan [36] and Scheinberg et al. [25] applied the

alternating direction method of multipliers (ADMM) [5] to
this problem. Wang et al. [29], Hsieh et al. [11], Olsen et
al. [24], and Dinh et al. [7] applied the Newton method for
solving this model.

The brain network system is complex and structured. For
example, brain regions are usually organized into a hierarchy
in which a large region includes multiple sub-regions. We
propose a tree-structural graphical model to represent the
multi-level brain network in this paper. Specifically, voxels
are represented as the leaf nodes of the tree. The nodes
in the intermediate layer represents the regions. This way,
the entire brain is considered as the root of the tree. Our
model is different from the model in [20] in multiple ways,
and our proposed model is more general. Specifically, the
nodes in [20] can only connect with each other via the hub
nodes, while the nodes can connect in arbitrary ways in our
model. In [20] an alternating update algorithm is proposed
to solve the model, and much computational efforts have
been devoted to computing the determinant of Θ. This
prohibits the direct application of graphical models from
large-scale brain datasets. The contributions of this paper
lie in two folds: (1) we propose a tree-structural graphical
model to incorporate the multi-level brain structure; and (2)
we develop a sufficient screening rule to dramatically reduce
the computational cost for computing the determinant of Θ
in general structural graphical model.
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Figure 7: Comparison between TGL and GLasso in terms of edge detection on Allen developing mouse brain
atlas data. Upper: the precision matrix estimated by GLasso; bottom: the precision matrix estimated by
TGL. Left to right: Mouse brain networks in the 1st, 2nd, and 3rd development stages. The red and green
grids visualize the tree-structural groups in two layers.

5. CONCLUSION AND FUTURE WORK
In this work, we propose a hierarchical graphical model

framework known as the tree-guided graphical lasso. In
order to scale the proposed formulation to large-scale net-
work inference, we develop a screening rule to dramatically
speedup the computation. Specifically, we employ the second-
order method to solve the proposed formulation. In addi-
tion, we derive a sufficient condition for the TGL solution
to be block diagonal. Based on this condition, a simple
screening rule has been developed to scale our methods to
large-scale problems. We apply the proposed methods to
infer the large-scale mouse brain connectivity. Numerical
experiments on synthetic and real data demonstrate the ef-
ficiency and effectiveness of the proposed method and the
proposed screening rule.
This work focuses on the inference of mouse brain net-

works. On the other hand, human brain networks are more
complex and involve more structures. We plan to apply the
proposed methods to the human brain networks in the fu-
ture. This work represents the first attempt to investigate
screening rules for structural graphical Lasso, and many the-
oretical problems in this direction remain unexplored. We

plan to derive a necessary and sufficient condition for screen-
ing the TGL solution, thereby enhancing the theoretical
guarantee of our algorithm. In addition, we plan to explore
the convergence properties of the second-order method using
the inexact Newton direction.
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