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Abstract—This paper presents a method to extract rooftops
from aerial images with only visible red, green, and blue bands
of data. In particular, it does not require near-infrared data, lidar,
or multiple viewpoints. The proposed method uses shadows in the
image in order to detect buildings and to determine a set of con-
straints on which parts can or cannot be rooftops. We then use
the grabcut algorithm to identify complete rooftop regions and
a method to make corrections that simulate a user performing
interactive image segmentation in order to improve the precision
of our results. The precision, recall, and F-score of the proposed
approach show significant improvement over two very recently
published papers. On our test dataset, we observe an average
F-score of 89% compared to scores of 68% and 33%.

Index Terms—Buildings, rooftops detectors, shadows, urban
areas.

I. INTRODUCTION

R OOFTOPS are important features to extract from aerial
images because there are many practical uses for infor-

mation on rooftop locations, sizes, and shapes. Example appli-
cations include urban planning, where rooftops can be used to
count the number of houses in an area to obtain an estimate
of the population, the surface areas of rooftops could be useful
for estimating the amount of energy needed for heating or cool-
ing houses. Extracted rooftops can be especially important for
simulation and training; realistic environments can be created
by identifying features from aerial imagery and placing similar
three-dimensional (3-D) models at the same locations.

One important application for rooftop extraction is to gener-
ate more realistic data for flight simulators. Aerial imagery is
used in many flight simulation systems to capture the appear-
ance of “clutter” on the ground; however, at low-altitude
imagery alone does not exhibit the motion parallax effect,
which is important for pilots to judge heading and altitude [1].
A system is proposed in Chladny et al. [2] to add vertical dis-
placements to buildings and trees in order to render objects in
a manner that is visually consistent with existing aerial images
used as terrain skins in flight simulation systems, but the system
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would often need buildings to be identified from areal pho-
tographs with only visible red, green, and blue (RGB) imagery
because of the large investment in existing texture maps used in
flight simulations.

We posit that one of the most distinctive features of rooftops
in photographic images is the shadows they cast; rooftops are
often composed of straight edges or circular arcs, which cast
shadows that are significant image features on one or more
sides of a structure when the sun is not directly overhead. This
work proposes a novel solution to exploit the shadows and color
data in high-resolution imagery in order to identify rooftops.
We first use simple methods to extract the shadow and vege-
tation from the aerial image and use them to generate initial
foreground and background constraints on the image, then a
grabcut segmentation is performed to segment the whole image
into foreground and background regions, i.e., rooftops and non-
rooftops as has previously been done by Ok et al. [3]. However,
after the first segmentation, we propose a novel self-correction
method to identify the mislabeled rooftops and remove those
errors by running grabcut again with new constraints.

A key idea of this paper is that even simple methods to
identify shadows can be used to detect buildings from color
photographs. The approach is robust enough to be used in aerial
orthophoto mosaics at resolutions of 1 pixel/m. The proposed
method has the following benefits.

1) The method requires only reasonably high-resolution
aerial image (e.g., one meter per pixel). Not required
are multiple views, additional information such as near-
infrared (NIR), lidar, or any elevation data.

2) The method is robust to variation in the image quality
that would negatively affect many edge-based methods,
and it makes few assumptions about the shape (rectangu-
lar, circular, and polygonal), or colors of buildings, with
the notable exceptions that dark-green rooftops might be
eliminated as trees, and the area of a rooftop is considered
in a postprocessing step.

3) The method does not require a large amount of prela-
beled data as would be needed by a supervised learning
approach.

The problem of rooftop extraction has a long history, and
detailed surveys can be found in [4] and [5]. However, the
type of data available has evolved over time and now high-
resolution color imagery is commonly available. While there
are many papers that use only single band or color imagery
to find rooftops, the majority of research on building extrac-
tion assumes that buildings are identified on source data with
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other information such as NIR, lidar, or multiple viewpoints.
This paper makes the following contributions.

1) We present a novel method for extracting rooftops in
imagery without exploiting additional bands such as NIR,
so we can obtain accurate segmentations even when pro-
vided with only color images. The method employs a
nearly1 automatic way to identify corrections that simu-
late a user performing interactive segmentation.

2) We significantly improve over two very recent methods
that can be applied to RGB data. In our test sets, we have
aggregated precision, recall, and F-scores of 89% each,
compared to an F-score of 33% for Cote and Saeedi [6]
and 68% for Ok et al. [3].

The most significant requirement of the proposed method is
a need for visible shadows with high contrast in the imagery.
The proposed approach is best suited to images acquired around
midday where shadows are thin, and the difference between
shaded and unshaded regions is often quite significant. This
requirement is often met in aerial orthophoto images acquired
for flight simulation.

II. PRIOR ART

Many techniques detect buildings by exploiting high-
resolution height information obtained by lidar or stereopho-
togrammetry [7]–[12]. However, the additional information
changes the problem significantly. The ability of the proposed
technique to identify rooftops without height data is important
because archival data often do not include this information.
For example, one significant application of the proposed work
is to generate high-resolution displacement maps for use in
flight simulators. Many existing databases have terrain and
texture map data without the elevation needed for rendering
high-resolution displacement maps, and the proposed approach
can be used to identify rooftops as a first step to generate
high-resolution displacement maps.

Shape analysis is one classical way of extracting rooftops.
Based on an observation that most rooftops are rectangular
or combinations of several rectangles, Cui and Reinartz [13]
used the Hough transform to extract the structure of buildings
and then constructed a graph from those region information.
A cycle detection on the graph is utilized finally to extract
the boundary of buildings. Benedek et al. [14] constructed a
hierarchical framework to create various building appearance
models from different elementary feature-based modules. The
interaction between object extraction and local textural image-
similarity information in their framework was exploited in a
unified probabilistic model. However, those methods are more
suitable for buildings with rectangle shapes.

Considering that rooftops usually have strong edges in aerial
images, some methods try to extract the rooftops from these
features. Sirmacek and Unsalan [15] proposed the use of the
scale invariant feature transform (SIFT) and graph theoretical
tools to detect buildings from urban area. One limitation of

1The process requires two data-dependent parameters, the direction of light
and a threshold for detecting shadows. These parameters can be set for large
areas that cover many images; and can be derived from metadata such as the
time and location that an image was acquired.

their method is that they need specific building templates for
the subgraph matching. Cote and Saeedi [6] used corners
and variational level set evolution (VLSE) to extract rooftops
from nadir-looking aerial imagery. The corners are assessed
using multiple color and color-invariant spaces, then rooftop
outlines are obtained from selected corners through level-set
curve evolution. Their method does not depend on the exis-
tence of shadows in aerial images; however, it is sensitive to
the resolution of aerial images and their method cannot distin-
guish rooftops from other structures with salient boundaries.
Section IV-B3 includes a more detailed comparison of the
proposed method and their level set approach.

Several authors have used shadows for rooftop segmentation
from aerial images; however, shadows are most-often used after
an initial building detection step, for building hypothesis verifi-
cation and height estimation [16]–[20]. One example approach
was due to Sirmacek and Unsalan [21] who tried to verify the
appearance of buildings using the shadow information; how-
ever, this work is limited to rectangular buildings. The proposed
approach differs from these in that it actually uses shadows
to generate and refine building hypothesis in addition to using
them as a verification step. Some prior work does use shadows
to generate a building hypotheses. Akcay and Aksoy [22] used
a watershed segmentation and proposed shadow information
and directional spatial constraints as a way to detect candidate
building regions. Liow and Pavlidis [23] extract line segments
adjacent to shadows in the image and employ a region growing
algorithm to find other edges of the building. However, gable
and hip roofs can have strong ridges [Fig. 1(b)], which can be
confused with edges of the building. Our proposed approach
does not depend on edge detection, and it can handle buildings
that are nonrectangular [Fig. 1(a)] or, in many cases, rooftops
that have internal edges such as gable ridges.

Recently, Ok et al. [3] used a method that employed grabcut
and shadows to segment rooftops from high-resolution imagery.
Similar to the proposed approach, shadows were first detected
and foreground (rooftop), and background pixels were labeled
adjacent to them based on light direction. This was followed by
iterative graph custs (a modified version of the grabcut algo-
rithm) on a region of interest (ROI) for each shadow. Unlike
the approach we propose, they required an additional near-
infrared (NIR) band of data in order to locate shadows in the
imagery. They employed an ROI determined by dilation of the
shadow component with flat kernels opposite to the direction
of light. Foreground pixels are determined by double thresh-
olding a fuzzy region extended from shadows opposite to light
direction. Our method differs from their method in several
important ways. We run grabcut on overlapping tiles from the
original image and not on an ROI for each shadow. Thus,
we are able to find buildings whose shadows are incomplete
because of clutter or vegetation near the buildings. Unlike their
approach, the proposed method can be used to identify shad-
ows that are larger than the ROI, such as industrial buildings
or warehouses in commercial areas [see Fig. 1(c)]. This is
important for applications involving flight simulators because
those types of buildings are common near airports where pilots
can see the depth in those building during low-altitude flight.
We further implement a self-correcting scheme that identifies
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Fig. 1. Examples of roof shapes that the proposed method can handle: (a) objects with circular or curved roofs; (b) rooftops with internal edges; (c) very large
rooftops with obtuse angles; (d) 1-m resolution image with different roof shapes; (e)–(h) show the segmentation results of (a)–(d), respectively, using the proposed
algorithm.

falsely labeled pixels by analyzing the contours of buildings
identified by the first pass of grabcut. We rerun grabcut until the
segmented results are consistent with shadows, whereas their
method does not refine the initial segmentation. Section IV-B3
includes a more detailed discussion and comparison of the
result of the proposed approach and their method.

III. SEGMENTATION ALGORITHM

The proposed approach for segmenting rooftops is based on
an interactive approach called grabcut [24]. The grabcut algo-
rithm is initialized by a set of constraints, called a trimap, that
is usually created interactively by a user. Users are provided
with a sketch-based interface that allows them to mark certain
pixels as foreground or background while leaving most of the
pixels unknown. The grabcut algorithm then iterates between
an expectation maximization step in order to fit Gaussian mix-
ture models (GMMs) to the foreground and background pixel
colors, and a conditional random field (CRF) optimization step
in order to assign labels to the unconstrained pixels using a
globally optimal graphcut method [25]. Grabcut is an effective
approach to segmenting images, but it can mislabel large por-
tions of the image when the colors are under-constrained by
the initial trimap. In an interactive setting, a user would look
at the result of grabcut and place marks on only a few pixels
where the image is over segmented, or under segmented. The
user would then repeat grabcut with new constraints, leading to
highly accurate results with very little user interaction.

Grabcut is appealing for rooftop segmentation because it
requires few prior assumptions regarding the colors or textures
of rooftops, and it can segment objects that are not globally sep-
arable by color or texture features alone. The main idea of our
approach is to provide an automatic process to replace the user
interaction in grabcut. The flowchart of the entire process is

Fig. 2. Flowchart of the pipeline of the proposed approach.

shown in Fig. 2. We initialize the algorithm based on shadows
as was recently done by Ok et al. [3] using a modified four-
band (RGB and NIR) version of grabcut; however, unlike Ok,
we also add corrections to the results wherever they are incon-
sistent with shadows in the image until grabcut converges to
a segmentation that is consistent with the shadows. The addi-
tional precision obtained by adding iterative corrections to the
grabcut segmentation allows us to achieve competitive rooftop
extraction results using only three-band RGB input data. The
key steps of the proposed process are as follows.
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Fig. 3. Key steps of rooftop segmentation: (a) an aerial image; (b) initial labeling of foreground (white) and background (black) based on shadows, unclassified
pixels are 50% gray; (c) result of running grabcut on (b) with pixels classified as foreground at 75% gray and background at 25%gray; (d) additional background
constraints added for roof pixels that do not cast shadows (inside the red window); (e) corrected result after running grabcut on (d); and (f) rooftops are finally
extracted from (e).

1) We generate an initial trimap [Fig. 3(b)] by analyzing the
image to detect shadows and vegetation.

2) We use grabcut to determine an initial segmentation of the
image [Fig. 3(c)].

3) We analyze the contours of the segmented image and gen-
erate new constraints where the contour edges do not cast
shadows as expected [Fig. 3(d)].

4) Steps 2) and 3) are repeated. Fig. 3(e) shows result after
repeating steps 2) and 3) once.

5) We refine the results by eliminating small foreground
regions that are either too small or too thin to be rooftops.

A. Grabcut Segmentation

Grabcut is an interactive foreground/background segmenta-
tion algorithm introduced by Rother et al. [24]. Since, it is
important for the proposed approach for rooftop extraction,
this section will provide a brief explanation of the grabcut
algorithm. Grabcut takes as input an image as an array of n pix-
els z = (z1, z2, . . . , zn), where each zi is a triple in an RGB
color space. It also takes as input an incomplete labeling (a
trimap) in which each pixel is associated with a label in the set
T = {TB , TF , TU}. The labels TB and TF represent the back-
ground and foreground constraints assigned interactively by a
user, and TU denotes the pixels with unknown labels. Since the
grabcut algorithm was originally designed as a matting tool, the
segmentation of the images is expressed by an array of opacity
(alpha channel) values α = (α1, α2, . . . , αN ) where αi = 0 if
zi is a background pixel and αi = 1 if zi is foreground pixel.

The grabcut algorithm models the colors in an image using
two full covariance GMMs with K components each (typi-
cally K = 5). For reasons of efficiency, Rother et al. associate
each pixel with single component of either the foreground (if
αi = 1) or background (αi = 0) mixture. An array represent-
ing the GMM components for each pixel is defined as k =
{k1, k2, . . . , kn} with ki ∈ {1, . . . ,K}. The grabcut method
segments an image by optimizing a Gibbs energy function of
a CRF model defined on unary and pairwise cliques as

E (α,k,θ, z) = U (α,k,θ, z) + V (α, z) (1)

and the unary term U is defined, using the GMM models, as

U (α,k,θ, z) =
n∑

i=1

D(αi, ki,θ, zi) (2)

where D is

D(αi, ki,θ, zi) = − log p(zi|αi, ki,θ)− log π(αi, ki) (3)

where p(·) is a multivariate Gaussian probability distribution,
π(·) denotes the weighting coefficient of one of the GMM
components, and θ represents the parameters of a mixture
model

θ = {π(α, k), μ(α, k),Σ(α, k)|α ∈ {0, 1}, k ∈ {1, . . . ,K}}
(4)

where weights π, means μ, and covariance matrices Σ are from
the 2K Gaussian components.

The pairwise smoothness term V is defined over all pairs of
neighboring pixels as

V (α, z) = λ
∑

(i,j)∈C

[αj �= αj ]e
−β‖zi−zj‖2

(5)

where C is a set of pairs of direct or diagonally adjacent pixels,
and β and λ are constants controlling the degree of smoothness.
The constant β is chosen to be

β = (2
〈‖zi − zj‖2

〉
)−1 (6)

where 〈·〉 denotes expectation over an image sample [25], and
the smoothing constant λ is set to 50 following the guidelines
in [24].

The Gibbs energy is minimized by repeating the following
three steps until convergence. Step 1) the energy is minimized
over k by enumerating all possibilities. Step 2) minimizes
with respect to θ by calculating the sample means and covari-
ance matrices of the pixels assigned to each GMM component.
Step 3) is global optimization step that solves for α using a min-
imum cut algorithm on a graph constructed as described in [25]
so that the weight of a cut in the graph is proportional to the
Gibbs energy. Rother et al. [24] repeat these three steps until
the energy ceases to decrease significantly.

B. Shadows

The first and most critical step of the proposed method is
to detect shadow regions and use the shadows to place both
foreground (rooftop) and background constraints in the image.
A number of methods to detect shadows in aerial images have
been proposed; however, most are aimed at removing shadows
from the image [16]–[19], [26]. Notably, Tsai [27] explored the
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Fig. 4. Example of successful roof detection when the shadow has gaps (notice the trees obstructing the shadow of the building): (a) roof image; (b) initial
foreground/background assignment; (c) foreground/background labels with additional vegetation constraint; and (d) result of grabcut on (c).

use of color invariants to detect shadows automatically in aerial
images, and Chung et al. extend the approach using a mul-
tistage thresholding algorithm [28]. We found that the image
resolution and noise in the images prevented the automatic
threshold selection approach used by Tsai from correctly iden-
tifying shadows. The multithresholding approach of Chung is
best suited for capturing the shape of large shadows; however,
when the angle between the sun and the viewing direction of the
aerial photo is small the shadows in aerial images are often very
thin. In our system, we expect a threshold for relative shadow
intensity as an input parameter to the system. Rayleigh scat-
tering in the atmosphere causes a fraction of the sun’s light to
be scattered into shadows as ambient illumination, where the
exact amount of scattered light varies depending on the posi-
tion of the sun and the amount of dust or clouds in the air.
We manually choose a threshold TS for shadows between 15%
and 25% of the luminous intensity of an image. We convert
RGB to YUV color space, and then the set of shadow pixels is
S = {pi|Yi < TS}, where pi is a pixel of the original image and
Yi is the luminance channel of a color image. In Section IV-A2,
the sensitivity of the algorithm to different values of TS is
evaluated.

It is important for any algorithm that is based on shadows
to recognize that shadows are not always cast onto flat ground;
bushes, trees, cars, or other elements within the region receiv-
ing the shadow often interrupt the shadow’s contour. If any of
those extend upward then they may be lit, and introduce gaps
or other artifacts within the receiving region [Fig. 4(a)]. The
proposed method does not require that the shadow contours
be complete because gaps in the shadow may be filled in by
the graph minimum-cut steps used in the grabcut algorithm.
In Fig. 4, even with broken shadow, the rooftop segmentation
result is accurate. However, the algorithm does not identify the
rooftop area occluded by the tree as foreground.

Once shadows have been identified, we identify a set of pix-
els F , shown as white pixels in Fig. 3(b), which we treat as
likely elevated areas that cast the shadows. We require that
the component of the light direction that lies within the image
plane L is provided as a unit vector that points away from
the light source. We construct the set F using an assumption
that shadows are the result of light occluded by a raised struc-
ture opposite the direction of light and adjacent to the shadow
region. Note that this assumption can be a source of error in
the method that is discussed further in Section IV-B4. In order
to construct F , the pixels in S are shifted by a distance dF
opposite the direction of light by a morphological operator con-
structed as follows. Given a light direction L and a distance dF ,
we define structuring element v(−L,dF ) as a line segment with

one end at the origin of the structuring element and the other
end a distance dF opposite the direction L. Then, we can obtain
the initial foreground sets F from the set of shadow pixels S as

F = (S ⊕ v(−L,dF ))− S (7)

where ⊕ denotes the morphological dilation operator. The
thickness dF of the foreground regions needs to be far enough
that some pixels in the image will be constrained as foreground.
We have set dF as 2 m in our implementation for image reso-
lutions ranging from 0.15 to 1 m/pixel (so dF is between 6 and
2 pixels), and Section IV-A4 explores the effect of choosing
different values for dF .

Fences or block walls are a particularly troublesome issue
for methods, which use shadows to indicate the presence of
rooftops because they cast shadows that are similarly shaped
to those cast by buildings. Ok et al. [3] use a threshold on the
thickness of shadows to distinguish fences from rooftop shad-
ows. This works well on some images, but we find that it is
difficult to choose an appropriate thickness threshold for sev-
eral reasons. First, the shadows of buildings can become very
thin when the light direction becomes nearly parallel to one of
the sides of the rooftop, and the spatial resolution of the image
is not sufficient to distinguish between shadows of buildings
and shadows of fences. Second, fences are often adjacent to
bushes or asphalt, which can darken their shadows and make
them appear thicker. Finally, shadows of buildings are likely to
be partially occluded by the buildings themselves due to a com-
bination of overhang in roofs and an effect called “lean” caused
by perspective distortion when the roof is not directly under the
camera as an aerial image is acquired. Together these effects
prevent a single threshold on shadow thickness from capturing
the shadows of buildings without also including the shadows of
many fences.

When the shadow of a fence is used to generate foreground
constraints, the result will be a number of false foreground
constraints in F . However, our self-correction approach often
removes many of the false positive labels. As a result, fences
tend to generate very thin regions of false positives which we
allow at this point in the algorithm as they will be removed in
step 5).

C. Additional Constraints

The grabcut algorithm uses a trimap in order to both con-
strain the resulting labels and also to learn the distribution
of colors in foreground and background regions. The trimaps
shown in Figs. 3, 4(b) and (c) are examples of trimaps, which
we use to incorporate prior knowledge into the proposed
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Fig. 5. Comparison of grabcut within ROI and the whole image: (a) roof image; (b) shadows (dark blue parts); (c) ROI (cyan part) with bounding box (red
rectangles); (d) result of grabcut within ROI; and (e) result of grabcut applied to the whole image.

method. The grabcut algorithm will always label the white
pixels as rooftop, and it will always label the black pixels as
background.

We use trimaps in order to add prior knowledge about
rooftops by adding pixels that are very unlikely to be rooftop to
a background set B before running grabcut. The trimap is con-
structed with the set F − B constrained to foreground (white),
and the set B treated as background constraints (black). We con-
sider our initial shadow-based foreground estimate F to have
less confidence than the features (such as shadows themselves)
that indicate that a pixel is not elevated. Forcing shadows to
be considered background pixels has the potential to introduce
errors whenever shadows are cast onto rooftops by adjacent
structures, such as multilevel or complex rooftop surfaces or
rooftops with adjacent trees that are taller than the building;
however, we allow these errors in our method.

The set B includes more than just shadows; any other pixel
that is unlikely to be rooftop can also be included in the set.
In particular, we consider vegetation as unlikely to be part of a
rooftop. A vegetation mask covers the region occupied by trees,
grass, or shrubs. One source of such a mask is a thematic map
constructed using additional data such as NIR or normalized
difference vegetation index (NDVI) data. If a vegetation mask is
not present, we use a simple color-based thresholding technique
to identify pixels that are unlikely to be rooftops. Most green-
colored regions belong to vegetation, whereas green-colored
roofs exist but are very rare in our test sites, so we adopt the
method in [29] by Otsu thresholding [30] the color index

Cv =
4

π
· arctan

(
G−B

G+B

)
. (8)

Pixels with a color index larger than the threshold identified
by Otsu’s method are marked as vegetation. Vegetation often
has soft or irregularly shaped contours, and trees or shrubbery

can be partially transparent at their edges where the leaves are
sparse. In addition, vegetation is often dark and can be misclas-
sified as shadows and produce false foreground constraints in
our method. In order to compensate for errors near the edges
of vegetation, we dilate the vegetation mask using a circu-
lar structuring element with a radius of approximately 1 m
to obtain the set V of pixels to be treated as vegetation, and
hence not rooftop. If V is the only constraint, then the set B
is set to B = S ∪ V , where S is the set of pixels in shadow.
Fig. 4(c) shows how the addition of vegetation constraints is
incorporated into the trimap construction so that grabcut does
not mislabel vegetation as rooftop. The approach discussed
here for adding constraints can also be used to guide rooftop
extraction using other sources of information, e.g., Femiani and
Li [31] discuss an approach to identify constraints from GIS
vector data such as street maps, NIR, and lidar data if it is
available.

D. Segmentation

1) Grabcut Segmentation on Overlapping Tiles: After
labeling the foreground and background, the RGB components
of the image are converted into the LUV color space and
grabcut is used to label the remaining pixels in the image. In
our implementation, grabcut is initialized with the set F − B
constrained to foreground (roof) and B constrained to the back-
ground. All other pixels are used to form an initial estimate
of the distribution of background colors. The examples shown
in this paper use an implementation of grabcut [32], which
uses a mixture of five full-covariance normal distributions in
order to model the foreground and background colors. Once a
trimap is constructed, the application of grabcut to the image
is straightforward; the key challenge is how to run grabcut on
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large images, which may not fit into a system’s available RAM,
and to process the images with acceptable running times.

Aerial images in our datasets are often represented as 8k ×
8k or 16k × 16k arrays of pixels. Running the grabcut algo-
rithm on an image that large is not practical because it is O(n2)
in the worst case, where n is the number of pixels. Even though
performance is often better in practice, it is polynomially larger
that O(n). Ok et al. [3] address the run time by first detect-
ing shadows and then limiting grabcut to small regions near
shadows. However, since the size of buildings in the image may
vary dramatically, it is hard to include all parts of each build-
ing just using one fixed size parameter. For example, a large
parameter would be needed to cover the building in Fig. 1(c).
Another challenge to using shadows to determine ROIs is that
the shadow contours may not be complete, and one building
may be broken into several parts. Fig. 5 illustrates the limita-
tion of running grabcut within ROI. Due to the trees around the
buildings, the shadow is incomplete and thus the grabcut only
extracts part of the building.

In order to process large datasets, we divide the input into
small tiles and then operate grabcut in each tile. However, a
potential problem with running grabcut tile by tile is that one
building can span two neighboring tiles and its shadow may
be cast into only one of the tiles. For such a building, only
the part within the tile where shadows are located would be
detected since the tile with no shadows would receive no initial
foreground constraints for the building. To overcome this prob-
lem, we use fixed-size overlapping tiles in the image, so that
we can utilize prior information from neighboring tiles to avoid
incomplete extraction of buildings that span multiple tiles.

Since buildings from one tile may cast shadows that reach
another tile in the light direction, we always process tiles start-
ing from the corner of the input farthest from to the light source.
Tiles are processed in descending order based on the inner prod-
uct of L and the tiles minimum coordinate. Each tile overlaps
by Tp pixels with the previous tiles (up to three tiles). When
processing a tile the trimap is initialized with the labels of
any overlapping tile that has already been processed, and the
previously calculated labels are treated as foreground and back-
ground constraints in the new tile. Fig. 6 illustrates the process.
By choosing different tile sizes, it is possible to trade global
accuracy for improving the running time over an entire image;
which is linear on the number of tiles. In practice, we choose
tile sizes of 512× 512 pixels with an overlap of Tp = 20 pix-
els. The effect of other tile sizes on running time and accuracy
is evaluated in Section IV-B1 and Table I.

2) Self-Correction: The grabcut algorithm will favor seg-
mentations with fewer boundary edges, which can result in the
merging of adjacent rooftop regions. In addition, the colors in
the image are not always sufficiently separable to achieve an
accurate segmentation of rooftops from other features. Fig. 3(c)
shows such a case in which the foreground bled into the pave-
ment next to the rooftop. This may have happened because
colors in the pavement are more common in the adjacent
rooftop than they are in rest of the background. In order to
address this issue, Ok et al. [3] introduced a maximum building
size and limited grabcut to run within that region.

Fig. 6. Tile decomposition for distributing processing of large images. (a) The
processing order of tiles, assuming the light direction is northeast, the tile at the
right top corner will be processed first, then the other tiles will be handled in
ascending order of the numbers. The tiles with same number can be processed in
parallel to accelerate the whole process, each tile is initialized with constraints
from overlapping tiles that have already been processed. In this case, the tiles
above and to the right have been used to set constraints for the current tile. (b) is
an example tile with the top and right portion constrained, the right image shows
the constraints as black and white pixels and the labels assigned by grabcut are
indicated by light and dark gray pixels. Notice how the building indicated by
red arrow is recovered using overlapping tiles.

We do not assume a maximum region size. Instead, we run
grabcut and then process the set of pixels, which are likely to be
false positives based on the structure of shadows in the image.
These pixels are then constrained to the background, and grab-
cut is repeated until a plausible set of labels is identified. We
estimate that a pixel is a false positive if the pixel is within a
distance, d2 of a contour, and that contour is within a distance
d1 of the nearest shadow with distances measured in the direc-
tion of light. The parameter d2 controls how aggressive, we are
in marking corrections, and d1 is chosen to be robust to errors
in shadow detection. One caveat is that buildings in an aerial
photograph exhibit an effect called “lean,” which can shift the
contour of the rooftop relative to its shadow by a small amount
and result in some portion of the rooftop appearing to cast no
shadow. The effect is most common near the corners of build-
ings. In order to compensate for lean, we use a dilated shadow
mask S ′ that is the result of morphological dilation on S by a
disk with radius r, where r is treated as an input to the system.
In our examples, we set r = 3 pixels.

Our method to determine the corrections can be described
using morphological operations. Let F (i) denote pixels labeled
as foreground after running the grabcut algorithm i times, so
i = 1 after the first attempt to segment the image with grab-
cut. The set B(i) is the pixels constrained to background in
the trimap before the ith iteration, so B(0) = B. Then, we can
find the set of corrections C(i) that are pixels, which are not
consistent with shadows after i attempts as follows:

C(i) = (F (i) ⊕ v(L,d1) −F (i) − S ′)⊕ v(−L,d2) ∩ F (i). (9)

Equation (9) should be understood as first identifying a set of
pixels that should be shadows given F (i) using a morphologi-
cal dilation in the direction of light, and then subtracting out the
existing shadows. The pixels which remain are pixels, which
should be shadows if F (i) were correct, and yet they do not
appear to be shadows in the image. Another dilation opposite
the direction of light determines the pixels in F (i) which are not
casting shadows, and therefore are likely false positives. During
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TABLE I
TIME COST STATISTICS ON AN 8540× 8540 AERIAL IMAGE WITH 955 BUILDINGS

Fig. 7. Illustration of self-correction; (a) a roof image; (b) the initial result of grabcut on (a); (c) the dark blue area represents S, and the dark and light blue area
together represent S′, and the red area represents F(i) ⊕ v(L,d1) −F(i); (d) the red area represents F(i) ⊕ v(L, d1)−F(i) − S′ and the black area is the

final C(i); (e) the result of running grabcut again using the new constraints.

Fig. 8. Example of self-correction: (a) a roof image; (b) the initial result of grabcut on (a); (c) additional background constraints added by the self-correction
algorithm (black pixels in the red rectangles); (d) additional constraints made by a second iteration of the self-correction algorithm on the result of grabcut on (c);
and (e) the final result, with small regions removed.

our experiments, we find d1 = 2 and d2 = 5 will give satisfac-
tory results. Once C(i) is determined a new set of background
constraints B(i) can be calculated as

B(i) = C(i) + B(i−1). (10)

Note that when trimaps are constructed for application i+ 1 of
grabcut, the foreground constraints are set to F − B(i) and the
background constraints are set to B(i). New foreground con-
straints are never added in the process. If C(i) is empty then no
further iterations of self-correction are performed. Fig. 7 gives
a detailed illustration of the whole pipeline.

The process of self-correction is illustrated in Fig. 3(d) [com-
pare with Fig. 3(b)]. Another example is shown in Fig. 8, where
self-correction runs through two iterations to remove all of the
pixels mislabeled as foreground.

3) Pruning Misclassified Contours by Size Constraints:
The final segmentation may contain very small regions which
may be cars and fences misclassified as rooftops. In order to
prune them, we find the contour of each segmented region and
if the length of the contour is less than 20 pixels, we mark the
entire connected component as background. Fig. 9(c) shows the
segmentation after pruning small contours from Fig. 9(b).

IV. EVALUATION

In order to evaluate our method, we manually labeled a
number of regions and treated these labels as ground truth.

We use the common measures of precision (P ), recall (R),
and the F-score (F1) to measure error [33], where

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

F1 =
2PR

P +R
. (13)

Here, TP stands for true positives and refers to the number of
pixels assigned as rooftop in both ground truth and segmenta-
tion result. FP stands for false positives and refers to the number
of pixels designated as rooftop in by the proposed approach but
not in ground truth. FN stands for false negatives and refers to
the number of pixels designated as rooftop in ground truth but
not in the results. The F-score (F1) captures both precision and
recall as a single metric that gives each equal importance.

A. Parameters

The proposed process requires the following parameters to
be specified by a user.

1) A threshold on the image luminance channel, used to
identify shadows. Fortunately, shadows in the most aerial
images seem to be separable based on intensity and this
threshold is not difficult to identify if the user can preview
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Fig. 9. Effect of pruning small contours: (a) an aerial image; (b) the result of
rooftop segmentation before pruning; and (c) after pruning.

the thresholded image. On clear days a threshold between
15% and 20% of the image max intensity is a good choice.

2) The approximate direction of the light within the image
plane (L). This can be estimated from an image by count-
ing the number of pixels horizontally and vertically from
one corner of a rooftop (or from a corner of the foot-
print if lean is an issue), to the corresponding corner of
a buildings shadow. If streetlights are visible, their shad-
ows are also good indicators for the direction of light. If
information is available the date and time that a georef-
erenced image is acquired, it is also possible to calculate
the direction of sunlight.

3) The shifting distance dF which controls the range of
initial foreground labels. This can often be set to 2 m.

4) The parameters in grabcut, including the maximum num-
ber graph cut iterations, the number K of components in
the GMM, and the smoothing term λ.

1) Grabcut Parameters: During our experiments, we found
that the most influential parameter of grabcut is the maximum
number of iterations of grabcut. The majority of processing
time for the proposed method is spent on graph cut iterations
performed by grabcut. Fig. 10 shows the results after using 1,
5, 10, and 20 iterations. After a certain number, the results do
not show a noticeable difference in the foreground [Fig. 10(d)].
Rather than iterating until convergence, we choose a number
beyond which F1 ceases to improve on training data. After 10
iterations, we do not perceive the difference in labels, and the
F-score on the resulting pixel labels is not improved. If a higher
number is chosen, such as 20 iterations in Fig. 10(e), then time
is often wasted running iterations of graphcut that do not neces-
sarily improve the overall accuracy. For the other parameters,
the default settings (K = 5, λ = 50) suggested in [24] work
well in our dataset.

2) Shadow Detection: The accuracy of shadow detection
plays a very important role because initial foreground and
background constraints are assigned on the basis of shadows.
Several methods [27], [28] have been proposed to extract shad-
ows from aerial images automatically; however, we find that
these methods do not outperform the fixed threshold used by
our method in our test dataset due to the presence of many dark
roads, which are difficult to rule out using existing automatic
methods as shown in Fig. 11. The aerial images in our dataset
are acquired mostly around midday where shadows are quite
clear and thin, and the intensity of shadows has small vari-
ance across the input tiles. Based on this observation, a fixed
threshold on luminance works well. Fig. 12 shows the impact of
using different threshold values in order to determine shadows.

Fig. 12(b) shows initial foreground and background segmenta-
tion based on detected shadows and Fig. 12(c) shows the result
of running grabcut. The threshold chosen is 25% of the max
intensity in the image. Fig. 12(d) and (e) shows the same for a
threshold of 0.15. Reducing the shadow threshold causes some
building’s shadows to be missed, which hurts recall. The effect
of various values of TS is plotted in Fig. 15(a).

3) Direction of Light: The direction of light is important to
assign initial foreground and background pixel constraints once
shadows are identified. If the light direction is not accurate, then
it is possible that foreground and background are incorrectly
assigned. When the light direction bisects, two edge normals
of a rooftop’s contour as in Fig. 13 then the method is very
robust. In general, the sensitivity to L depends on the relation-
ship between the rooftop orientations and the light direction;
when the rooftop edges are parallel to the light direction then
small perturbations in L can cause the shadows to switch from
one side of the building to another. The degree of sensitivity to
light direction is shown more quantitatively in Fig. 15(b), which
plots R, P , and F1 for various choices of L.

4) Foreground Constraints: Grabcut results improve if
there are more accurate foreground pixels. Fig. 14 shows the
effect of dF for dF = 2 or dF = 6 for images with 0.32 m/pixel
resolution. If dF is too small then grabcut will not be able to
infer the foreground distribution of colors properly because of
aliasing or blurring artifacts in the imagery. If it is too large,
then we will label pixels past the edges of the rooftop as fore-
ground. In Fig. 15(c), we plot various choices of dF , from
which we conclude that 2 m is a good value to generate enough
foreground for grabcut to detect buildings.

B. Experiments

We tested the proposed method on a set of aerial images
with different sizes varying from 1K × 1K to 8K × 8K.
The test images are from urban or suburban regions of AZ,
USA, and they include flat and gabled rooftops with complex
shapes.

1) Performance: We implemented our algorithm in python
and used the OpenCV implementation of grabcut. Our imple-
mentation was not optimized and took 14 s on average for each
512× 512 pixels square tile using a PC (Intel Core i7 CPU
3.07 GHz with 6 GB RAM). The individual run times varied
from 5 to 30 s based on the complexity of the tiles. We par-
allelized our algorithm to accelerate the process of large size
aerial images. The running time on a 8540× 8540 aerial images
with 955 buildings is given in Table I. We tested four different
tile sizes with an overlap of Tp = 20 pixels. There is no signif-
icant difference of the time cost when tile size varies from 128
to 1024, but our system ran out of RAM when we attempted
to process an entire image as one tile. We also give the per-
formance of different tile sizes. A small tile size resulted in
a reduced recall score as shown in Table I. The recall is bet-
ter at a tiles size of 512 and when the tile size increased from
512 to 1024 we observed no significant change. In all of our
experiments, we chose 512 as the default tile size.

2) Qualitative and Quantitative Evaluations: A few tiles
from one of the dataset are shown in Fig. 16. The images #1–7
have 0.32 m-per-pixel resolution and consist of a variety of
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Fig. 10. Effect of different numbers of graphcut iterations: (a) an aerial image; (b)–(e) show the result of 1, 5, 10, and 20 iterations of graphcut, respectively, the
F-scores are 69.7%, 85.0%, 87.1%, and 86.8%. Here, green, blue, and red colors represent TP , FP , and FN pixels, respectively. Note that in order to show the
effects of different grabcut iterations, self-correction is not utilized.

Fig. 11. Comparison of different shadow detection method: (a) is original aerial image; (b) is shadows extracted using method in [27]; (c) is shadows extracted
using method in [28]; and (d) is shadows using Yi < 0.15. White area denotes shadows.

Fig. 12. Effect of accuracy of shadow detection: (a) an aerial image; (b) and (d) show initial foreground and background labeling using luminance threshold of
0.25 and 0.15, respectively; (c) and (e) show the result of grabcut on (b) and (d), respectively. True positives are shown in green, false negatives are shown in red,
and false positives in blue.

Fig. 13. Effect of accuracy of light direction, the red arrow indicates the light direction: (a) an aerial image; (b) using correct light direction for initial foreground
and background labeling; (c) result of grabcut on (b); (d) initial labeling using light rotated by 45◦ clockwise; (e) result of grabcut on (d); (f) initial labeling using
light rotated by 45◦ anticlockwise; (g) result of grabcut on (f). True positives are tinted green, false negatives are tinted red, and false positives are tinted blue.

rooftop shapes. Image #3 also has a building with curved roof.
Image #8 has a resolution of 1 m/pixel. The figures show the
TP , FP , and FN pixels in different colors. Table II shows pre-
cision, recall, and F-scores for all the test images shown based
on manually entered ground truth. The precision and recall
average 88% and 91%, respectively. We compare against the
method of Cote and Saeedi [6] and a variant of the method in

[3], but without using NIR data (since, we aim to process RGB
imagery). We call this a modified Ok method. A comparison to
method in [3] is also presented in section IV-B3. The proposed
approach improves over the modified Ok method, which shows
a precision of 87%, and recall 56% and over the method of Cote
and Saeedi [6] which shows a precision of 27%, and recall 42%
on these images.
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Fig. 14. Effect of choosing different dF : (a) an aerial image; (b) and (d) show initial labeling with dF = 2′ and dF = 6′, respectively; (c) and (e) show the result
of grabcut on (b) and (d), respectively. True positives are tinted green, false negatives are tinted red, and false positives are tinted blue.

Fig. 15. Performance curves of each parameter: (a) effects of shadow threshold parameter; (b) effects of light direction starting from East (0◦) CCW to North
(90◦); and (c) effects of shadow shifting distance. In each plot, the nonvarying coefficients are kept at their optimal settings: shadow threshold = 0.15, light
direction = 45, shadow shifting distance = 2 m.

Fig. 16. (Odd column) test images #1–9; (even column) segmentation results for test images #1–9. True positives are tinted green, false negatives are tinted red,
and false positives are tinted blue.

3) Comparisons: We first compare our method with the
VLSE method proposed in [6]. We used source code provided
by the author and all of the recommended parameters in order
to produce the result of VLSE. We applied our method on the

same data originally used in [6] and show the comparisons in
the first row of Fig. 17. The proposed approach gives a highly
competitive result with precision 82.2%, recall 95.0%, and F-
score 88.1% compared with precision 83.7%, recall 88.7%, and
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TABLE II
EVALUATION OF ROOFTOP SEGMENTATION

Fig. 17. Comparisons with method in [6]: (a) an aerial image; (b) the contours extracted by method in [6]; (c) the result of [6] compared with ground truth; (d) our
result compared with ground truth; (e)–(h) show the same comparison on 1 m/pixel image. True positives are tinted green, false negatives are tinted red, and false
positives are tinted blue.

F-score 86.1% by VLSE. In particular, the proposed approach
produced fewer false positives than VLSE. We then applied
both methods on data at a lower resolution of 0.32 m/pixel as
shown in the second row of Fig. 17. VLSE performs poorly on
lower resolution imagery with precision 22.2%, recall 12.8%,
and F-score 16.2%; however, our method still gives high-
quality extraction results with precision 95.7%, recall 80.4%,
and F-score 87.3%. VLSE has the advantage of not relying on
the shadows, but when the shadow information is available in
the aerial image our method performs better. We also compare
our method with the automated rooftop detection method pro-
posed by Ok in [3] as shown in Fig. 18. The 512× 512 image
has four bands: red, green, blue, and NIR, which allows the
original (four-band) version of Ok’s method to be compared.
The resolution is 0.6 m/pixel. Fig. 18(b) shows the result of
Ok’s method with precision 57.9%, recall 12.5%, and an F-
score of 20.5%. We first apply our method on the image using
the shadows provided by Ok et al. As shown in Fig. 18(c),
our method achieves better results with precision 68.5%, recall
23.2%, and F-score 34.6%. We then apply the whole pipeline of
our algorithm on the image and obtain a much better result with

precision 56.9%, recall 46.1%, and F-score 51.0% as shown
in Fig. 18(d). Their method is more sensitive to the shadows
so they only use the most reliable shadows to improve the
precision at the cost of recall. Our method keeps high score
on both precision and recall with the help of the proposed
self-correction steps.

4) Limitations and Failure Cases: Our approach is
designed based on the assumption that the aerial image is
acquired around midday, if this assumption is wrong then our
approach may fail to capture the correct rooftop. Under oblique
lighting, a gabled rooftop may exhibit significantly different
intensities on the sloped portions of the roof, so the grabcut
step may only capture one side of the rooftop as is shown
in Fig. 19(a) and (b). In an extreme case, an entire face of
the rooftop may be in shadow. Even if the image is acquired
around noon, if the rooftop contains several components with
different colors then our method will fail to obtain the entire
rooftops as shown in Fig. 19(d), where the rooftops in the red
rectangle area are missing.

Another limitation is caused by inaccurate shadow extracted
by our method. Although we have shown in Fig. 11 that
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Fig. 18. Comparisons with method in [3]: (a) an aerial image; (b) the result of [3]; (c) the result of our approach using shadows detection method in [3]; and
(d) results using the whole pipeline of our approach. True positives are tinted green, false negatives are tinted red, and false positives are tinted blue.

Fig. 19. Failure cases. If two sides of a gable rooftop have different illumination
intensities (a) or the rooftops are composed of segments with different colors
(c), our method can only capture part of the buildings [(b), red rectangle area in
(d)]; very dark roads also produce false positives [blue rectangle areas in (d)].
White area denotes buildings extracted by our method.

our fixed threshold can rule out most of the dark roads, the
classes are not globally separable by thresholding luminance
and false positives occur as shown in the blue rectangle area
in Fig. 19(d).

Our approach to labeling pixels by shadows makes the
simplifying assumption that a scene has two levels of depth—
elevated part (rooftops) and nonelevated parts (ground). In fact,
rooftops vary in height and one rooftop may cast shadows onto
another. Many buildings have multiple levels and one portion
of the roof may cast a shadow onto another portion of the
roof. Rooftops with multiple gables will contain wedge-shaped
shadows as indicated in Fig. 20. In these cases, the shadow
constraints discussed in this section will introduce errors, but
these errors are rare and confined to small regions within a
rooftop. Our approach also suffers from the shadows cast by
walls, fences, or other man-made objects, as shown in Fig. 20(c)
and (d). Self-correction can reduce the size of the false-positive
regions caused by the shadows of walls, but if the contours
of the false region are parallel to the direction of light then
self-correction will fail. However, walls in our test imagery
often occur as complete loops that enclose an area, and cast
an inner shadow that forces the proposed method to label the
enclosed area as ground. Our approach uses color to identify
pixels as vegetation and constrain them to the background (non-
rooftop), which may fail if there are green rooftops, which will
be mislabeled as background.

V. CONCLUSION AND FUTURE WORK

We have presented a novel approach for segmenting rooftops
only using aerial images. The approach does not require any
elevation or other additional data. It can incorporate constraints

Fig. 20. Errors caused by shadows that do not fit our simple model: (a) a
rooftop that casts a shadow onto itself; (b) the result of our method showing
that the shadow becomes a false negative region; (c) fences that cast shadows;
and (d) false positives for a region with one edge parallel to the direction of
light, our self-correction method fails to completely remove this region. True
positives are tinted green, false negatives are tinted red, and false positives are
tinted blue.

or corrections because it is built on top of the interactive grabcut
method. The algorithm is sensitive to certain parameters such
as shadow intensity threshold which need to be set accurately
for best detection. But these can be easily chosen by looking at
a small portion of the image. However, there are certain areas
where we see an opportunity for further improvement.

For a very large dataset, it is possible that light direc-
tions are not consistent throughout the region due to the
process of stitching together images to form an orthophoto
mosaic from images acquired at different times of the day.
The direction of light as well as the lean of buildings will
vary slightly and it is possible that this could introduce errors
in the method. Future work could estimate which side of a
shadow is elevated without requiring the light direction param-
eter, perhaps by analyzing the shape of a shadow region or the
relationship between shadow colors and the adjacent material
colors.

The proposed method uses a very simple shadow detec-
tion method employing a global threshold to extract shadows.
Adaptive threshold methods, or methods that filter the shadow
regions in order to distinguish shadows cast from buildings
(e.g., by edges quality or shadow thickness) from other fea-
tures could be used to improve the proposed method as future
work.

A key contribution of this paper was a framework for identi-
fying and correcting errors by analyzing the shadows of regions
after using grabcut. We limited corrections to removing false
positives; future work could also attempt to use additional scene
knowledge to generate corrections in the same framework. For
example, the curvatures of the region contours or the vari-
ation of colors within detected regions may carry additional
information that could be used to make corrections.
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