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Abstract

We propose a solution for the dimensioning of parametric and procedural mod-
els. Dimensioning has long been a staple of technical drawings, and we present the
first solution for interactive dimensioning: a dimension line positioning system that
adapts to the view direction, given behavioral properties. After proposing a set of
design principles for interactive dimensioning, we describe our solution consisting
of the following major components. First, we describe how an author can specify
the desired interactive behavior of a dimension line. Second, we propose a novel
algorithm to place dimension lines at interactive speeds. Third, we introduce multi-
ple extensions, including chained dimension lines, controls for different parameter
types (e.g. discrete choices, angles), and the use of dimension lines for interactive
editing. Our results show the use of dimension lines in an interactive parametric
modeling environment for architectural, botanical, and mechanical models.

1 Introduction

In this paper, we introduce a method for the interactive dimensioning of parametric
and procedural models. Our solution can be used in traditional modeling packages, or to
create simplified intuitive 3D editing tools for novice users. Editing with interactive di-
mensioning is fast and only requires minimal understanding of the underlying parametric
model. We envision applications in entertainment, architecture, geography, rapid proto-
typing, and 3D printing.

*twakelly@gmail.com
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Figure 1: Existing systems for dimension line layout produce static positions in world
space (a). After rotating the view, multiple artifacts are visible, e.g. the dimension lines
occlude the model, intersect other dimension lines, or they no longer have a desirable
spacing from the model and other dimension lines (b). Our proposed solution enables
a user to interactively inspect the model while dimension lines are well positioned in a
view-dependent manner, i.e. the dimension lines adapt when the camera moves (c,d). We
demonstrate that dimension lines can be used for editing a parametric model, as well
as extensions that allow the visualization and control of model parameters other than
distances (e,f).

In the traditional form, dimensioning includes the placement of dimension text, di-
mension lines, and extension lines customized for a single view point. Dimension lines
are line segments that indicate the extent of a feature, while extension lines visually
connect the ends of a dimension line to the relevant feature in the model.

Dimensioning has been incorporated into many 3D modeling packages. However, cur-
rent methods are mainly suited to a static viewpoint and are typically completely manual.
In these methods, dimension lines are placed on a 2D drawing, or they are fixed in 3D
world space. If the view point changes, the dimension lines can occlude the model, or
intersect other dimension lines (see Figure 1 (a,b)). In this paper, we propose the first
method to extend dimensioning to the interactive perspective rendering of 3D models.
We offer the following contributions:

• In Section 3, we propose a set of design principles for interactive dimensioning
(see Figure 2 for examples of good and bad dimensioning) and show how interactive
dimension lines can be defined.

• In Section 4, we introduce the first algorithm to position dimension lines in real
time, according to the current camera view, as illustrated in Figure 1 (c, d).
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• In Section 5, we present techniques for using dimension lines to edit direct and
indirect parameters, as shown in Figure 1 (e, f). Together with novel 3D handles
for editing various parameter types, these create a more intuitive user experience
than traditional systems.

Figure 2: According to convention and standards, there are good (green) and bad (red)
positions for dimension lines; see also the accompanying video.

2 Related Work

Dimensioning Within the field of technical drawing dimensioning is the specification of
the dimensions of a 3D (world space) object via 2D (screen space) drawings. The goal is to
add a necessary and sufficient number of dimension lines to specify the geometry. Such
a drawing may be used for defining tolerances during machining, therefore dimensioning
is supported by rigorous international standards [Int03,Ame09]. Typically dimensioning
takes place on an orthographic or plan drawing.

Several commercial systems allow the manual positioning of world space dimension-
ing lines, such as SolidWorks [Das15], SketchUp [Tri14] or AutoCAD [Aut14]. SketchUp,
for example, allows the author to specify such a world-space dimension line by clicking
twice on the model to specify end points, and once to give a offset location for the
dimension line. Automatically positioning lines in 2D has been studied by several au-
thors. Bond [BA89] introduced a rule-based system based on domain knowledge and
implemented it in Prolog. Chen et al. later utilized both a rule-based expert system to
dimension 3D objects on a 2D diagram [CFL01], and techniques such as occluding forbid-
den zones [CFL02] to constrain dimension lines locations. SolidWorks and the AutoCAD
plug-in Salt [Ada10] perform a similar role of positioning world space lines in 3D. How-
ever, these systems suffer from the fact that as the user rotates the viewpoint, the
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dimension lines are often occluded by the model or other dimension lines, i.e. they do not
interactively adapt to the current viewpoint.

Labeling Positioning text and symbols on maps, documents or illustrations in such
a way that other labels and critical features are not occluded is a computationally ex-
pensive operation; typically these problems are NP-hard [CMS95]. Ali et al. [AHS05]
introduce a method for positioning a set of labels near the areas they refer to, avoiding
the silhouette of an object in screen space. That is, they position screen space labels
in screen space. Positioning world space geometry in screen space is studied by Li et
al. [LACS08] to position non-overlapping subassemblies that explain a machine’s func-
tion. However, this system requires several minutes to precompute geometry; some-
thing that is not possible in an interactive editing system. Other work investigates
placing labels by example [VVAH07], and positioning labels at interactive frame rates
in static [SD08,ČB10] or dynamic [BFH01,BHF02] scenes.

3D Manipulators The problem of editing with dimension lines is related to 3D ma-
nipulation widgets. When a user selects a tool, a number of different widgets allow her
to manipulate the current object, for example scale in x, y or z directions. Early sys-
tems [SHR∗92] positioned such manipulators in world space and have remained in use to
the present day [Aut15]. Domain-specific widgets attached to the sub-objects being
edited are also a common subject in graphics, and are used to visualize available trans-
lations [SLZ∗13, MYY∗10], deformations [Rad99, BWKS11, MWCS13], or dimensions of
an orientated plane [LWW08]. Krecklau et al. [KK12] propose that authors pre-define
several views in which procedural modeling manipulators are well positioned on screen (in
contrast to traditional dimensioning techniques in which dimension lines are optimized
only for one static view).

Parametric Models A parametric model takes a number of input parameters and
uses these to create corresponding output geometry. Authors create such models, and
users edit the parameters to quickly generate geometry variations, avoiding the need
for them to become familiar with the details of the modeling system. Typical exam-
ples are parameter-driven scene graphs of 3D packages such as Maya [Aut15] or Hou-
dini [Sid13], and node/shape trees generated by procedural modeling systems, for ex-
ample L-systems [PL90] or CityEngine [Esr14,MWH∗06]. Usually the nodes of such hier-
archical models all have a (possibly non-unique) name and an oriented bounding box. We
use the term scope to refer to such a bounding box and its name.
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3 Interactive Dimension Lines

In contrast to prior dimensioning work, our system does not require the author to man-
ually position dimension lines. Instead, the author assigns a (numeric) parameter to one
or more scopes in the parametric model, and specifies the behavior of the resulting
dimension line. Our system then interactively computes - according to the following de-
sign principles (Subsection 3.1), dimension line properties (Subsection 3.2), and current
camera view - the best position for the dimension line.

Figure 3 gives an overview of the computation process. Per frame, the system uses
the scope (yellow) to calculate initial positions for the dimension lines, called base lines
(blue). The base lines are offset to create candidate lines (transparent orange, only a
subset of all candidate lines are shown). Finally, one candidate line is chosen as the final
dimension line (bold orange) using a scoring function.

Figure 3: To create an interactive dimension line on a parametric model, the author
assigns a parameter to a scope (yellow). Per-frame, our system then computes candidate
lines (left) and selects, using a scoring function, a final dimension line for a given view
direction (middle, right).

3.1 Interactive Dimensioning Principles

Easy comprehension is the main goal when dimension lines are arranged on an object. An
author placing dimension lines makes subjective design choices based on view arrange-
ment, size, function, contour, or spacing; he follows common layout conventions [GHS∗11,
BA89,Dra99,LS08,Wik14]. From these sources we compiled the following list of design
principles for the interactive positioning of dimension lines (as illustrated in Figure 4):
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1. Dimension lines should be placed outside of the model (e.g. b and i in Figure 4) and
not obscure the model or its contours (e.g. a, d, h and l).

2. Dimension lines should maintain a minimum screen-space distance from the silhou-
ette of the object, and from other dimension lines (unlike e and f). In our setup,
we use distance handleSpacing = 30 pixels.

3. Dimension lines should lie in the same planes as the geometry they are applied to
(such as b, but unlike c). In the case of a cylindrical object, they should be drawn
in the plane normal to the view direction (such as i, but unlike g). See also Figure 2.

4. Dimension lines should only be shown for visible features, i.e. not for a component
on the back of the model.

5. Dimension lines should be as close to the feature that they measure as possible
(m is preferable to l or k).

6. Shorter dimension lines should be placed inside longer dimension lines (unlike j and
k).

7. Dimension lines intersecting each other, or intersecting extension lines, should be
avoided (unlike d or k).

8. Dimension lines should be grouped in a co-linear, or co-planar, fashion when pos-
sible (e.g. n and o).

9. Dimension lines should avoid jumping during interactive navigation.

10. Dimension lines should be as long as possible. Due to perspective projection, di-
mension lines can have different lengths depending on their placement.

3.2 Dimension Line Properties

The above design principles underconstrain the layout of dimension lines. Therefore, the
author influences the behavior by specifying the following properties:

Scope: A name identifies zero or more scopes in the parametric model. These scopes
are used to position the parameter’s base lines. If multiple scopes have the same name,
they share all properties.
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Figure 4: Examples of good (green) and bad (red) dimension lines illustrating the design
principles of Subsection 3.1.

Type: Next, the author can choose the type (based on [YTY94]): linear contour, linear
center, diametric, radial, spherical diametric, or spherical radial. The types, illustrated
in Figure 5, control the placement of the base lines relative to the scopes.

Orientation: Each type also requires an orientation, either relative to the scope or
screen. Linear contour (Figure 5, row 1) and linear center (row 2) have one of 6 scope
relative orientations. Diametric and radial (row 3) have 3 scope relative orientations
each, which are combined with the camera position to compute the base line locations.
Finally, spherical diametric and spherical radial (row 4) base positions are specified by
the scope and one of 2 screen-relative directions.

Slip: Afterwards, the author specifies the offsetting behavior as object, scope or bill-
board. This is motivated by design principle 3 and defines the directions in which the
base lines are translated, when they are moved outside the silhouette. Section 4 de-
scribes this process.

Alignment: Finally, the author can specify the preferred screen space location for the
dimension line: top, bottom, left, right, top-left, top-right, bottom-left, bottom-right,
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linear contour (4 base lines)

linear center (1 base line)

diametric (2 base lines) radial (4 base lines)

spherical diametric (2 base lines) spherical radial (4 base lines)

Figure 5: The author defines the type and orientation of the dimension lines. Row 1:
The base lines for the linear contour type are placed on the edges of a scope (black
cube). This results in four base lines with the specified orientation. Row 2: The linear
center type places a base line in the middle of the scope. Row 3: Diametric & radial
types are suited to cylindrical objects. To position these base lines, ellipses (purple)
are located on scope faces identified by the orientation; the cross product of the view
direction and ellipse normal (orange lines) is projected onto the ellipse to find the base
line orientation. Row 4: Spherical diametric & spherical radial types are suited to
spherical objects. These align a sphere (green) within the scope, positioning base lines
with horizontal or vertical screen-space orientation within the sphere.

or no preference. This permits predictable layouts (e.g. a height dimension line that is
always on the screen-right of the model), and leads to more stable positioning during
navigation.

For example, in common practice the height of a cuboid is dimensioned using the
linear contour type combined with the scope slip behavior, as in Figure 3 (type=linear
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contour, orientation=up, slip=scope). Another common use case is the billboard behavior
applied to the types linear center, diametric or radial. The typical example is a cylinder
with a height parameter (type=linear center, orientation=up, slip=billboard) and a diam-
eter parameter (type=radial, orientation=up, slip=billboard), as illustrated by the green
dimension lines of Figure 2, right. However, all properties can be applied to any dimension
line.

4 Dimensioning in Real-Time

In this section, we present the underlying methods of our real-time dimensioning system.
Each parameter in the parametric model is processed to find a final dimension line.

One parameter gives rise to 1-4 base lines for a single scope. Each base line is
associated with 1 or more planes, depending on the slip behavior. For each {base line,
plane} pair we create up to 2 candidate lines. Exactly one candidate line is selected
as the final line to be rendered. During interactive navigation by the user, the system
computes the position of each parameter’s final line per frame.

Each slip behavior translates base lines in different directions to find candidate
lines outside the silhouette. This slip direction is defined by a partially bounded plane
associated with each base line. If final lines have already been placed on the plane, it
may be possible to position the candidate collinearly to one of these lines. Otherwise,
the base line “slips” along the plane, parallel to itself in world space, until it is outside the
silhouette. There are three options for defining planes: billboard and scope (Figure 6)
create planes relative to the base line, while object (Figure 7) uses a global pre-computed
set of planes. As illustrated in Figure 2, different models require the author to select
different slip behaviors. If this process fails to find any candidate lines, the final line
is positioned inside the silhouette.

Algorithm 1 gives an overview of this process. It describes how the final dimension
line for a parameter p is computed for the viewpoint v. The function getDimensionLine
is called for each parameter in an ordered list of all parameters.

First, in line 1, we eliminate a dimension line if all its scopes lie outside the view frus-
tum, or are obscured by the model (using hardware occlusion queries [CCG∗07] from the
previously rendered frame). Afterwards, we can setup the base line set, B, according
to the properties defined by the author. In lines 3-5, we compute the set of planes
P on which candidate lines will be positioned. Figures 6 & 7 illustrate how planes are
generated depending on the property slip. In case the latter is object, the set of object
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slip=scope slip=billboard

Figure 6: Left: getScopePlanes in Algorithm 1 aligns two scope aligned planes through
the base line. Right: getBBoardPlanes creates a single plane through the base line,
oriented in the view direction.

planes Pobject is used. Pobject is pre-computed by clustering base lines; this is described
in Subsection 4.4.

Next, we try to group dimension lines together (according to principle 8 in Subsec-

slip=object

Figure 7: Pobject defines a set of partially bounded global planes (red, green, yellow and
light blue) aligned to the model’s geometry; typically the planes will not pass through the
base line’s scope. A base line (blue arrow) finds a candidate position (orange arrow) on a
plane (yellow).
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Algorithm 1 getDimensionLine(p, v)
1: if ¬isScopeVisible(p.scope, v) then return ∅
2: B = getBaseLines(p.scope, p.type, p.orient, v)
3: if p.slip=scope then P = getScopePlanes(B, p.scope)
4: else if p.slip=billboard then P =getBBoardPlanes(B, v)
5: else P = Pobject

6: G = findExistingGuidesOnPlanes(P,Gsnap)
7: C = getCandidatesOnGuides(B,G)
8: if C=∅ then C = computeWithSilhouette(B,P, v)

9: if C=∅ then C = B

10: d = computeWinner(C, p.align, v)
11: add d to Gsnap

12: return d

tion 3.1). Therefore, we maintain a per-frame global set of guide lines, i.e. positions to
snap to: Gsnap. These guide lines correspond to dimension lines from previously pro-
cessed parameters (see line 11). Thus, in line 6, we find all the guides in Gsnap that lie
on the planes in P . From the resulting set of guides, G, we then select the ones with
available space to place our dimension line. This process is illustrated in Figure 8. This
results in our candidate lines on guides, C . In the case that C is empty at this point, we
cannot snap to an existing guide (line 8), and have to compute a new candidate line using

c
a

b

Figure 8: Left: A final line (b) inGsnap, and a baseline (a) which we are processing. Right:
we find the guide line (dashed orange) on the same plane as (a), and use it to position the
new candidate line (c).
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the silhouette algorithm described in Section 4.1. If, again, C is empty, we fall back to
the base lines (line 9). This results in a dimension line placed inside the object - fallback
behavior when the user has zoomed in and the silhouette is not visible.

Finally, in line 10, we select the best possible line, d, from the set of candidate lines,
C , using the scoring function described in Subsection 4.2.

4.1 Silhouette Line Placement

In this subsection we will describe our approach to computing offset candidate locations
(computeWithSilhouette in Algorithm 1), given a set of base lines,B, a set of planes, P ,
and camera viewpoint v.

Each line in B is projected onto each of its planes in P , creating pairs {b, p}. If
b is not parallel to its base line, we reject the pair; otherwise we continue to compute
up to two candidate locations outside the model silhouette per pair {b, p}. We find the
candidates by sliding b along p, self-parallel in world space, until it is outside the model’s
screen space silhouette (Figure 9). For each input line and plane there are two opposite

ϕ2

ϕ1

x1

x2

padding

}

offset

}

offset
padding

b

p

Figure 9: The geometric construction of candidate lines. Our goal is to compute the
minimal translation of line (b) over the plane (p) so that the candidate lines can be placed
without intersecting the model silhouette (gray shape). The final candidate lines (ϕ1

and ϕ2) are moved by an additional padding distance beyond their nearest intersections
(x1, x2).
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offset directions on the plane, which create two possible candidate lines. One base line
may be processed several times if it is associated with multiple planes in P .

The sliding calculation proceeds in two steps. First, we compute the minimal offset
such that the dimension line does not obscure the model, but only touches the silhouette.
Two touching points are given as x1 and x2 in Figure 9. Second, we offset these minimal
positions by a padding distance (design principle 2 of Section 3.1), handleSpacing =
30 pixels. This results in the final candidate lines (ϕ1 and ϕ2 in Figure 9). The second
step is trivial, so we will focus on the first step in the following.

A detail of the minimal offset calculation is that, in the general case, extension
lines that are parallel in world space are not parallel in screen space. Furthermore,
the candidate lines are not parallel to the base line. These issues are illustrated in
Figure 10, left, showing a scope’s base line, b-t, and possible minimal offset lines, bc-
tc, with different 2D orientations and lengths, due to perspective. These lines share
a common vanishing point, v. A model in an orthographic projection does not have a
vanishing point, but this can be simulated by a virtual vanishing point at a large distance.
In Figure 10, right, o gives the minimal offset as v-o lies to the left of the clipped
distance field, only touching at x.

The minimal offset calculation is accelerated using the GPU to reduce the perfor-
mance penalty associated with the model’s geometric complexity. Initially we use the
GPU to render four one-dimensional distance fields: one from each of the four edges
of the viewport (Figure 11). For example, for the distance field from the left viewport
boundary we obtain one distance value for each pixel-row over the height of the view-
port. The distance value specifies the horizontal distance from the left boundary to the
model’s silhouette.

Together, the four distance fields approximate the model silhouette. We found that
1D distance fields are much faster to build and query than a 2D or 3D silhouette edge
graph. Additional acceleration is provided by using a binary tree to query the distance
fields; at each node in the binary tree we store the minimum and maximum distances of
each subtree. Rays are cast through the binary tree to identify the boundaries of the
clipped silhouette, and determine the minimal offset. The smallest value from each of
the four distance fields gives the global minimal offset. If no silhouette could be found
in any direction (e.g. the silhouette intersects the viewport boundary), no candidate line
is returned; this causes Algorithm 1 to position the candidate line on the base line.
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4.2 Finding the Final Dimension Line

The goal of this step (computeWinner in Algorithm 1) is to select a final dimension line
from among the candidate lines computed in the previous subsection. Because of the

v

x

ob

t

bc

tc

v

Figure 10: 2D screen space offset calculations. Left: due to the perspective projection
to 2D screen space, base lines rotate and change length as they are offset in world
space. Right: offset computation using a distance field (red dashed line) clipped to the
extension and base lines (red solid line).

Figure 11: We compute four distance fields to approximate the silhouette of the model.
One distance field is computed for each of the four viewport edges. Left: the distance
field from the left boundary. Right: all four distance fields approximate the model’s
silhouette.
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requirement for interactive frame rates, we use a greedy approach.

We evaluate each candidate line using the following scoring function, S, and select
the candidate with the highest score. Intuitively this function primarily favors the
candidate line nearest to its base line, using screen candidate line length as a tie-breaker.
Preferred alignment, temporal damping, and plane preference are relatively minor terms
that provide tie-break stability to the system.

S = λ1Dist+ λ2LenCandidate+ λ3SSAlign

+ λ4Damp+ λ5Intersect+ λ6Plane (1)

To convert all our of penalty functions into the same unit, we multiply by handleSpacing
(= 30 pixels) where necessary. We describe each of the components below.

Dist ( λ1 = −1 ) measures the distance of the middle point on the baseline to the
middle point on the candidate line in pixels. This is motivated by design principles 1, 2
and 5 (see Subsection 3.1).

LenCandidate ( λ2 = 0.02 ) measures the length of the candidate line in screen space.
Lines foreshortened because of perspective have reduced importance (design principle
10).

SSAlign ( λ3 = 3 × handleSpacing ) computes how close the screen space extension
line direction, d1, is to the preferred alignment direction, d2 (given by the property
alignment). If no preferred alignment is specified SSAlign = 0, else SSAlign =
d1.dot(d2); d1, d2 are normalized. If non-zero, this term increases temporal stability
(design principle 9).

Damp ( λ4 = 0.5 × handleSpacing ) tries to enforce consistency in the candidate
selection and to avoid jumping dimension lines during navigation (design principle 9). If
the candidate line is the same as the final line in the last frameDamp returns 1, otherwise
0. See Figure 12 for an illustration.

Intersect ( λ5 = −handleSpacing ) returns 1 if the candidate line or its extension lines
cross a previously placed dimension line or extension line, and 0 otherwise. This is a small
term to avoid, rather than exclude, intersecting lines (design principle 7).

Plane ( λ6 = 3 × handleSpacing ) returns 0 if either there is no plane associated with
the candidate line or its plane is from the billboard slip behavior, 0.5 if the plane faces
away from the camera, or 1 if the plane faces towards the camera.

We note that when using the base lines as candidate lines (after a failure to find
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Figure 12: Left to right: as a base line moves away from a silhouette, the effect of
damping is to give a small amount of elasticity, meaning the line does not immediately
move to the new position when the silhouette changes (middle). This gives the user a
chance to anticipate the movement. Without damping we snap from (left) to (right).

better candidate lines), the scoring function favors longer lines with the specified pre-
ferred alignment; the other terms are irrelevant.

4.3 Advanced Dimension Line Placement

In this subsection, we discuss two advanced cases of dimension line placement: placing
dimension lines for multiple scopes with the same name, and grouping dimension lines with
the same orientation and plane together. Such lines are called chained dimension lines
as illustrated in Figure 14.

Multi-scope If a model contains multiple scopes with the same name, it is taken that
all these scopes are associated with the same parameter. It is therefore sufficient
to place a single dimension line on one of these scopes to illustrate the parameter. In
this case, getBaseLines in Algorithm 1 returns all base lines for all scopes with the same
name.

Chained Dimension Lines As described by Lieu [LS08], chained dimension lines in-
dicate that several measurements are collinear and contiguous in world space. For our
interactive system we do not demand that the chained lines are contiguous, but use the
style to indicate repeated dimensions. The author specifies if a parameter is chained.
The advantages of chained dimension lines are that they suggest to the user that one
parameter can affect multiple scopes in a row or grid; such grids are typical on build-
ing facades. Another benefit is that we perform fewer computeWithSilhouette calls
(Subsection 4.1), improving speed for large grids of scopes.
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Some challenges of chained dimension line computation are that we first need to
identify which base lines lie in the same plane. Further, after projection onto the final
chain line, the chained lines may intersect, either between themselves or with existing
lines. Therefore, we must select a non-intersecting subset of base lines for projection.
The algorithm proceeds in the following steps.

First, given the set of base lines for a parameter (Figure 13, left, blue arrows), we
cluster these base lines according to i) orientation, and ii) the planes that they lie in.
Given each such cluster, we find an oriented bounding rectangle of all base lines in the
plane associated with the cluster (Figure 13, left, blue dashed rectangle). Then we use
two sides of these oriented bounding rectangles as the new candidate chain base lines
(Figure 13, middle, green dashed lines), and proceed using the algorithm from Section 4
to compute a final chain line (Figure 13, middle, solid green line).

The base lines within the cluster associated with the final chain line are then pro-
jected onto the final chain line (Figure 13, right). We must account for intersections,
both between the lines in the cluster, and, in the case that the final chain line is a guide
line, existing final lines from other parameters. For all base lines in the cluster associ-
ated with the winning final chain line, we project them onto the final chain line in world
space. The nearest base lines are projected first. If the region is already occupied, the
base line is rejected.

We run the clustering algorithm as a pre-processing step, and when the model changes.
The combination of chained dimension lines and guide lines produces a compact layout
when working with tiled or repeating elements; facades are a typical example, as in Fig-

Figure 13: Chained dimension lines (red arrows) align final lines from the same parame-
ter. The alignment is implemented by finding several candidate chain base lines (dashed
green arrows), and then finding the most suitable, the final chain line (solid green arrow).
Final dimension lines are projected onto this final chain line.
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ure 14.

4.4 Object Plane Locations

Object planes provide organization to lines with the parameter slip=object. As illus-
trated in the accompanying video, our early experiments showed that complex models
under extreme perspective created a “forest” of lines, that were widely spread, untidy,
and difficult to interpret. Our solution is to pre-compute a smaller number of object
planes from the base line positions. Placing the candidate lines on these planes results
in a significantly tidier layout.

The set of object planes, Pobject, in Algorithm 1 is comprised of front and back facing

Figure 14: A facade with 3 parameters dimensioned using chain lines: windowsill height,
window width, and window height. The width parameter is multiplied by a random value
to obtain various window sizes, so an indirect chain dimension line is used, indicated by
dashed gray dimension lines (top). Note how the snap guide on the left supports two
parameters on a single line.
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partially-bounded planes that cover most of the screen. To compute the planes, we first
project all base lines onto the object’s ground plane (the xz-plane of its OBB). Second,
we compute the 2D convex hull of the resulting points and lines on the ground plane.
Third, as illustrated in Figure 15, the hull is extruded to the height of the object and
each face of the resulting geometry becomes a plane. Planes with a normal within 0.1
radians of perpendicular to the camera view direction are ignored. We form two groups
of planes: forward and backward facing; each plane is clipped against the other planes
in its group. The forward facing planes are preferred for dimension line placement in
Subsection 4.2. We use this distinction between forward and backward facing planes
because, as illustrated in the accompanying video, we observe that when the forward
facing planes were full of lines, the backward facing planes often have remaining space.

Figure 15: Computation of the object planes from the extruded convex hull (left). For-
ward (middle) and backward (right) facing bounded planes are created.

4.5 Algorithm Details

In this subsection, we discuss the details involved in combining the algorithms of the
preceding sections.

Parameter Order Design principle 6 (Subsection 3.1) states that the nesting should
be computed with longer dimension lines further away from the object than shorter ones.
Therefore, we sort the parameters by the average length of their base lines in world
space. A special case are chain lines; for these we compute the average world space
length of all the parameter’s base lines. In general, this gives a shorter length than that
of the entire chain. Given this sorted list of parameters, we position dimension lines
starting with the shortest first. Sorting by world space, rather than screen space length
allows i) frame-to-frame positioning decisions to be consistent, and ii) pre-computation
of this order. One intuitive advantage of this ordering is that shorter dimension lines fill
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irregularities in the silhouette better that long ones. Further, there is a higher chance
of extension lines intersecting dimension lines if longer dimension lines are placed closer
to the model silhouette.

Silhouette Updating As we add dimension lines to the current view, we update the
silhouette of the model by modifying the distance fields, see Figure 16. Further, we
store a boolean flag with each value in the distance fields to indicate if the distance
was modified by a prior dimension line. This is used to encourage dimension lines to not
cross earlier final dimension lines or extension lines, via the Intersect penalty term of
Subsection 4.2.

Figure 16: Left: the left distance field (red) for a model, and a base line (blue). Middle:
the distance field after positioning the candidate line (orange). The winning line sets
the boolean flag for the region it has updated (red dashed line). Right: this allows
subsequent final dimension lines to be positioned avoiding existing final dimension lines.

5 Interactive Editing

Our dynamic line placement enables predictable and intuitive editing of parameters. It is
natural for users to interactively edit models with dimension lines, as they are positioned
close to the feature that they are manipulating, without obscuring the model itself.
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The arrows terminating dimension lines are treated as handles that can be dragged
by the user with the mouse. Depending on the parameter type (as Figure 5), either one
or both arrowheads are colored orange to indicate that they are a handle.

Indirect Handles So far we have assumed that the value of the parameter is al-
ways equal to the length of the dimension line. There are situations, however, in which
the relationship between the dimension line length and the parameter value is complex
or indirect. A typical example is the parameter Number_of_Floors which controls the
height of a house, as shown e.g. in Figure 1. Here the number of floors is an integer,
while the scope size it is attached to is measured in meters (and is a function of floor
height, spacing between floors, and number of floors). Another example is a parameter
that drives the total floor area of a building, when not all floors have the same area (see
Figure 17).

Figure 17: These buildings are parameterized by total floor area. We wish to position
the dimension line as shown, to control this parameter. In the red case there is a linear
relationship between the line and parameter value. In the green and blue cases there is
a non-linear relationship. Indirect handles provide an appropriate line length and editing
behavior. Note the stippled dimension line, and author specified spherical decoration.

Our solution to this problem are indirect handles. In a static model, a scope specifies
the position, orientation, and length of a base line. During interactive dragging of a
handle, the behavior of direct and indirect handles differs. Direct handle lengths are
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given by the parameter’s value, without waiting for the asynchronous recomputation of
the model. In contrast, indirect handles wait to take their length from the scope, once
the model has been recomputed.

As the user drags an indirect handle the model is regenerated, and the number of
scopes, and their positions, may change; a typical case is when editing the parameter
Floor_Height using a dimension line in the center of a building. In this situation we use
the scope with the same name, that is nearest to the position of the handle when the
user started dragging, to position the dragged indirect dimension line.

We indicate indirect parameters to users by stippling the dimension line. Indirect
handles also have applications to situations where the parameter specifies the desired
spacing between repeating elements, and the parametric model rounds this value to en-
sure an integer number of elements; an example is the CGAShape [MWH∗06] repeat
operation. One such operation is illustrated in the Parthenon model of Figure 23 by the
parameter Column_Spacing.

Other Handle Types Our system includes other parameter types and representa-
tions. Rotational handles control a floating point value representing an angle, these are
rendered as in Figure 23, with optional distance field queries to move them outside the
model. Boolean handles represent a binary parameter. Range handles allow the user
to specify one discrete option from several. Boolean and range handles (Figure 18) are
placed similarly to dimension lines.

a

b

Figure 18: The boolean handle (a) is used to switch between a schematic (left) and a
realistic tree (middle & right). When the scope containing the realistic tree is created,
a range handle (middle, b) is shown, which can be used to change the tree type (right).
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Rendering Handles We use a number of techniques to improve the usability of the
handles; examples are given in the video. Visibility: Typically dimension lines that are
short in screen space represent less important features. The author can specify a min-
imum line screen length in pixels; below this length, lines and handles are not shown.
Handles are also hidden if they are angled towards the view location. A modifier key
shows all hidden handles. Hover behavior: If a user hovers over a handle, it displays its
current value and increases in size to emphasize that it is editable. Animation: When
several handles move from one location to another as the view rotates, it can be hard
for a user to follow them. Therefore we animate between handle positions, visibility,
and size. Animation also reduces jitter in handle positioning.

Extension Lines For each dimension line we draw extension lines from the top and
bottom of the handle to the corresponding base line. If necessary the lines are bent at
the associated plane, Figure 14. If both the top and bottom extension lines are collinear
with an existing dimension line, they are offset slightly in a perpendicular direction for
clarity, this effect is visible on the sail-width handle of Figure 21.

6 Results

Figure 19: Helix House. Top: world space static dimension line positions. Bottom: our
system creates dimension lines that are visible, usable, and consistent with design prin-
ciples at a wide range of camera positions and fields of view.

We evaluated our system on a number of parametric models (Figures 18-24). A
summary of the results are shown in Table 1, and the accompanying video. These models
give a range of complexity (103 to 105 polygons), domains (architecture, engineering and
botany) and number of parameters (6-23). Specifying the handles took between 10 and
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name fig. poly count params
base lines

(in clusters)
num

clusters
pre-

process
GPU fps

(no handles)
CPU
impl

GPU
impl

Single Tree 18 5610 6 15 (0) 0 <1 ms 459(1021) <1ms <1ms
Helix House 19 1495 13 210 (80) 22 <1ms 171 (944) 11ms 3.5ms

Lever 20 1178 7 45 (36) 10 < 1ms 353 (955) 3ms 1.4ms
Boat 21 58214 23 37 (36) 24 2ms 147(681) 364ms 3ms

Omni Tree 22 29767 18 75 (0) 0 <1 ms 192(912) 1ms 2ms
Parthenon 23 132263 10 266 (240) 32 2ms 129 (392) 1122ms 3ms
Candler 24 45366 6 2260 (2260) 47 87 66 (242) 719ms 4ms

Table 1: For each model we include a number of statistics, including the total number of
base lines, the number of those lines which are in a cluster, and the frames per second
measured; separate timings for the CPU and GPU implementations are given.

50 minutes; the majority of this time is spent finding appropriate scopes for each handle.
Our test system was a late 2012 Core i7 iMac with a GeForce GTX 680MXmobile graphics
card, displaying a viewport resolution of 1000 x 1000 pixels. Parametric models create
a variety of geometry and scopes, therefore we chose one typical parameterization for
each model. The total number of final handles shown is typically the same as the number
of parameters, with two caveats. Firstly, this counts repeated handles for the same
parameter on a chain line only once. For example, the Candler building’s Window_Height
parameter has 16 dimension lines on a single chain line. Secondly, the number ignores the
effects of handles attached to occluded scopes and those handles whose scopes are not
created in this particular parameterization. In the Boat model, for example, each mast
has aMast_Height parameter; some of which are only visible on larger parameterizations
of the boat.

The system performance when rendering handles is always real time (66 to 495fps).
The GPU generated distance fields ensure that the number of base lines and distance
queries, rather than the polygon count, determine the performance. To illustrate this,
we implemented a CPU only solution that positioned the dimension lines by processing
the object mesh; the results are shown in the right hand columns of Table. 1. The GPU
computed distance fields give a speed-up of up to 370x compared to the CPU algorithm,
with the benefit increasing with model polygon count. Note that because of delayed
buffer read-back, the GPU implementation timings do not include the time to create the
distance fields. The chained lines ensure that even on large facades, the performance
degradation was limited, with the byproduct of a superior user experience.

Our decision to use scopes as the mechanism to position dimension lines and other
handles proved very flexible. As a side effect of this design we are able to use other
properties of the scopes; the size of the scope is used for indirect handles, while the
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orientation frame is necessary to align rotational handles. The set of scopes abstraction
is also very adaptable to a wide range of parametric systems; indeed any system capable
of outputting a named, oriented cuboid can use our dimension lines. Furthermore, one
or more subroutines can create scopes with a particular name, avoiding the rigid hierar-
chies of, for example, CGAShape [MWH∗06]. To hide a dimension line, the parametric
model simply does not create the scope with the given name. Only three of our examples
required additional scopes to be added, beyond those that the models’ original authors
created. In these cases it was possible to create intermediate or invisible scopes that
had no effect on the geometry. In our implementation, the scope and other parameters
of Subsection 3.2 are specified in a text annotation next to each parameter’s definition.

Because dimension lines are typically larger and have more positioning constraints
than previously published label layout work, temporal coherence can be an issue from
frame-to-frame. There is a conflict between a good per-frame solution and a temporally
good solution; this trade-off is made with the damping term, Damp, in Subsection 4.2.

Clearly identifying a parameter’s direction and affected geometry aided novice users.
For example, novice users were confronted with the task of adjusting the size of the Can-
dler building’s roofline (Figure 24). They were able to manipulate the Cornice_Overhang
handle, despite not knowing the technical term used in the parameter name (cornice).
There is a limit to these parameter identification benefits: the Omni Tree model of
Figure 22 explores a system in which many base lines with many orientations were po-
sitioned in a compact space. The system is able to position the handles at interactive
speeds, but only experienced users can consistently identify which dimension lines con-
trols which trees. Another advantage of our system is that the number and range of
handles also gives an indication of the ways in which a parametric model may be ma-
nipulated. This proves useful when discussing with users how much variety a particular
parametric model is able to create.

7 Conclusions and Future Work

We propose the first system for the interactive positioning of dimension lines. We
give a set of design principles for interactive dimensioning and provide an algorithmic
framework incorporating these principles. We describe how an author can specify the
interactive behavior of dimension lines. An algorithm uses this description to select the
final dimension line positions from among the candidate positions. Further, we describe
multiple extensions, including chained dimension lines, indirect parameters, different
handle types (e.g. boolean and rotational handles), and the use of dimension lines for
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interactive editing. We demonstrate that our framework provides interactive frame
rates when editing architectural, botanical, and mechanical models. In future work we
would like to extend the use of the GPU to accelerate our algorithms further, explore
the applications of interactive dimension lines to touch screen devices and examine the
use of dimension lines for image editing. We believe that the presented system has
the potential to allow a wider range of users to explore, understand, and manipulate
parametric models than existing approaches.

a b

c

d
e f

g

Figure 20: Sprung Lever. Left: a) type=spherical diametric, slip=billboard; b) rotational,
none; c) linear center, billboard; d & g) linear contour, scope; e) radial, billboard; f)
diametric, billboard. Middle: base lines (blue). Right: changing the configuration of the
model causes the dimension lines to re-calculate their positions.
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Figure 21: Boat. The object planes allow the large number of parameters on this model
of a galleon to remain clear and distinct.
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Figure 22: Omni Tree. When there are many dimension lines it is difficult to understand
their behavior. Here 3 repeated sets of parameters from Figure 18 create 5 different
trees.
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Figure 23: Parthenon, Athens, Greece. Left: as we zoom into the model, it becomes
impossible to position dimension lines outside the silhouette. We see that dimension
lines d (column spacing) and e (column radius) are positioned on their base lines. In
addition short lines with a minimum display length (i) become visible. Also of note are
the three chained dimension lines (def). Near right: orthographic top view. Far right:
base line positions (blue).

28



Figure 24: Candler Building, Georgia, USA. Left: a three quarters perspective view.
Middle left: dimension lines are positioned inside the silhouette when zoomed in. Middle
right: orthographic top view. Right: orthographic side view.
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9 Why is this paper in such an awesome font / why are
my eyes bleeding?

During video editing for the paper, an author made the comment that the cross fade
is the Comic-Sans of the cinematography. The other authors disagreed. After a
convoluted reasoning process it was decided to test this statement by releasing the
author’s copy of this paper in the aforementioned typeface. The authors await public
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