
EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Designing Camera Networks by Convex Quadratic
Programming

Bernard Ghanem, Yuanhao Cao, and Peter Wonka

King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Figure 1: Example result of our proposed optimal camera placement framework. In a particular scenario, the user inputs a 3D
floorplan that can be generated by processing an overhead 2D floorplan using the user-friendly GUI we developed. After setting
certain camera parameters (e.g. field-of-view and depth-of-field), our approach computes a placement solution that can either
maximize 3D floorplan coverage with a limited number of cameras or minimize the number of cameras needed to cover the
entire floorplan. Unlike other placement methods, our approach is computationally efficient because it solves a constrained
convex quadratic program. It also allows pairwise camera interactions to be directly encoded, which is quite useful for multi-
view applications, such as 3D reconstruction and surveillance.

Abstract

In this paper, we study the problem of automatic camera placement for computer graphics and computer vision
applications. We extend the problem formulations of previous work by proposing a novel way to incorporate
visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged
to have cameras that image the same important locations from different viewing directions, which can enable
reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can
be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover,
we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution
is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is
comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally
attractive, our method also allows users to explore the space of solutions for variations in input parameters. To
evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport).

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

We study the design of camera networks for applications in
computer graphics and computer vision. The main motiva-
tion is the setup of surveillance systems for large buildings

such as malls, airports, stadiums, factories, office buildings,
or outdoor spaces, such as sidewalks and streets. In addition
to the design of traditional surveillance systems that assume
a human analyst processing the data, we are also interested

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

in designing denser camera networks that would allow for
automatic tracking, 3D reconstruction, change detection, or
action recognition. We study the problem of automatic and
optimal camera placement. Optimal camera placement is de-
fined as the task of finding a set of cameras (e.g. defined by
location, orientation, field-of-view (FoV), and depth-of-field
(DoF)) to optimize a task-specific objective in a pre-defined
region-of-interest (ROI).

There are two main ways to formulate the camera place-
ment problem: (i) minimizing the number of cameras that
completely cover the ROI [MD04, DOL06, ES06, RRA∗06,
BDSP07, YK08, GB09, SKR09, vdHHW∗09, AA11, Ste12]
and (ii) maximizing the coverage of the ROI with a limited
number of cameras [HL06, YCA∗08].

Our first major contribution is to propose a framework that
tackles both of these questions as well as a novel extension
that is unique to our work. This extension is a general model
for camera relationships that encodes how well two cameras
can work together. For example, for many tasks (e.g. 3D re-
construction and multi-camera tracking), it is beneficial to
cover a region with more than one camera. However, these
cameras should preferably observe the region from different
views.

An important practical aspect of the camera placement
problem is efficiency. A user typically wants to explore the
solution space, rather than compute a single solution. For
example, a user might decide that he can only afford seven
cameras for surveillance of a store. However, after exploring
the solution space, he might find that reasonable configura-
tions can only be found by expanding the camera network to
more cameras. Similarly, a user could have a list of hard con-
straints that unfortunately afford no solution. Therefore, the
goal of this work is to derive an efficient optimization algo-
rithm that enables the network designer to explore the space
of optimal camera solutions for varying requirements and
user-defined parameters. We observe that current methods,
which model the problem as a binary linear program (BLP),
are computationally expensive for medium and large scale
problems, where hundreds of cameras need to be placed. In
these cases, solving a BLP using the most efficient branch-
and-bound methods has a runtime in the order of hours. This
runtime might be acceptable to compute one placement, but
it is infeasible to explore the solution space and experiment
with different parameters.

Our second contribution is to propose a new mathemati-
cal formulation for the placement problem (namely a convex
quadratic program with linear constraints), which lends itself
amenable to efficient optimization methods. These methods
are significantly faster than branch-and-bound techniques,
without sacrificing solution quality as greedy methods.

Related Work
There are several variations of the camera placement prob-
lem in the literature, depending on the objective to be opti-

mized, the type and nature of the ROI, the presence of static
or dynamic obstalces/occluders in the ROI, and any strict
constraints (e.g. limitation on the total number of cameras)
to be satisfied. We refer the reader to literature surveys on
sensor planning methods [TT95, MC13, MCT14].

Sparsest Camera Placement: Most often, the ROI is dis-
cretized spatially into a finite set of grid cells; however, there
are exceptions that do address the much harder continuous
placement problem [Ste12] and the well-known Art Gallery
Problem [O’R87]. The majority of work on camera place-
ment seeks to find the minimum number, layout, and settings
of cameras needed to ‘cover’ a specific ROI, most often in
the presence of static occluders (e.g. walls and pillars). The
visibility of the ROI from a single camera is usually modeled
as a binary profile (or occupancy grid map), where non-zero
values indicate visible grid cells. In this case, the problem is
a set coverage problem. Methods of this type vary according
to their treatment of the underlying optimization problem.
The method of Erdem et al. [ES06] addresses the problem on
a 2D floorplan from a computational geometry point of view,
models it as a linear binary program (LBP), and exploits con-
ventional branch-and-bound methods to solve it. The com-
putational cost of solving this LBP is reduced by a divide-
and-conquer strategy using the Parisian evolutionary com-
putation approach of Dunn et al. [DOL06]. This LBP can be
extended to allow for different types of cameras (directional
and omnidirectional) with different imaging models [GB09].
Ram et al. use a heuristic greedy method to approximate
the LBP solution [RRA∗06]. In the work of Sivaram et al.,
the LBP is relaxed to an LP and solved using the conven-
tional simplex method [SKR09]. In the previous methods,
all grid cells of the ROI are considered to have equal im-
portance. This assumption is relaxed by Yabuta et al. to dis-
tinguish essential from non-essential cells [YK08]. Also, in-
dependently moving dynamic occluders/obstacles can be in-
corporated to form a probabilistic formalism of the occu-
pancy grid map [MD04] and the solution can be found using
simulated annealing. Furthermore, trajectories generated by
object tracking in video can be used to weigh the different
grid cells [BDSP07]. Here, optimization is performed greed-
ily, where the single best camera at each iteration is added to
the solution. Some vision tasks (e.g. tracking and reconstruc-
tion) encourage higher degrees of overlap between cameras
or proper camera handoff. This can be viewed as a structural
constraint on the spatial layout of the network. Van Den Hen-
gel et al. incorporate a simple version of this constraint in
3D floorplans and use a computationally expensive genetic
programming method for optimization [vdHHW∗09].

Limited Budget Placement: Another placement objective
that is optimized is the coverage/visibility of an ROI un-
der a strict limitation on the number of cameras (or equiv-
alently a limited budget). Here, the entire ROI cannot usu-
ally be covered, so an optimal placement of the network is
necessary to satisfy task-specific requirements. In the work
of Horster et al., this objective is minimized in 2D by solv-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

ing the BLP greedily (one camera at a time) and by em-
ploying a heuristic divide-and-conquer strategy to reduce the
problem size [HL06]. In the context of multi-camera persis-
tent tracking, Yao et al. tackle a similar problem for a 3D
ROI [YCA∗08]. The discrete optimization method used here
is very computationally expensive.

2. Methodology

In this section, we give a detailed description of our proposed
camera placement framework (refer to Figure 1). In what fol-
lows, we discuss the various objectives and constraints that
can be incorporated in this generic framework. We formu-
late and approximate the underlying problem as a convex
quadratic binary program (QBP), which in turn can be re-
laxed using standard methods to a convex quadratic program
(QP). Although the relaxed QP can include a large number
of variables, it is amenable to efficient solutions over ranges
of user-defined parameters. Also, we describe a GUI that al-
lows the user to efficiently explore the solution space across
ranges of parameters.

2.1. Floorplan Model

In this paper, we represent an ROI by a 3D floorplan. In this
work, we expect a user to input a floorplan image, such as
the one of a recreation room in Figure 2. We developed a
user-friendly GUI that is used to draw points and polylines
on the floorplan and to specify height information, e.g. to
indicate where walls are, where cameras might be located,
or to place arbitrary 3D objects. Similar to most previous
work, the floorplan is discretized into grid cells with a user-
defined spatial sampling rate in all three spatial dimensions.
As this rate increases, it approximates the continuous cam-
era placement problem. Following practical considerations,
cameras cannot be located anywhere, so their locations are
also discretized. They are shown as black circles in the GUI.
The spacing between cameras is taken to be uniform and de-
termined by a user-defined parameter, but the user also has
the chance to add cameras manually to the floorplan. Once
the locations and grid cells are defined, we discretize the set
of possible cameras at each location by discretizing DoF,
FoV, and orientation. These settings are determined by de-
fault parameters that can be easily changed in the GUI. Such
a discretization scheme is valid in practice, where only a lim-
ited range of camera settings is usually plausible in a given
surveillance setting. We also allow the user to add individual
cameras using non-default parameters.

2.2. Camera Model

A camera is defined by the following parameters: location
(3D), orientation (3D), horizontal and vertical FoV (2D), and
DoF (1D). Given a camera’s parameters, we can estimate its
3D visibility profile using a traditional quadratic decay func-
tion. In Figure 3 (left), we give an illustrative example of this
profile (as a cross-section) for a single camera located at the

corners of one of the pillars in the recreation room exam-
ple of Figure 2. Given the camera’s parameters, its visibility
profile is defined as the line-of-sight visibility of each point
in the floorplan as viewed from the camera. The profile is a
pyramid whose dimensions are determined by the camera’s
FoV and orientation. In our experiments, we set the horizon-
tal FoV=60o and the vertical FoV=30o. The visibility value
at any point that is inside the cone and has a line-of-sight
with the camera is a positive value in [0,1], which decreases
quadratically with distance from the camera’s optical cen-
ter and quadratically with angular distance from the cam-
era’s optical axis. This models two fundamental aspects of
placement problems: the change of resolution with distance-
to-camera, as well as, lens distortion at peripheries. Other
constraints can be added to this camera model to encode
other properties of real cameras. In fact, our proposed place-
ment solution is generic enough to allow for different mod-
els of visibility, thus, making it applicable to generic sensor
placement problems. Here, we note that most previous work
considers only binary visibility values, thus, oversimplify-
ing the problem. The visibility values of four points in the
ROI are shown in Figure 3. Point (X3,Y3) is invisible to the
camera, since it is occluded by the pillar. Opaque obstacles
have a visibility of -1 and are excluded from the floorplan
discretization. In this work, we use ray tracing to efficiently
compute the visibility profile of any camera in the ROI.

2.3. Importance Distribution of Floorplan

Similar to the work by Yabuta et al. [YK08], we define an
importance value for each grid cell in the floorplan. These
values represent how crucial each grid cell’s visibility is to
the overall camera network. The distribution of these impor-
tance values is task- and floorplan-specific. For example, in
high-security scenario where individuals are tracked across
the network, some regions (e.g. doorways and exits) tend to
be more security-sensitive (and thus more important) than
others. Such a distribution is modelled as a pmf (probability
mass function) across the grid cell centers. In the GUI, the
user defines the distribution by adding to the floorplan refer-
ence points that have user-defined mass and extent (i.e. mean
and covariance of a 3D normal distribution). The importance
of any grid cell center is computed via kernel density estima-
tion. Equivalently, when tracking is a requirement, the user
can trace possible trajectories in the floorplan, from which
importance values are estimated according to how repetitive
these trajectories are in the spatial domain. Importance val-
ues are normalized to sum to 1. We show an example of a
user-generated importance distribution in Figure 3 (right).

2.4. Mathematical Formulation

The inputs to our algorithm are a discrete set of cam-
eras, where each camera is parameterized as a 4-tuple ci =
(li,θi,di, fi), representing its 3D location, 3D orientation, 2D
FoV, and 1D DoF respectively. We denote Ω as the univer-
sal set of all 4-tuples for a given floorplan. For every camera

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

Figure 2: In our GUI, the user inputs a 2D floorplan (left) that can be manually digitized to indicate boundaries (in green), where
cameras can be located. Using a specified wall height, the floorplan is discretized into a 3D uniform grid represented by black
dots (middle). Camera settings (location, orientation, FoV, and DoF) can also be set. The floorplan can also be visualized and
edited (right) to add general 3D obstacles, e.g., pillars, stairs, and furniture. By default, cameras are located at uniform distances
on the boundaries. Orientations of cameras at the same location are also uniformly sampled.

Figure 3: Left: Cross-section of a camera visibility profile. Visibility to the camera decreases quadratically with the distance
from the optical center and the angular distance from the optical axis. (X3,Y3) is occluded by the pillar and is invisible to the
camera. Right: Importance distribution across the recreation room, generated by clicking and weighing four reference points.

ci ∈Ω, we define a binary variable xi ∈ {0,1}, which desig-
nates whether or not ci exists in the network. Concatenating
all these variables together forms the camera network vector
x ∈ {0,1}N where N = |Ω|. Denoting M as the total number
of grid cell centers in the floorplan, we define ai as the impor-
tance value of the ith grid cell and a∈RM

+ as the vector of all
importance values. Since a is a pmf, 1T a = 1. Furthermore,
by denoting G as the number of distinct camera locations, we
compile the location matrix L∈{0,1}N×G to group cameras
belonging to the same location. The ith column of L indexes
cameras belonging to the ith distinct location.

We generate the visibility profile for each ci ∈ Ω at all M
grid cells to form the visibility matrix V ∈ RN×M

+ . The ith

row of V is the visibility profile of ci. By using ray tracing,
these profiles are computed efficiently (alternative solutions
use BSP-trees, or ray bundle tracing). Next, we define the
visibility function v(j|x), which evaluates the visibility of
point j in the ROI w.r.t. the camera network x. Various forms
of this function are conceivable. From a mathematical view-
point, setting v(j|x) = 1

1T x ∑i Vi jxi (i.e. the average visibility
value from all cameras in x) simplifies the overall optimiza-
tion. However, it does not adequately model the surveillance
requirements of a camera network, since v(j|x) can still be
a low value even though a camera, which visualizes loca-

tion j significantly well, does exist. Therefore, we resort to a
more appropriate form, which has been utilized in previous
work [HL06]. A point in the ROI can be surveyed success-
fully if that point’s visibility from at least one of the cameras
in the network exceeds a pre-defined minimum threshold.
This threshold can be equivalent to a minimum resolution
constraint. Therefore, we define v(j|x) in Eq (1).

v(j|x) = max
i

(
{Vi jxi}

)
(1)

This visibility function will play a major role in formulat-
ing camera placement as a binary optimization problem that
seeks to minimize an objective function o(x) (and possibly
a regularizer r(x)) subject to some task-specific constraints
g(x)≥ 0. The exact nature of the objective and equivalently
the underlying constraints are task-specific. In what follows,
we describe two objectives that are popularly considered
in the camera placement literature and formulate their op-
timization mathematically.

2.4.1. Sparsest Camera Placement

The first popular form for camera placement is the maximum
coverage problem, where a minimum number of cameras
(or equivalently a minimum budget) is required to ‘cover’ a

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

specified subset of the floorplan (possibly its entirety). Here,
coverage refers to whether the visibility of a point in the
ROI exceeds a threshold (e.g. minimum resolution). This is
the case for high-sensitivity surveillance scenarios, where
budget is secondary to performance. In this paper, we set
o(x) = 1T x, which is the number of cameras in the network.
If cameras have different costs, the overall budget is mini-
mized by replacing 1 in o(x) with a cost vector k.

We require v(j|x)≥ ε j ∀ j = 1, · · · ,M. Here, the threshold
ε j is allowed to be a function of a j to incorporate the impor-
tance value of grid cell j. Without loss of generality, we set
ε j = βa j in this paper. Also, we set a limit on the total num-
ber of cameras that can be installed at each distinct camera
location: LT x≤ n, where ni is the limit at the ith location. In
most cases, n = 1.

Unlike previous work that assumes independence be-
tween cameras in the network, we allow the user to constrain
the overall camera layout by applying a pairwise regularizer
r(x) = xT Wx, where W ∈ RN×N

+ is a weight matrix that
measures the incompatibility of each pair of cameras in the
network. To the best of our knowledge, we are the first to
model such structural regularization on the camera layout.
Defining Wi j is task-specific in general. For instance, since
obtaining appearance information of an object from differ-
ent views is crucial for robustness against occlusion in 3D
reconstruction and multi-camera tracking, Wi j is expected
to be high for cameras with little overlap in their visibility
profiles and/or with optical axes pointing in the same di-
rection (same view). Without loss of generality, we define
Wi j = e−s1(ci,c j)s2(ci,c j), where s1 measures the intersection
(or overlap) in profiles and s2 the divergence from π of the
angle between the optical axes. Other forms of Wi j are easily
incorporated. Combining all these terms together, we formu-
late the sparsest camera placement problem in Eq (2). Note
that when λ = 0, the problem degenerates to the case where
camera network structure is insignificant.

min
x

1T x+λxT Wx (2)

subject to:

{
v(j|x)≥ βa j ∀ j = 1, · · · ,M
LT x≤ n; x ∈ {0,1}N

The visibility constraint in Eq (2) is nonlinear and non-
convex. A similar constraint was used previously [HL06],
where an M×N auxiliary binary variable is added to lin-
earize the constraint. Increasing the problem size in such a
way quickly makes the optimization infeasible (especially
at medium to large scales), so Horster et al. resorted to a
greedy heuristic optimization strategy [HL06]. In this paper,
we avoid this strategy by approximating the max function
with a smooth approximation (known as the softmax func-
tion) as follows:

v(j|x)≈
N

∑
i=1

Vi jxi
eαVi jxi

∑
N
i=1 eαVi jxi

.

Since each xi is binary, we have two identities: eαVi jxi =
(eαVi j −1)xi +1 and x2

i = xi. Using these identities, we for-
mulate v(j|x) in Eq (3), which is a fractional linear function
of x. Replacing this approximation in Eq (2), the original
problem is reformulated as P1(β,λ) in Eq (4), where V̂(b) is
a matrix function such that each element of the result is de-
fined as V̂i j(b) = 1

N [eαVi j (Vi j−b j)+b j] ∀i, j. It is known
that as α→∞, the softmax approximation becomes exact.
However, large values of α lead to very large values of V̂,
which in turn lead to numerical instability in the optimiza-
tion. After experimenting with different values of α, we ob-
serve that α = 5 is a suitable empirical tradeoff between nu-
merical stability and the fidelity of the approximation. We
use this particular value for α in all our experiments.

v(j|x) = ∑
N
i=1(Vi jeαVi j)xi

N +∑
N
i=1(e

αVi j −1)xi
(3)

P1(β,λ) : min 1T x+λxT Wx (4)

subject to:

{
V̂(βa)T x≥ βa
LT x≤ n; x ∈ {0,1}N

2.4.2. Limited Budget Placement

In this problem, there is a strict limit K on the number of
cameras allowed (or equivalently on the budget). The goal
is to find an optimal x that maximizes the coverage of grid
cells. In other words, it maximizes the number of grid cells
whose visibility w.r.t. the network exceeds a given thresh-
old ε. We formulate this in Eq (5), where v̂ j(ε) is the jth

column of matrix V̂(ε) as defined before. We use the hinge
loss function, defined as max(0,ε− v̂ j(ε)

T x), to penalize the
jth grid cell if its visibility falls below ε. Each hinge loss is
weighted according to the importance of its grid cell (i.e. a j).
By adding t ∈ RM as an auxiliary variable, Eq (5) is refor-
mulated as P2(ε,λ,K) in Eq (6).

min
M

∑
j=1

a j max(0,ε− v̂ j(ε)
T x)+λxT Wx (5)

subject to:

{
1T x≤ K
LT x≤ n; x ∈ {0,1}N

P2(ε,λ,K) : min aT t+λxT Wx (6)

subject to :

{
1T x≤ K; LT x≤ n; x ∈ {0,1}N

t≥ 0; t≥ ε1− V̂(ε)T x

2.5. Optimization and Implementation Details

The two formulations P1(β,λ) and P2(ε,λ,K) are quite sim-
ilar, so the same optimization strategy is used to solve both.
Since they are generally NP-hard, exact solutions are com-
putationally infeasible even for relatively small networks. It

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

is worthwhile to note that when λ = 0, both problems have
the BLP form addressed by previous work. This shows that
previous formulations of camera placement can be incorpo-
rated into our generic framework. Also, an interesting prop-
erty of the solution is that it is expected to be significantly
sparse, since a reasonable discretization of camera parame-
ters leads to a large M.

Convexity: For λ > 0, the convexity of both problems (and
the computational cost of solving them) depends heavily on
matrix W. In general, W is not positive semi-definite (psd),
so P1 and P2 are non-convex. However, since xi ∈ {0,1}
and x2

i = xi, we have xT x = 1T x and the following iden-
tity: xT Wx = xT (W−σI)x+σ1T x for any σ. So, by setting
σ to be smaller than the minimum negative eigenvalue of W,
i.e. σ≤ min(0,emin(W)), we reformulate P1 and P2 as con-
vex binary quadratic programs (BQPs). In realistic cases, W
is a large sparse matrix, since only a relatively small num-
ber of camera pairs are related to each other. Therefore,
the minimum negative eigenvalue of W can be efficiently
computed using conventional partial eigen-decomposition
methods (e.g. the implicitly restarted Arnoldi method). Here,
we note that BQPs also arise in the inference stage of an
MRF. However, since MRF inference only considers un-
constrained BQPs, they do not directly apply to the camera
placement problem.

Relaxation to QP: Branch-and-bound methods exist for con-
vex BQPs [BCL10]; however, they are computationally too
expensive to solve individual large-scale problems and sets
of these problems corresponding to varying user-defined pa-
rameters (e.g. changes in β, λ, ε, K, camera parameters (DoF
or FoV), discretization of floorplan, etc.). To put this in per-
spective, the exact solution to a single P1 problem using a
BQP solver with M = 800 and N = 250 (small scale) has a
runtime of more than an hour on an 8-core workstation run-
ning MATLAB. Such performance prohibits an interactive
exploration of the solution space.

Instead of solving P1 and P2 exactly, we relax the BQP to
a QP by replacing the binary constraint with a box constraint
on the real-valued variable x. The resulting (relaxed) convex
QPs are stated in Eq (7)&(8), where σ = min(0,emin(W)).
This relaxation is one of the conventional general-purpose
relaxations for binary problems. We use it in this paper be-
cause of its simplicity and its memory and computational
efficiency. Another popular relaxation technique transforms
the binary problem into a semi-definite matrix problem
(SDP). This type of relaxation has been previously used for
camera placement [ZHYC11, EYEGG06] and other label-
ing problems [OEK07]; however, it suffers from two main
drawbacks. For the camera placement problems in this pa-
per, SDP relaxation is significantly more memory intensive
and has a comparatively slower runtime than box-constraint
relaxation. Moreover, adding smooth convex constraints to
the BQP, as is the case in Eqs (4)&(5), cannot be trivially
handled by SDP relaxation.

P̂1(β,λ) : min (1+λσ)1T x+λxT (W−σI)x (7)

subject to:

{
V̂(βa)T x≥ βa
LT x≤ n; 0≤ x≤ 1

P̂2(ε,λ,K) : min aT t+λσ1T x+λxT (W−σI)x (8)

subject to :

{
1T x≤ K; LT x≤ n; 0≤ x≤ 1
t≥ 0; t≥ ε1− V̂(ε)T x

Since σ is set to a value that maintains the convexity of
both relaxed problems P̂1 and P̂2, the global minimum to
these problems can be reached using conventional convex
optimization methods starting from any random initializa-
tion. However, it is not necessary that the placement solu-
tion vector x∗ that leads to this global minimum is unique
across different random initializations. To minimize P̂1 and
P̂2, we use an efficient QP solver [DG05] that guarantees
global linear convergence for individual QP problems. It is
well equipped to handle large-scale sparse problems. For a
δ-accurate solution, its computational complexity is roughly
O(N(M+G) logδ) for P̂1 and O((N +M)(M+G) logδ) for
P̂2. Interestingly, this solver can efficiently minimize P̂1 and
P̂2 even when λ = 0, i.e. even when traditional LP models of
camera placement are considered and efficient LP methods
can be used. In this case, solving the QP with λ� 1 (e.g.
λ = 10−8) converges to the same solution (up to a negligible
tolerance) faster than solving the LP.

Since this solver is iterative and incorporates an aug-
mented Lagrangian method, the solution to P̂1(β+∆β,λ+
∆λ), for reasonably sized increments ∆β and ∆λ, can be ini-
tialized to the solution of P̂1(β,λ) after projecting it into the
feasible space. This is the main reason why solving these
QPs across a range of user-defined parameters is computa-
tionally attractive. We show empirical evidence of this later.
After solving the QP, the relaxed solution x∗ is thresholded
and subsequently projected unto the feasible space, whereby
the threshold is adaptively set by clustering the values of x∗

using a Gaussian mixture model with two components. For
example, if the thresholded solution to P̂2(ε,λ,K) contains
more than K cameras, excess cameras are greedily removed
such that the first removed camera increases the objective the
least. Similar logic holds for the other constraints.

3. Experimental Results

In this section, we provide empirical evidence to validate the
effectiveness and accuracy of our placement framework as
compared to a greedy and exact baseline, its efficiency for
ranges of user-tuned parameters, and its applicability to effi-
cient exploration of the space of placement solutions.

3.1. User-Friendly GUI

We developed a simple GUI that allows users to load and dis-
cretize a floorplan in SVG format, localize, discretize, and

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

parameterize different types of cameras, and set reference
points (or trajectories) to determine the importance distri-
bution. Placement solutions (for single or multiple sets of
parameters) can be loaded to the floorplan, visualized, and
exported to SVG format for use in conventional tools such
as Adobe Illustrator.

3.2. Quality of Soft-Max Approximation

As mentioned earlier, we approximate the non-differentiable
max function with the soft-max operator, which leads to the
visibility function in Eq (3). The fidelity of this approxima-
tion is dominated by the α parameter. Ideally, the approxi-
mation is better when α takes on large values. However, in
practice, large values of α lead to numerical instability that
prevents the optimization algorithm from converging to the
global minimum and significantly slows down its runtime.
To evaluate the effect of α on the two placement problems,
we consider the recreation room floorplan and solve P̂1 with
β = 0.05 and P̂2 with (ε = 0.01,K = 10) with increasing
values of α. For both problems, we plot the objective that
is obtained after convergence versus α in Figure 4. We also
show the convergence time of the optimization for a sample
set of α values. Small α values lead to sub-optimal results,
since the soft-max operator leads to a loose approximation
of the max function. Also, there exists a range of α val-
ues, which lead to the same minimum solution (representing
faithful approximation). Although the solution is the same in
this range, the runtime is higher for larger values of α. When
α is set to very large values (greater than 100), numerical in-
stability arises and the solution degrades with a substantial
increase in runtime. To tradeoff approximation quality and
runtime, we set α = 5 in all our experiments.

3.3. Quantitative Comparison

We compare the accuracy and runtime of our optimization
method to that of two baselines: (i) the exact discrete solu-
tion to P̂1 and P̂2 using a branch-and-bound method (avail-
able in MATLAB) and (ii) a greedy solution that iteratively
identifies the feasible cameras (according to the constraints)
in x that can be set to 1, ranks them according to the change
in objective function, and greedily selects the one with high-
est rank (similar to the work of Krause et al., which maxi-
mizes the mutual information between the selected cameras
and those not selected [KSG08]) by setting its correspond-
ing xi = 1. Since the implementation of prior work is not
publicly available, we use the aforementioned baselines to
emulate the types of optimization used in the literature.

For testing purposes, we consider the recreation room
floorplan, whose discretization and camera parametrization
are changed to vary M and N respectively. Using our pro-
posed method and the two baselines, we solve P1 with β =
0.01 and P2 with (ε = 0.01,K = 20). To simplify analysis,
we set λ = 0 for both problems. In Figure 5 (top) and (mid-
dle), we increase the problem size M×N and plot the opti-
mal objectives obtained by the greedy method and our own

Figure 4: Evaluation of the effect of α on approximation
quality. For both types of problems P̂1 and P̂2, our method
converges to a global minimum solution for a range of α

values. Smaller values lead to sub-optimal solutions because
the soft-max operator does not adequately approximate the
max function. Larger values lead to numerical instability that
precludes proper convergence.

for both types of placement problems. Clearly, our proposed
method produces a significantly smaller (24% on average)
objective, i.e. a smaller number of cameras for sparsest cam-
era placement and a larger number of covered grid cells for
limited budget placement. At uniform intervals of M×N, we
report the runtime of the greedy baseline (ii) and our method
in seconds (bottom). As expected, the runtime of both meth-
ods grows linearly with the the dimension of the problem.
These runtime results validate our complexity analysis in
Section 2.5. Although the greedy method is faster than ours
in general, the runtime discrepancy decreases at larger values
of M×N. Moreover, these results show that our method is
computationally feasible for mid- and large-scale placement
problems, since the solution to a single problem of type P̂1
converges in 3.6 seconds and of type P̂2 in 6.8 seconds, when
MN ≈ 2.3× 106. Because of the slack variables in P̂2, its
runtime is higher than that of P̂1. Due to its significantly high
computational cost that increases exponentially with M×N,
it is infeasible to report the exact objective values for base-
line (i) for these large values of M×N. For smaller values
(e.g. when MN ≈ 105), the exact BLP method does outper-
form ours but only by 13% on average; however, its runtime
exceeds 70 minutes. Here, the runtime of all methods does
not include the time required to compute V and W, which is
negligible since the required computation is done efficiently
and only once for each ROI and floorplan discretization. In

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

Figure 5: Comparison of performance and runtime between
greedy baseline (ii) and our proposed method. For both types
of placement problems P̂1 and P̂2, our method obtains a
smaller cost, while remaining computationally competitive
especially at large values of M×N. A similar conclusion
is reached when varying the parameters of the problem and
keeping its size fixed. In the bottom plot, we vary K and re-
port the performance and runtime for the two methods.

all our experiments, we run MATLAB 2011a on a 2.3GHz
16GB RAM machine.

To show the effect of the constraint space on the place-
ment solution, we plot the performance and runtime of base-
line (ii) and our proposed method for P̂2 problems with vary-
ing K (and fixed ε) in Figure 5 (bottom). Our method out-
performs baseline (ii) especially at larger K values. More
importantly, we note that the runtime of baseline (ii) grows
linearly with K, since the feasible constraint space grows as
K increases. In comparison, the runtime of our method is not
affected much by K.

3.4. Exploring the Solution Space

For solution space exploration, we focus on the limited bud-
get placement problem (i.e. P̂2). A very similar analysis can
be done for P̂1. Since P̂2 is parameterized by (K,ε,λ), the user

can explore this 3D parameter space to visualize how the so-
lution changes with variations in these three parameters. To
simplify presentation, we allow for 2D exploration, where λ

is fixed to λ0 = 1
N and the other two parameters are allowed

to vary across a finite range of plausible values.

In Figure 6, we consider the recreation room exam-
ple again with MN ≈ 2.3× 106 and a determined by the
given importance distribution. We vary ε (minimum visi-
bility threshold) from 10−4 to 1 (20 discrete values) and K
(maximum number of cameras) from 1 to G = 42 (number
of distinct camera locations) in order to generate a total of
840 parameter combinations. For each pair (ε0,K0), we can
solve P̂2(ε0,λ0,K0) and compute the percentage of the floor-
plan that is covered using the visibility threshold ε0, i.e. the
percentage of grid cells whose visibility satisfies v(j|x)≥ ε0,
as defined in Eq (1). Clearly, the percentage of coverage de-
creases when ε increases for a fixed K and it increases when
K increases for a fixed ε. This visualization allows the user
to explore the solution space and, if required, to visualize
the result of a particular solution. In Figure 6, the user se-
lects parameter pair (K=10,ε = 0.05) with 54% coverage to
visualize the underlying camera layout and the visibility of
the floorplan w.r.t. the entire network.

As explained in Section 2.5, the iterative nature of our
solver provides an efficient framework to solve a set of P̂2
problems with varying parameters. In fact, the 20×42 so-
lution matrix shown in Figure 6 was generated in under 2
minutes, while naively solving each of the 840 problems in-
dependently runs in about 14 minutes. This result provides
evidence of our solution’s efficiency and validates our un-
derlying formulation of the camera placement problem.

3.5. Qualitative Results

In each row of Figure 7, we show qualitative results of our
placement solutions (as 2D cross-sections) to emphasize the
effect of varying the different parameters in our framework.
In the first two rows, P̂2 is solved with two possible ε val-
ues (one small and one large) for an increasing number of
cameras K, while λ and a are kept fixed. When ε is small
(the first row), the minimum visibility constraint is easily
satisfied, so the camera layout is spread across the whole
floorplan as K increases. This is to be contrasted with the
results of the second row, where ε is 10 times larger. In this
case, the camera layout is more compact, since the visibil-
ity constraint at each grid cell is harder to satisfy, especially
at points with high importance. In the third row, we investi-
gate the effect of λ on camera layout for a small camera net-
work K = 4. When λ is very small, the cameras are treated
independently, the structure of the overall layout is insignif-
icant, and there is minimal overlap between any two cam-
eras. As λ increases, the quadratic term in P̂2 has more im-
pact on the optimization, thus, encouraging camera overlap
and multi-view imaging of high importance regions in the
floorplan. This behaviour continues till λ reaches its maxi-
mum value, when the quadratic term becomes dominant, the

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

Figure 6: Exploring the solution space of P̂2(ε,K). The solution matrix on the left visualizes the percentage of floorplan covered
at a given (ε,K). This matrix was generated in just under two minutes. The user can select a particular parameter setting (e.g.
ε=0.05 and K=10) and visualize the corresponding placement solution as a cross-section (in middle) or in 3D (on right), along
with the resulting visibility map of the entire camera network (as a cross-section).

Figure 7: Solutions generated by our camera placement approach for P̂1 and P̂2 problems with varying parameters. In the first
two rows, we study the effect of increasing the minimum visibility constraint in problem P̂2 defined by parameter ε. In the third
row, we show the effect of increasing the quadratic tradeoff parameter λ. In the fourth row, the minimum visibility constraint in
problem P̂1 is varied while fixing all other parameters. In the last row, we show how our placement solution adapts to dynamic
changes in the scene, when the importance distribution (shown as a cross-section) of the 3D floorplan is changed. For a detailed
description, refer to the text.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

Table 1: A comparison of our algorithm with a greedy one. We list the number of entries in the visibility matrix V in millions
(M×N), the number of cameras in the scene (Cam), the objective value for P̂2 problems (Val) in thousands, and the run-time in
seconds (Time). Our algorithm produces solutions with a smaller number of cameras for P̂1 problems (garage, hotel) and better
coverage given a fixed number of cameras for P̂2 problems (mall, airport).

Ours (P̂1) Greedy (P̂1)

Scene M×N Cam
Time
(sec)

Cam
Time
(sec)

Garage 14.7 30 15.4 46 22.9
Hotel 6.1 46 4.1 53 5.6

Ours (P̂2) Greedy (P̂2)

Scene M×N Cam Val
Time
(sec)

Cam Val
Time
(sec)

Mall 6 20 83 31.7 20 95 7.3
Airport 6.6 26 68 12.6 26 79 6.1

cameras are placed opposite each other, and the floorplan
coverage is minimal. In the fourth row, we analyse the ef-
fect of varying β (the minimum visibility constraint in P̂1)
on the solution of P̂1. Here, we increase the default DoF of
each camera and the number of camera locations to enable
complete floorplan coverage. Smaller values of β lead to less
cameras in the solution. As β increases, the minimum visi-
bility constraint is harder to satisfy and more cameras need
to be placed in the ROI. In fact, this is an example of how
our proposed framework can easily adapt to different cam-
era profiles, which can simulate different types of cameras
including long-range or wide-angled surveillance cameras
and even shorter range depth cameras (e.g. the Microsoft
Kinect). As for the last row, we fix all optimization param-
eters and vary the importance distribution a. In these four
examples, the doorway of the room, the couches, and other
parts of the room are deemed important for surveillance and
the cameras are placed accordingly.

In Figure 8, we show our placement solutions for four
large-scale real-world ROIs, where M×N exceeds 6× 106.
The optimal camera layout is overlayed unto the original 2D
floorplan image. For the garage and hotel, P̂1 problems are
solved using the given importance distribution and parame-
ters, while P̂2 problems are solved for the mall and airport.
Renderings of the camera layout in 3D are shown besides
the floorplans. High resolution images of all results are pro-
vided in the supplementary material. In Table 1, we report
and compare the placement performance of our method and
that of the greedy baseline (ii) when applied to these four
ROIs. These results clearly show that our proposed method
produces a better solution for both types of placement prob-
lems, within a reasonable runtime.

4. Conclusion
In this paper, we take a fresh look at the camera placement
problem for computer graphics and computer vision appli-
cations. Our first contribution is to extend the problem state-
ment to model camera-to-camera relationships, e.g. to pre-
fer the placement of cameras that observe the same location
from different views. Our second contribution is to derive
an optimization strategy that that has a desirable trade off
between speed (similar to a fast greedy algorithm) and qual-
ity (not much worse than an exact, high-quality binary opti-

mization). In future work, we plan to extend our framework
to moving cameras by integrating change detection and dy-
namic updates to the importance distribution.

5. Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments and suggestions. Special thanks goes to Yoshihiro
Kobayashi and Christopher Grasso for generating the 3D
renderings. Research reported in this publication was sup-
ported by competitive research funding from King Abdullah
University of Science and Technology (KAUST).

References
[AA11] AMRIKI K., ATREY P.: Towards optimal placement of

surveillance cameras in a bus. IEEE International Conference on
Multimedia and Expo (2011). 2

[BCL10] BUCHHEIM C., CAPRARA A., LODI A.: An effective
branch-and-bound algorithm for convex quadratic integer pro-
gramming. In Integer Programming and Combinatorial Opti-
mization, vol. 6080. 2010, pp. 285–298. 6

[BDSP07] BODOR R., DRENNER A., SCHRATER P., PA-
PANIKOLOPOULOS N.: Optimal Camera Placement for Auto-
mated Surveillance Tasks. Journal of Intelligent and Robotic
Systems 50, 3 (2007), 257–295. 2

[DG05] DELBOS F., GILBERT J. C.: Global linear conver-
gence of an augmented Lagrangian algorithm for solving convex
quadratic optimization problems. Journal of Convex Analysis 12
(2005), 45–69. 6

[DOL06] DUNN E., OLAGUE G., LUTTON E.: Parisian camera
placement for vision metrology. Pattern Recognition Letters 27
(2006), 1209–1219. 2

[ES06] ERDEM U., SCLAROFF S.: Automated camera layout to
satisfy task-speciïňĄc and floorplan-speciïňĄc coverage require-
ments. Computer Vision and Image Understanding (2006), 156–
169. 2

[EYEGG06] ERCAN A. O., YANG D. B., EL GAMAL A.,
GUIBAS L. J.: Optimal placement and selection of cam-
era network nodes for target localization. In IEEE Interna-
tional Conference on Distributed Computing in Sensor Sys-
tems (Berlin, Heidelberg, 2006), DCOSS’06, Springer-Verlag,
pp. 389–404. URL: http://dx.doi.org/10.1007/
11776178_24, doi:10.1007/11776178_24. 6

[GB09] GONZALEZ-BARBOSA J.: Optimal camera placement for
total coverage. IEEE International Conference on Robotics and
Automation (2009), 844–848. 2

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1007/11776178_24
http://dx.doi.org/10.1007/11776178_24
http://dx.doi.org/10.1007/11776178_24

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

Figure 8: Results on real-world floorplans. We show solutions projected to 2D floorplans (left) and 3D renderings of the solutions
(right). All high resolution results are provided in the supplementary material. In the first two rows, the sparsest camera
placement problem, defined as P̂1(β = 0.01,λ = 1

N), is solved for a garage and hotel floorplan respectively. In the third row, the
limited budget problem, defined as P̂2(K = 20,ε = 0.05,λ = 1

N), is solved for a mall floorplan, while a P̂2(K = 26,ε = 0.05,λ =
1
N) problem is solved for the hotel floorplan. Note that a long-range surveillance cameras profile is used in the garage and mall
examples to show the generic nature of our placement framework and its ability to adapt to different camera profiles.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

B. Ghanem, Y. Cao & P. Wonka / Designing Camera Networks by Convex Quadratic Programming

[HL06] HORSTER E., LIENHART R.: On the optimal placement
of multiple visual sensors. International Workshop on Video
Surveillance and Sensor Networks (2006). 2, 3, 4, 5

[KSG08] KRAUSE A., SINGH A., GUESTRIN C.: Near-Optimal
Sensor Placements in Gaussian Processes: Theory, Efficient Al-
gorithms and Empirical Studies. Journal of Machine Learning
Research (2008), 235–284. 7

[MC13] MAVRINAC A., CHEN X.: Modeling coverage in cam-
era networks: A survey. International Journal of Computer
Vision 101, 1 (2013), 205–226. URL: http://dx.doi.
org/10.1007/s11263-012-0587-7, doi:10.1007/
s11263-012-0587-7. 2

[MCT14] MAVRINAC A., CHEN X., TAN Y.: Coverage qual-
ity and smoothness criteria for online view selection in a multi-
camera network. ACM Transactions on Sensor Networks 10, 2
(Jan. 2014), 33:1–33:19. URL: http://doi.acm.org/10.
1145/2530373, doi:10.1145/2530373. 2

[MD04] MITTAL A., DAVIS L.: Visibility analysis and sensor
planning in dynamic environments. European Conference on
Computer Vision (2004). 2

[OEK07] OLSSON C., ERIKSSON A., KAHL F.: Solving large
scale binary quadratic problems: Spectral methods vs. semidef-
inite programming. In IEEE Conference on Computer Vision
and Pattern Recognition (June 2007), pp. 1–8. doi:10.1109/
CVPR.2007.383202. 6

[O’R87] O’ROURKE J.: Art Gallery Theorems and Algorithms.
Oxford University Press, 1987. 2

[RRA∗06] RAM S., RAMAKRISHNAN K., ATREY P., SINGH V.,
KANKANHALLI M.: A design methodology for selection and
placement of sensors in multimedia systems. International Work-
shop on Video Surveillance and Sensor Networks (2006). 2

[SKR09] SIVARAM G. S. V. S., KANKANHALLI M. S., RA-
MAKRISHNAN K. R.: Design of multimedia surveillance sys-
tems. ACM Transactions on Multimedia Computing, Communi-
cations, and Applications 5, 3 (2009), 1–25. 2

[Ste12] STEINITZ A.: Optimal Camera Placement. Master’s the-
sis, EECS Department, University of California, Berkeley, May
2012. 2

[TT95] TARABANIS P., TSAI R.: A survey of sensor planning in
computer vision. IEEE Transactions on Robotics and Automation
(1995). 2

[vdHHW∗09] VAN DEN HENGEL A., HILL R., WARD B., CI-
CHOWSKI A., DETMOLD H., MADDEN C., DICK A., BAS-
TIAN J.: Automatic camera placement for large scale surveil-
lance networks. IEEE Workshop on Applications of Computer
Vision (2009), 1–6. 2

[YCA∗08] YAO Y., CHEN C., ABIDI B., PAGE D., ABIDI B.,
ABIDI. M.: Sensor planning for automated and persistent object
tracking with multiple cameras. IEEE International Conference
on Computer Vision and Pattern Recognition (2008), 1–8. 2, 3

[YK08] YABUTA K., KITAZAWA H.: Optimum camera place-
ment considering camera specification for security monitoring.
IEEE International Symposium on Circuits and Systems 2 (2008),
2114–2117. 2, 3

[ZHYC11] ZHAO J., HAWS D., YOSHIDA R., CHEUNG S.:
Approximate techniques in solving optimal camera placement
problems. In IEEE International Conference on Computer Vi-
sion Workshop (Nov 2011), pp. 1705–1712. doi:10.1109/
ICCVW.2011.6130455. 6

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1007/s11263-012-0587-7
http://dx.doi.org/10.1007/s11263-012-0587-7
http://dx.doi.org/10.1007/s11263-012-0587-7
http://dx.doi.org/10.1007/s11263-012-0587-7
http://doi.acm.org/10.1145/2530373
http://doi.acm.org/10.1145/2530373
http://dx.doi.org/10.1145/2530373
http://dx.doi.org/10.1109/CVPR.2007.383202
http://dx.doi.org/10.1109/CVPR.2007.383202
http://dx.doi.org/10.1109/ICCVW.2011.6130455
http://dx.doi.org/10.1109/ICCVW.2011.6130455

