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Abstract
The support vector machine (SVM) is a widely
used method for classification. Although many
efforts have been devoted to develop efficient
solvers, it remains challenging to apply SVM to
large-scale problems. A nice property of SVM is
that the non-support vectors have no effect on the
resulting classifier. Motivated by this observa-
tion, we present fast and efficient screening rules
to discard non-support vectors by analyzing the
dual problem of SVM via variational inequalities
(DVI). As a result, the number of data instances
to be entered into the optimization can be sub-
stantially reduced. Some appealing features of
our screening method are: (1) DVI is safe in the
sense that the vectors discarded by DVI are guar-
anteed to be non-support vectors; (2) the data set
needs to be scanned only once to run the screen-
ing, and its computational cost is negligible com-
pared to that of solving the SVM problem; (3)
DVI is independent of the solvers and can be in-
tegrated with any existing efficient solver. We
also show that the DVI technique can be extend-
ed to detect non-support vectors in the least ab-
solute deviations regression (LAD). To the best
of our knowledge, there are currently no screen-
ing methods for LAD. We have evaluated DVI on
both synthetic and real data sets. Experiments in-
dicate that DVI significantly outperforms the ex-
isting state-of-the-art screening rules for SVM,
and it is very effective in discarding non-support
vectors for LAD. The speedup gained by DVI
rules can be up to two orders of magnitude.

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

1. Introduction
The support vector machine is one of the most popu-
lar classification tools in machine learning. Many efforts
have been devoted to developing efficient solvers for SVM
(Hastie et al., 2004; Joachims, 2006; Shalev-Shwartz et al.,
2007; Hsieh et al., 2008; Fan et al., 2008). However, the
applications of SVM to large-scale problems still pose sig-
nificant challenges. To address this issue, one promising
approach is by “screening”. The key idea of screening is
motivated by a well-known feature of SVM; that is, the re-
sulting classifier is determined only by the so-called “sup-
port vectors”. If we first identify non-support vectors via
screening, and then remove them from the optimization,
we may experience substantial savings in computational
cost and memory. Another useful tool in machine learn-
ing and statistics is the least absolute deviations regression
(LAD) (Powell, 1984; Wang et al., 2006; Chen et al., 2008;
Rao et al., 2008) or the `1 method. When the protection
against outliers is a major concern, LAD provides a useful
and plausible alternative to the classical least squares or `2
method for linear regression. In this paper, we study both
SVM and LAD under a unified framework.

The idea of screening has been successfully applied to a
large class of `1-regularized problems (El Ghaoui et al.,
2012; Xiang et al., 2011; Tibshirani et al., 2012; Wang
et al., 2013; Liu et al., 2014), including Lasso, `1-
regularized logistic regression, elastic net, and more gen-
eral convex problems. Those methods are able to discard
a large portion of “inactive” features which have 0 coeffi-
cients in the optimal solution, and the speedup can be sev-
eral orders of magnitude.

Recently, Ogawa et al. (2013) proposed a “safe screening”
rule to identify non-support vectors for SVM; in this paper,
we refer to this method as SSNSV for convenience. We
notice that, the former approaches for `1-regularized prob-
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lems aim to discard inactive “features”, while SSNSV is
used to identify non-support “vectors”. This essential dif-
ference makes SSNSV a nontrivial extension of the exist-
ing feature-screening methods. Although there exist many
methods for data reduction for SVM (Achlioptas et al.,
2002; Yu et al., 2003; Cao & Boley, 2006), they are not
safe, in the sense that the resulting classification model may
be different. To the best of our knowledge, SSNSV is the
only existing safe screening method (Ogawa et al., 2013) to
identify non-support vectors for SVM. However, in order to
run the screening, SSNSV needs to determine an appropri-
ate parameter value iteratively and an associated feasible
solution, which can be very time consuming.

In this paper, we develop novel efficient and effective
screening rules, called “DVI”, for a class of supervised
learning problems including SVM and LAD (Buchinsky,
1998; Jin et al., 2001). The proposed method, DVI, shares
the same advantage as SSNSV (Ogawa et al., 2013), that
is, both rules are safe in the sense that the discarded vectors
are guaranteed to be non-support vectors. The proposed D-
VI identifies the non-support vectors by estimating a lower
bound of the inner product between each vector and the op-
timal solution, which is unknown. The more accurate the
estimation is, the more non-support vectors can be detect-
ed. However, the estimation turns out to be non-trivial since
the optimal solution is not available. To overcome this diffi-
culty, we propose a novel framework to estimate accurately
the optimal solution via the estimation of the “dual optimal
solution”, as the primal and dual optimal solutions can be
related by the KKT conditions (Güler, 2010). Our main
technical contribution is to estimate the dual optimal solu-
tion via so-called “variational inequalities” (Güler, 2010).
Our experiments on both synthetic and real data demon-
strate that DVI can identify far more non-support vectors
than can SSNSV. Moreover, by using the same technique,
that is, variational inequalities, we can improve SSNSV in
its ability to identify non-support vectors. Our results also
show that DVI is very effective in discarding non-support
vectors for LAD. The speedup gained by DVI rules can be
up to two orders of magnitude.

The rest of this paper is organized as follows. In Section
2, we study the SVM and LAD problems under a unified
framework. We then introduce our DVI rules in detail for
the general formulation in Sections 3 and 4. In Sections
5 and 6, we extend the DVI rules derived in Section 4 to
SVM and LAD respectively. In Section 7, we evaluate our
DVI rules for SVM and LAD using both synthetic and real
data. We conclude this paper in Section 8.

Notation: Throughout this paper, we use 〈x,y〉 =
∑
i xiyi

to denote the inner product of vectors x and y, and ‖x‖2 =
〈x,x〉. For vector x, let [x]i be the ith component of x.
If M is a matrix, mi is the ith column of M and [M]i,j

is the (i, j)th entry of M. Given a scalar x, we denote
max{x, 0} by [x]+. For the index set I := {1, . . . , l}, let
J := {j1, . . . , jk} ⊆ I and J c := I \ J . For a vec-
tor x or a matrix M, let [x]J = ([x]j1 , . . . , [x]jk)T and
[M]J = (mj1 , . . . ,mjk). Moreover, let Γ0(<n) be the
class of proper and lower semicontinuous convex functions
from <n to (−∞,∞]. The conjugate of f ∈ Γ0(<n) is the
function f∗ ∈ Γ0(<n) given by

f∗ : <n → (−∞,∞] : θ 7→ sup
x∈<n

xT θ − f(x). (1)

The biconjugate of f ∈ Γ0(<n) is the function f∗∗ ∈
Γ0(<n) given by

f∗∗ : <n → (−∞,∞] : x 7→ sup
θ∈<n

xT θ − f∗(θ). (2)

2. Basics and Motivation
In this section, we study the SVM and LAD problems un-
der a unified framework. Then, we motivate the general
screening rules via the KKT conditions. Consider convex
optimization problems of the following form:

min
w∈<n

1

2
‖w‖2 + CΦ(w), (3)

where Φ : <n → < is a convex function but not necessar-
ily differentiable and C > 0 is a regularization parameter.
Notice that the function Φ is generally referred to as the em-
pirical loss. More specifically, suppose that we have a set
of observations, {xi, yi}li=1, where xi ∈ <n and yi ∈ <
are the ith data instance and the corresponding response,
respectively. We focus on the following function class:

Φ(w) =
∑l

i=1
ϕ
(
wT (aixi) + biyi

)
, (4)

where ϕ : < → <+ is a nonconstant continuous sublinear
function, and ai, bi are scalars. We provide the definition
of sublinear function as follows.

Definition 1. (Hiriart-Urruty & Lemaréchal, 1993) A
function σ : <n → (−∞,∞] is said to be sublinear if
it is convex and positively homogeneous, i.e.,

σ(tx) = tσ(x), ∀x ∈ <nand t > 0. (5)

We will see that SVM and LAD are both special cases of
problem (3) in Sections 5.1 and 6, respectively. A nice
property of the function ϕ is that the biconjugate ϕ∗∗ is
exactly ϕ itself, as stated in Lemma 1.

Lemma 1. For the function ϕ : < → <+ which is continu-
ous and sublinear, we have ϕ ∈ Γ0(<) and thus ϕ∗∗ = ϕ.

It is straightforward to check the statement in Lemma 1 by
verifying the requirements of the function class Γ0(<). For
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self-completeness, we provide a proof in the supplement.
According to Lemma 1, problem (3) can be rewritten as

min
w

1

2
‖w‖2 + C

l∑
i=1

ϕ∗∗
(
wT (aixi) + biyi

)
(6)

= min
w

1

2
‖w‖2 + C

l∑
i=1

{
sup
θi∈<

θi
[
wT (aixi) + biyi

]
− ϕ∗(θi)

}

= sup
θ

min
w

1

2
‖w‖2 + C

l∑
i=1

{
θi
[
wT (aixi) + biyi

]
− ϕ∗(θi)

}
= sup

θ
−C

l∑
i=1

ϕ∗(θi) + min
w∈<n

1

2
‖w‖2 + C〈Zw + ȳ, θ〉,

where θ = (θ1, . . . , θl)
T , Z = (aixi, . . . , alxl)

T and ȳ =
(b1y1, . . . , blyl)

T . Let `(w) := 1
2‖w‖

2 + C〈Zw + ȳ, θ〉.
The reason we can exchange the order of min and sup in
Eq. (6) is due to the strong duality of problem (3) (Boyd &
Vandenberghe, 2004).

By setting ∂`(w)
∂w = 0, we have

w∗ = −CZT θ, (7)

and thus

min
w

`(w) = `(w∗) = −C
2

2
‖ZT θ‖2 + C〈ȳ, θ〉. (8)

Hence, Eq. (6) becomes

sup
θ∈<l

−C
∑l

i=1
ϕ∗(θi)−

C2

2
‖ZT θ‖2 + C〈ȳ, θ〉. (9)

Moreover, because ϕ ∈ Γ0(<) is sublinear by Lemma 1,
we know that ϕ∗ is the indicator function for a closed con-
vex set. In fact, we have the following result:

Lemma 2. For the nonconstant continuous sublinear func-
tion ϕ : < → <+, there exists a nonempty closed interval
Iϕ = [α, β] with α, β ∈ < and α < β such that

ϕ∗(t) := ι[α,β] =

{
0, if t ∈ [α, β],

∞, otherwise.
(10)

Let I lϕ = [α, β]l. We can rewrite problem (9) as

sup
θ∈Ilϕ
−C

2

2
‖ZT θ‖2 + C〈ȳ, θ〉. (11)

Problem (11) is in fact the dual problem of (3). Moreover,
the “sup” in problem (11) can be replaced by “max” due to
the strong duality (Boyd & Vandenberghe, 2004) of prob-
lem (3). Since C > 0, problem (11) is equivalent to

min
θ∈Ilϕ

C

2
‖ZT θ‖2 − 〈ȳ, θ〉. (12)

Let w∗(C) and θ∗(C) be the optimal solutions of (3) and
(11), respectively. Eq. (7) implies that

w∗(C) = −CZT θ∗(C). (13)

The KKT conditions1 of problem (12) are

θ∗(C)]i ∈


β, if − 〈w∗(C), aixi〉 < biyi;

[α, β], if − 〈w∗(C), aixi〉 = biyi;

α, if − 〈w∗(C), aixi〉 > biyi;

(14)

i = 1, . . . , l.

For notational convenience, let

R = {i : −〈w∗(C), aixi〉 > biyi},
E = {i : −〈w∗(C), aixi〉 = biyi},
L = {i : −〈w∗(C), aixi〉 < biyi}.

We call the vectors in set E the “support vectors”. All the
other vectors in R and L are called “non-support vectors”.
The KKT conditions in (14) imply that, if some of the data
instances are known to be members of R and L, then the
corresponding components of θ∗(C) can be set accordingly
and we only need the other components of θ∗(C). More
precisely, we have the following result:

Lemma 3. Given index sets R̂ ⊆ R and L̂ ⊆ L, we have

1. [θ∗(C)]R̂ = α and [θ∗(C)]L̂ = β.

2. Let Ŝ = R̂
⋃
L̂, |Ŝc| be the cardinality of the set Ŝc,

Ĝ11 = [ZT ]TŜc
[ZT ]Ŝc , Ĝ12 = [XT ]TŜc

[XT ]Ŝ and ŷ =

yŜc − CĜ12[θ∗(C)]Ŝ . Then, [θ∗(C)]Ŝc can be computed
by solving the following problem:

min
θ̂∈<|Ŝc|

C

2
θ̂T Ĝ11θ̂ − ŷT θ̂, s.t. θ̂ ∈ [α, β]|Ŝ

c|. (15)

Clearly, if |Ŝ| is large compared to |I| = l, the computa-
tional cost for solving problem (15) can be much cheaper
than solving the full problem (12). To determine the mem-
bership of the data instances, Eq. (13) and (14) imply that

C〈ZT θ∗(C), aixi〉 > biyi ⇒ [θ∗(C)]i = α⇔ i ∈ R; (R1)

C〈ZT θ∗(C), aixi〉 < biyi ⇒ [θ∗(C)]i = β ⇔ i ∈ L. (R2)

However, (R1) and (R2) are generally not applicable since
θ∗(C) is unknown. To overcome this difficulty, we can
estimate a region Θ such that θ∗(C) ∈ Θ. As a result, we
obtain the relaxed version of (R1) and (R2):

min
θ∈Θ

C〈ZT θ, aixi〉 > biyi ⇒ [θ∗(C)]i = α⇔ i ∈ R; (R1′)

max
θ∈Θ

C〈ZT θ, aixi〉 < biyi ⇒ [θ∗(C)]i = β ⇔ i ∈ L. (R2′)

1Please refer to the supplement for details.
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We note that (R1′) and (R2′) serve as the foundation of the
proposed DVI rules and the method in Ogawa et al. (2013).
In the subsequent sections, we first estimate the region Θ,
which includes θ∗(C), and then derive the screening rules
based on (R1′) and (R2′).

Method to solve problem (15) It is known that, problem
(15) can be efficiently solved by the dual coordinate de-
scent method (Hsieh et al., 2008). Briefly speaking, the al-
gorithm updates the components of θ̂ one at a time, which
is equivalent to minimizing a 1D quadratic function over
a compact interval. For self-completeness, we provide a
more detailed review in the supplement.

In Section 3, we first give an accurate estimation of the
set Θ, which includes θ∗(C) as in (R1′) and (R2′) via the
variational inequalities. Then, in Section 4, we present the
novel DVI rules for problem (3) in detail.

3. Estimation of the Dual Optimal Solution
For problem (12), suppose that we are given two parameter
values 0 < C0 < C and that θ∗(C0) is known. Then,
Theorem 5 shows that θ∗(C) can be effectively bounded
in terms of θ∗(C0). The main technique we use is the so-
called variational inequality. For self-completeness, we cite
the definition of variational inequality as follows.
Theorem 4. (Güler, 2010) Let A ⊆ <n be a convex set,
and let h be a Gâteaux differentiable function on an open
set containing A. If x∗ is a local minimizer of h on A, then

〈∇h(x∗),x− x∗〉 ≥ 0, ∀x ∈ A. (16)

Via the variational inequality, the following theorem shows
that θ∗(C) can estimated in terms of θ∗(C0).
Theorem 5. For problem (12), let C > C0 > 0. Then

‖ZT θ∗(C)− C0+C
2C ZT θ∗(C0)‖ ≤ C−C0

2C ‖Z
T θ∗(C0)‖.

Proof. Let g(θ) be the objective function of problem (12).
The variational inequality implies that

〈∇g(θ∗(C0)), θ − θ∗(C0)〉 ≥ 0, ∀θ ∈ [α, β]l; (17)

〈∇g(θ∗(C)), θ − θ∗(C)〉 ≥ 0, ∀θ ∈ [α, β]l. (18)

Notice that ∇g(θ) = CZZT θ − ȳ, and θ∗(C0) ∈
[α, β]l and θ∗(C) ∈ [α, β]l. Plugging ∇g(θ∗(C)) and
∇g(θ∗(C0)) into (17) and (18) leads to

〈C0ZZ
T θ∗(C0)− ȳ, θ∗(C)− θ∗(C0)〉 ≥ 0; (19)

〈CZZT θ∗(C)− ȳ, θ∗(C0)− θ∗(C)〉 ≥ 0. (20)

We can see that the inequality in (20) is equivalent to

〈ȳ − CZZT θ∗(C), θ∗(C)− θ∗(C0)〉 ≥ 0. (21)

Then the statement follows by adding the inequalities in
(19) and (21) together.

4. The Proposed DVI Rules
Given C > C0 > 0 and θ∗(C0), we can estimate θ∗(C) via
Theorem 5. Combining (R1′), (R2′) and Theorem (5), we
develop the basic screening rule for problem (3) as summa-
rized in the following theorem:

Theorem 6. (DVI) For problem (12), suppose that we are
given θ∗(C0). Then, for any C > C0, we have [θ∗(C)]i =
α, i.e., i ∈ R, if the following holds:

C+C0

2 〈ZT θ∗(C0), aixi〉 − C−C0

2 ‖ZT θ∗(C0)‖‖aixi‖ > biyi.

Similarly, we have [θ∗(C)]i = β, i.e., i ∈ L, if

C+C0

2 〈ZT θ∗(C0), aixi〉+ C−C0

2 ‖ZT θ∗(C0)‖‖aixi‖ < biyi.

The supplement includes the proof of Theorem 6. In real
applications, the optimal parameter value of C is unknown
and we need to estimate it. Commonly used model selec-
tion strategies such as cross validation and stability selec-
tion need to solve the optimization problems over a grid of
turning parameters 0 < C1 < C2 < . . . < CK to deter-
mine an appropriate value for C. This procedure is usually
very time consuming, especially for large scale problems.
To this end, we propose a sequential version of the pro-
posed DVI below.

Corollary 7. (DVI∗s) For problem (12), suppose that we
are given a sequence of parameters 0 < C1 < C2 < . . . <
CK. Assume that θ∗(Ck) is known for an arbitrary integer
1 ≤ k < K. Then, for Ck+1, we have [θ∗(Ck+1)]i = α,
i.e., i ∈ R, if the following holds:

Ck+1+Ck

2 〈ZT θ∗(Ck), aixi〉 − Ck+1−Ck

2 ‖ZT θ∗(Ck)‖‖aixi‖ > biyi.

Similarly, we have [θ∗(Ck+1)]i = β, i.e., i ∈ L, if

Ck+1+Ck

2 〈ZT θ∗(Ck), aixi〉+ Ck+1−Ck

2 ‖ZT θ∗(Ck)‖‖aixi‖ < biyi.

The main computational cost of DVI∗s is due to the evalu-
ation of 〈ZT θ∗(Ck), aixi〉, ‖ZT θ∗(Ck)‖ and ‖aixi‖. Let
G = ZZT . It is easy to see that

〈ZT θ∗(Ck), aixi〉 = gTi θ
∗(Ck),

‖ZT θ∗(Ck)‖2 = θ∗(Ck)TGθ∗(Ck),

‖x̄i‖2 = [G]i,i,

where gi is the ith column of G. Since G is independent
of Ck, it can be computed only once and thus the computa-
tional cost of DVI∗s reduces to O(l2) to scan the entire data
set. Indeed, based on Eq. (13), we can reconstruct DVI
rules without the explicit computation of G.

Corollary 8. (DVIs) For problem (3), suppose that we are
given a sequence of parameters 0 < C1 < C2 < . . . <
CK. Assume that w∗(Ck) is known for an arbitrary integer
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1 ≤ k < K. Then, for Ck+1, we have [θ∗(Ck+1)]i = α,
i.e., i ∈ R, if the following holds:

−Ck+Ck+1

2Ck
〈w∗(Ck), aixi〉 − Ck+1−Ck

2Ck
‖w∗(Ck)‖‖aixi‖ > biyi.

Similarly, we have [θ∗(Ck+1)]i = β, i.e., i ∈ L, if

−Ck+Ck+1

2Ck
〈w∗(Ck), aixi〉+ Ck+1−Ck

2Ck
‖w∗(Ck)‖‖aixi‖ < biyi.

5. Screening Rules for SVM
In Section 5.1, we first present the sequential DVI rules for
SVM based on the results in Section 4. Then, in Section
5.2, we show how to improve SSNSV (Ogawa et al., 2013)
by the same technique used in DVI.

5.1. DVI rules for SVM

Given a set of observations {xi, yi}li=1, where xi and
yi ∈ {1,−1} are the ith data instance and the correspond-
ing class label, the SVM takes the form of:

min
w

1

2
‖w‖2 + C

∑l

i=1

[
1−wT (yixi)

]
+
. (22)

It is easy to see that, if we set ϕ(t) = [t]+ and −ai = bi =
yi, problem (3) becomes the SVM problem. To construct
the DVI rules for SVM by Corollaries 7 and 8, we only
need to find α and β. In fact, we have the following result:
Lemma 9. Let ϕ(t) = [t]+, then α = 0 and β = 1, i.e.,

ϕ∗(s) = ι[0,1]. (23)

We omit the proof of Lemma 9 since it is a direct applica-
tion of Eq. (1). Then, we immediately have the following
screening rules for the SVM problem. (For notational con-
venience, let x̄i = yixi and X = (x̄1, . . . , x̄l)

T .)
Corollary 10. (DVI∗s for SVM) For problem (22), suppose
that we are given a sequence of parameters 0 < C1 <
C2 < . . . < CK. Assume that θ∗(Ck) is known for an
arbitrary integer 1 ≤ k < K. Then, for Ck+1, we have
[θ∗(Ck+1)]i = 0, i.e., i ∈ R, if the following holds:

Ck+1+Ck

2 〈XT
θ∗(Ck), x̄i〉 − Ck+1−Ck

2 ‖XT
θ∗(Ck)‖‖x̄i‖ > 1.

Similarly, we have [θ∗(Ck+1)]i = 1, i.e., i ∈ L, if

Ck+1+Ck

2 〈XT
θ∗(Ck), x̄i〉+ Ck+1−Ck

2 ‖XT
θ∗(Ck)‖‖x̄i‖ < 1.

Corollary 11. (DVIs for SVM) For problem (22), suppose
that we are given a sequence of parameters 0 < C1 <
C2 < . . . < CK. Assume that w∗(Ck) is known for an
arbitrary integer 1 ≤ k < K. Then, for Ck+1, we have
[θ∗(Ck+1)]i = 0, i.e., i ∈ R, if the following holds:
Ck+Ck+1

2Ck
〈w∗(Ck), x̄i〉 − Ck+1−Ck

2Ck
‖w∗(Ck)‖‖x̄i‖ > 1.

Similarly, we have [θ∗(Ck+1)]i = 1, i.e., i ∈ L, if
Ck+Ck+1

2Ck
〈w∗(Ck), x̄i〉+ Ck+1−Ck

2Ck
‖w∗(Ck)‖‖x̄i‖ < 1.

5.2. Improving the existing method

We briefly describe how to improve SSNSV (Ogawa et al.,
2013) by using the same technique used in DVI rules (refer
to the supplement for more details). In view of Eq. (13),
(R1′) and (R2′) can be rewritten as:

min
w∈Ω
〈w, x̄i〉 > 1⇒ [θ∗(C)]i = 0⇔ i ∈ R, (R1′′)

max
w∈Ω
〈w, x̄i〉 < 1⇒ [θ∗(C)]i = 1⇔ i ∈ L, (R2′′)

where Ω is a set that includes w∗(C) (we have already set
−ai = bi = yi, α = 0 and β = 1). It is easy to see that the
smaller Ω is, the tighter the bounds are in (R1′′) and (R2′′).
Thus, more data instances’ membership can be identified.

Estimation of w∗ in SSNSV Ogawa et al. (2013) consider
the following equivalent formulation of SVM:

min
w

1

2
‖w‖2, s.t.

∑l

i=1
[1− yiwTxi]+ ≤ s. (24)

Let Fs = {w :
∑l
i=1[1 − yiw

Txi]+ ≤ s}. Suppose
that we have two scalars sa > sb > 0, and Fsb 6= ∅,
ŵ(sb) ∈ Fsb . Then, for s ∈ [sb, sa], w∗(s) is inside the
following region:

Ω[sb,sa] :=

{
w :

〈w∗(sa),w −w∗(sa)〉 ≥ 0,
‖w‖2 ≤ ‖ŵ(sb)‖2.

}
(25)

Estimation of w∗ via VI By using the same technique as in
DVI, we can see that w∗(s) is inside the following region:

Ω′[sb,sa] :=

{
w :

〈w∗(sa),w −w∗(sa)〉 ≥ 0,
‖w − 1

2ŵ(sb)‖ ≤ 1
2‖ŵ(sb)‖.

}
(26)

We can see that Ω′[sb,sa] ⊂ Ω[sb,sa], and thus SSNSV can
be improved by the estimation in (26). The rule based on
Ω′[sb, sa] is presented in Theorem 18 in the supplement,
which is called the “enhanced” SSNSV (ESSNSV).

6. Screening Rules for LAD
In this section, we extend DVI rules in Section 4 to the
least absolute deviations regression (LAD). Suppose that
we have a training set {xi, yi}li=1, where xi ∈ <n and
yi ∈ <. The LAD problem takes the form of

min
w

1

2
‖w‖2 + C

∑l

i=1
|yi −wTxi|. (27)

We can see that, if we set ϕ(t) = |t| and −ai = bi = 1,
problem (3) becomes the LAD problem. To construct the
DVI rules for LAD based on Corollaries 7 and 8, we need
to find α and β. Indeed, we have the following result:

Lemma 12. Let ϕ(t) = |t|, then α = −1 and β = 1, i.e.,

ϕ∗(s) = ι[−1,1]. (28)
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We again omit the proof of Lemma 12 because it is a direct
application of Eq. (1). Then, it is straightforward to derive
the sequential DVI rules for the LAD problem.
Corollary 13. (DVI∗s for LAD) For problem (27), sup-
pose that we are given a sequence of parameter values
0 < C1 < C2 < . . . < CK. Assume that θ∗(Ck) is known
for an arbitrary integer 1 ≤ k < K. Then, for Ck+1, we
have [θ∗(Ck+1)]i = −1 or 1, i.e., i ∈ R or i ∈ L, if the
following holds, respectively:

1. Ck+1+Ck

2 〈XT θ∗(Ck),xi〉 − Ck+1−Ck

2 ‖XT θ∗(Ck)‖‖xi‖ > yi.

2. Ck+1+Ck

2 〈XT θ∗(Ck),xi〉+ Ck+1−Ck

2 ‖XT θ∗(Ck)‖‖xi‖ < yi.

Corollary 14. (DVIs for LAD) For problem (27), sup-
pose that we are given a sequence of parameter values
0 < C1 < C2 < . . . < CK. Assume that w∗(Ck) is known
for an arbitrary integer 1 ≤ k < K. Then, for Ck+1, we
have [θ∗(Ck+1)]i = −1 or 1, i.e., i ∈ R or i ∈ L, if the
following holds, respectively:

1. Ck+1+Ck

2Ck
〈w∗(Ck),xi〉 − Ck+1−Ck

2Ck
‖w∗(Ck)‖‖xi‖ > yi,

2. Ck+1+Ck

2Ck
〈w∗(Ck),xi〉+ Ck+1−Ck

2Ck
‖w∗(Ck)‖‖xi‖ < yi.

To the best of our knowledge, ours are the first screening
rules for LAD.

7. Experiments
We evaluate DVI rules on both synthetic and real data sets.
To measure the performance of the screening rules, we
compute the rejection rates, i.e., the ratio of the number of
data instances whose membership can be identified by the
rules to the total number of data instances. We test the rules
along a sequence of 100 parameters of C ∈ [10−2, 10] e-
qually spaced in the logarithmic scale. In Section 7.1, we
compare the performance of DVI rules with SSNSV (O-
gawa et al., 2013), which is the only existing method for
identifying non-support vectors in SVM. We note that both
DVI rules and SSNSV are safe in the sense that no support
vectors will be mistakenly discarded. We then evaluate D-
VI rules for LAD in Section 7.2.

7.1. DVI for SVM

In this experiment, we first apply DVIs to three simple 2D
synthetic data sets to illustrate the effectiveness of the pro-
posed screening methods. Then, we compare the perfor-
mance of DVIs, SSNSV and ESSNSV using (a) the IJCN-
N1 data set (Prokhorov, 2001); (b) the Wine Quality data
set (Cortez et al., 2009); and (c) the Forest Covertype data
set (Hettich & Bay, 1999). The original Forest Covertype
data set includes seven classes. We randomly pick two of
the seven classes to construct the data set used in this paper.

Synthetic Data Sets In this experiment, we show that DVIs
are very effective in discarding non-support vectors even

in largely overlapping classes. We evaluate DVIs rules on
three synthetic data sets, i.e., Toy1, Toy2 and Toy3, plot-
ted in the first row of Fig. 1. For each data set, we gen-
erate two classes. Each class has 1000 data points and is
generated from N({µ, µ}T , 0.752I), where I ∈ <2×2 is
the identity matrix. For the positive classes (the red dots),
µ = 1.5, 0.75, 0.5, for Toy1, Toy2 and Toy 3, respectively;
and µ = −1.5,−0.75,−0.5, for the negative classes (the
blue dots). From the plots, we can observe that when |µ|
decreases, the two classes increasingly overlap and thus the
number of data instances belonging to set L increases.

Table 1. Running time (in seconds) for solving SVM problems
with 100 parameter values by (a) “Solver” (solver without screen-
ing); (b) “Solver+DVIs” (solver combined with DVIs). “DVIs”
is the total running time (in seconds) of the rule. “Init.” is the
running time to solve SVM with the smallest parameter value.

Solver Solver+DVIs DVIs Init. Speedup

Toy1 11.83 0.20 0.02 0.12 59.15
Toy2 13.68 0.52 0.03 0.15 26.31
Toy3 15.35 0.61 0.03 0.16 25.16

The second row of Fig. 1 presents the stacked area chart-
s of the rejection rates. For convenience, let R̃ and L̃ be
the indices of data instances that are identified by DVIs as
members of R and L, respectively. Then, the blue and red
regions present the ratios of |R̃|/l and |L̃|/l (recall that l is
the number of data instances, which is 2000 for this experi-
ment). We can see that, for Toy1, the two classes are clearly
apart from each other and thus most of the data instances
belong to set R. The first chart in the second row of Fig. 1
indicates that the proposed DVIs can identify almost all of
the non-support vectors and thus the speedup is almost 60
times compared to the solver without screening (please re-
fer to Table 1). When the two classes have a large overlap,
e.g., Toy3, the number of data instances in L significantly
increases. This will generally impose a great challenge on
the solver. But even for this challenging case, DVIs is still
able to identify a large portion of the non-support vectors
as indicated by the last charts in the second row of Fig. 1.
Notice that, for Toy3, |L̃| is comparable to |R̃|. Table 1
shows that the speedup gained by DVIs is about 25 times
for this challenging case. It is worthwhile to mention that
the running time of “Solver+DVIs” in Table 1 includes the
running time (the 5th column of Table 1) for solving SVM
with the smallest parameter value.

Real Data Sets In this experiment, we compare the per-
formance of SSNSV, ESSNSV and DVIs in terms of the
rejection ratio; that is, the ratio of the number of data in-
stances identified as members of R or L by the screening
rules to the number of total data instances. Fig. 2 shows
the rejection ratios of the three methods on three real da-
ta sets. We can observe that DVIs rules identify far more
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(b) Toy2
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(c) Toy3

Figure 1. DVIs for three 2D synthetic data sets. The first row shows the plots of the data. Cyan and magenta dotted lines are the resulting
decision functions at C = 10−2 and C = 10, respectively. The second row presents the rejection rates of DVIs with the given 100
parameter values.
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(a) IJCNN1

0.1 1 10
0

0.2

0.4

0.6

0.8

1

C

R
at

io
 o

f D
et

ec
te

d 
N

S
V

s

 

 

SSNSV
ESSNSV
DVI

s

(b) Wine

0.1 1 10
0

0.2

0.4

0.6

0.8

1

C

R
at

io
 o

f D
et

ec
te

d 
N

S
V

s

 

 

SSNSV
ESSNSV
DVI

s

(c) Forest Covertype

Figure 2. Comparison of the performance of SSNSV, ESSNSV and DVIs for SVM on three real data sets.
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Figure 3. Rejection ratio of DVIs for LAD on three real data sets.

non-support vectors than do SSNSV and ESSNSV. For I-
JCNN1, about 80% of the data instances are identified as
non-support vectors by DVIs. Therefore, as indicated by
Table 2 the speedup gained by DVIs is about 5 times. For
the Wine data set, more than 80% of the data instances
are identified to belong to R or L by DVIs. As indicat-
ed in Table 2, the speedup is about six times that gained by

DVIs. For the Forest Covertype data set, almost all of data
instances’ membership can be determined by DVIs. Ta-
ble 2 shows that the speedup gained by DVIs is almost 80
times faster, which is much higher than that of SSNSV and
ESSNSV. Moreover, Fig. 2 indicates that ESSNSV is more
effective in identifying non-support vectors than SSNSV,
which is consistent with our analysis.
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Table 2. Running time (in seconds) for solving the SVM prob-
lems along the 100 parameter values on three real data sets. In
“Solver+SSNSV” and “Solver+ESSNSV”, “Init.” reports the run-
ning time for solving SVM at the smallest and the largest parame-
ter values since they are required to run SSNSV and ESSNSV. In
“Solver+DVIs”, “Init.” reports the running time for solving SVM
at the smallest parameter value that is sufficient to run DVIs. The
running time reported by Init. is included in the total running time
of the solver equipped with the screening methods.

IJCNN1 (l = 49990, n = 22) Speedup
Solver Total 4669.14 -

Solver+SSNSV
SSNSV 2.08

Init. 92.45 2.31
Total 2018.55

Solver+ESSNSV
ESSNSV 2.09

Init. 91.33 3.01
Total 1552.72

Solver+DVIs
DVIs 0.99
Init. 42.67 5.64
Total 828.02

Wine (l = 6497, n = 12) Speedup
Solver Total 76.52 -

Solver+SSNSV
SSNSV 0.02

Init. 1.56 3.50
Total 21.85

Solver+ESSNSV
ESSNSV 0.03

Init. 1.60 4.47
Total 17.17

Solver+DVIs
DVIs 0.01
Init. 0.67 6.59
Total 11.62

Forest Covertype (l = 37877, n = 54) Speedup
Solver Total 1675.46 -

Solver+SSNSV
SSNSV 2.73

Init. 35.52 7.60
Total 220.58

Solver+ESSNSV
ESSNSV 2.89

Init. 36.13 10.72
Total 156.23

Solver+DVIs
DVIs 1.27
Init. 12.57 79.18
Total 21.16

7.2. DVI for LAD

We evaluate the performance of DVIs for LAD on three real
data sets: (a) Magic Gamma Telescope data set (Bache &
Lichman, 2013); (b) Computer data set (Rasmussen et al.);
(c) Houses data set (Pace & Barry, 1997). Fig. 3 shows
the rejection ratio of DVIs rules for the three data sets. We
can observe that the rejection ratio of DVIs on the Magic
Gamma Telescope data set is about 90%, leading to a ten-

Table 3. Running time (in seconds) for solving the LAD problems
with the given 100 parameter values on three real data sets. In
“Solver+DVIs”, “Init.” reports the running time for solving LAD
at the smallest parameter value which is required to run DVIs.
Init. is included in the total running time of Solver+DVIs.

Magic Gamma Telescope (l = 19020, n = 10) Speedup
Solver Total 122.34 -

Solver+DVIs
DVIs 0.28
Init. 0.12 9.86
Total 12.41

Computer (l = 8192, n = 12) Speedup
Solver Total 5.38 -

Solver+DVIs
DVIs 0.08
Init. 0.05 19.21
Total 0.28

Houses (l = 20640, n = 8) Speedup
Solver Total 21.43 -

Solver+DVIs
DVIs 0.06
Init. 0.10 114.91
Total 0.19

fold speedup as indicated in Table 3. For the Computer and
Houses data sets, the rejection rates are very close to 100%;
i.e., almost all of the data instances’ membership can be
determined by DVIs. As expected, Table 3 shows that the
resulting speedups are about 20-fold and 115-fold faster,
respectively. We note that the speedup for the Houses data
set is more than two orders of magnitude. These results
demonstrate the effectiveness of the proposed DVI rules.

8. Conclusion
In this paper, we develop new screening rules for a class
of supervised learning problems by studying their dual for-
mulation with the variational inequalities. Our framework
includes two well-known models, i.e., SVM and LAD, as
special cases. The proposed DVI rules are very effective
in identifying the non-support vectors for both SVM and
LAD, and they thus result in substantial savings in com-
putational cost and memory usage. Extensive experiments
on both synthetic and real data sets demonstrate the effec-
tiveness of the proposed DVI rules. We plan to extend the
framework of DVI to other supervised learning problem-
s, e.g., weighted SVM (Yang et al., 2005), RWLS (robust
weighted least squres) (Chatterjee & Mächler, 1997), ro-
bust PCA (Ding et al., 2006), robust matrix factorization
(Ke & Kanade, 2005).
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