
Generating and Exploring Good Building Layouts

Fan Bao1 Dong-Ming Yan2 Niloy J. Mitra3 Peter Wonka1,2

1Arizona State University 2KAUST 3University College London

1 of 10 initial good layouts portal graph

Figure 1: Starting from a set of hard constraints (e.g., regulatory guidelines) and soft constraints (e.g., quality measures), we formulate a
constrained optimization to characterize good building layouts. Then, starting from a discrete set of samples of good layouts, we analytically
construct local shape spaces around each discrete layout, and link the local shape spaces via a portal graph. Exploration using the portal
graph then reveals a family of layout solutions. Importantly, the user is explosed to only good layouts, simplifying layout exploration.

Abstract

Good building layouts are required to conform to regulatory guide-
lines, while meeting certain quality measures. While different meth-
ods can sample the space of such good layouts, there exists little
support for a user to understand and systematically explore the sam-
ples. Starting from a discrete set of good layouts, we analytically
characterize the local shape space of good layouts around each ini-
tial layout, compactly encode these spaces, and link them to sup-
port transitions across the different local spaces. We represent such
transitions in the form of a portal graph. The user can then use the
portal graph, along with the family of local shape spaces, to glob-
ally and locally explore the space of good building layouts. We use
our framework on a variety of different test scenarios to showcase
an intuitive design, navigation, and exploration interface.

Keywords: local variations, layout exploration, shape space, con-
strained optimization, computational design

Links: DL PDF WEB VIDEO DATA CODE

1 Introduction

Many layout generation problems can be formulated as global opti-
mization or probabilistic sampling problems (e.g., furniture, rooms,
buildings, cities, etc.). These approaches result in one or multiple
(discrete) solution candidates for a user to choose. One significant
challenge is to create a mathematical model to define what consti-
tutes a good layout, e.g., using constraints, energy terms, or proba-
bility distributions. Such models typically have one or more of the

following shortcomings: (i) too simplified for mathematical conve-
nience; (ii) the parameters are crudely estimated due to high dimen-
sions of the (embedded) solution space; and importantly, (iii) aes-
thetic or visual design factors, which are often very difficult to
model, are ignored. Hence, it is desirable to allow the user to re-
fine the solutions based on visual quality assessment. Further, in
our discussions with architects and designers, we have learned that
they often lament the absence of suitable (computational) guidance
to facilitate design variations. Technically, the lack of appropriate
characterization of the underlying space of good solutions makes it
difficult to refine the solutions without degrading the original layout
qualities.

In this paper, we characterize the space of good local changes
around any sampled configuration and further link multiple local
characterizations corresponding to different sampled configurations
to provide a global overview of the sampled solution space (see Fig-
ure 1). We study this problem in the context of individual buildings
and parcel blocks of buildings. We first characterize the problem
as an instance of constrained optimization by understanding what
makes a building layout good, i.e., valid and desirable. Layouts are
valid if they conform to regulations arising in the context of urban
planning in the form of hard constraints, e.g., buildings should lie
entirely inside the indicated parcel boundaries. Further, layouts are
desirable if they improve quality measures specified as soft con-
straints, e.g., large courtyards are preferred.

Starting from an initial set of layouts (sampled or digitized from ex-
isting maps) along with associated constraints, we use constrained
optimization to generate a (discrete) set of good layouts. Such lay-
outs, however, have different parameterizations and hence cannot
be directly combined (e.g., interpolated). We address this challenge
in two stages. First, starting from any such good layout, we explic-
itly characterize the space of local layout variations. Specifically,
we derive a low-dimensional space of variations, wherein layouts
are guaranteed to remain good (i.e., valid and desirable). Second,
based on an appropriate distance measure between pairs of lay-
outs, we extract portals or good transition pathways linking the
different local spaces thus providing a global overview of the ex-
tracted solution space. We then expose these variations, both local
and global, via a simple and intuitive exploration interface. We eval-
uate our framework under different combinations of hard and soft
constraints to generate good variations.

http://doi.acm.org/10.1145/2461912.2461977
http://portal.acm.org/ft_gateway.cfm?id=2461977&type=pdf
http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/good_layout/goodLayouts_sigg13.html
http://www.youtube.com/watch?v=mO1K5pCkb3U
http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/good_layout/goodLayouts_sigg13.html
http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/good_layout/goodLayouts_sigg13.html

Input constraints:
parcel boundary,

floor area,
courtyards, ...

generate
good layouts

navigate
good layouts

digitize layout

create local
shape space

create
portal graph

create local
shape space

Figure 2: Starting from an input set of hard and soft constraints, our framework first generates good initial layouts, then characterizes the
local shape space around each such initial layout, and connects the local spaces using a portal graph. The portal graph along with the local
shape spaces can then be interactively explored for local and global layout exploration. Note that the user sees only good (i.e., valid and
desirable) layouts.

Contributions. In summary, our contributions include:

• formulating good (i.e., valid and desirable) building layout
generation as an instance of constrained optimization;

• characterizing the space of local variations around any given
layout that retains goodness of the original layout; and

• linking such local spaces of variations by building global con-
nection pathways to facilitate intuitive exploration of the ex-
tracted space of good building layouts.

2 Related Work

Procedural modeling. Grammars have been successfully em-
ployed in the context of procedural building modeling [Parish and
Müller 2001; Wonka et al. 2003; Müller et al. 2006]. All such meth-
ods, however, expect the user to encode the rules of the grammar, a
task that is similar to implementing scripts in a professional mod-
eling package. To simplify the rule creation process, several impor-
tant ideas emerged over time: graphical user interfaces to simplify
editing a grammar and the resulting models [Lipp et al. 2008]; or
grammars augmented to interact with external constraints, such as
guidance shapes, user input, or simulation [Měch and Prusinkiewicz
1996; Prusinkiewicz et al. 2001; Beneš et al. 2011; Talton et al.
2011]; or grammars derived from existing models, a process re-
ferred to as inverse procedural modeling [Aliaga et al. 2007; Müller
et al. 2007; Bokeloh et al. 2010; Št’ava et al. 2010].

Stochastic sampling. An alternate strategy for building model-
ing is to optimize a goal function and a set of constraints. A re-
cent paper that embodied this approach is by Merrell et al. [2010],
who computed room layouts using stochastic optimization and em-
ployed learning techniques to generate reasonable room sizes and
connectivity graphs similar to existing examples. Extruding these
rooms results in nice mass models. By modeling up to a few city
blocks, the scale of our modeling approach falls somewhere in be-
tween residential building layouts (e.g., Merrell et al. [2010]) and
city scale modeling (e.g., Vanegas et al. [2012]). We note that the
data-driven method of Merrell et al. can possibly learn aesthetic de-
sign elements, which are difficult to capture using a purely analytic
approach. Existing methods, however, do not support local refine-
ments or exploration of the constrained solution space. Further, re-
stricting sampling to only a few dimensions does not help because
good local shape space variations are often distributed over the full
representation (e.g., most of the boxes move in our framework even
under local changes).

Retargeting existing designs. Retargeting and reshaping exist-
ing building models have been used to generate plausible variations.

Cabral et al. [2009] used constrained optimization to deform archi-
tectural models while preserving angles and contact relationships;
while Lin et al. [2011] broke down an architectural model into axis-
aligned boxes retarget them by resizing and replicating boxes of
the input model. Habbecke and Kobbelt [2012] proposed a con-
straint analysis and deformation framework for man-made objects,
like buildings.

Design exploration. An early inspiration for many modeling
papers was the concept of design galleries [Marks et al. 1997]
that is now commonplace. Shapira et al. [2009] proposed a great
framework to explore different recolorings of input images; while
in another interface, parametric design space of trees and human
shapes [Talton et al. 2009] was proposed. In the context of isomet-
ric shape deformation, Kilian et al. [2007] proposed useful Rieman-
nian metrics in the space of meshes to aid the user in design and
modeling tasks; while for freeform architecture, Yang et al. [2011]
introduced local shape space exploration that was an inspiration to
our work. Large design spaces can also be sampled discretely using
a probabilistic model: an idea that is complementary to our work.
We are also inspired by recent efforts in deriving form from func-
tion, a design philosophy reinvented towards computational design,
e.g., for modeling of furniture [Umetani et al. 2012], precast-based
buildings [Liu et al. 2013], or land-use patterns [Vanegas et al.
2012]. In contrast to these efforts, we focus on exploring both lo-
cal (continuous) and global (discrete) variations and allow the user
to explore the choices via an interactive interface, while ensuring
goodness of the generated layouts.

Building optimization. In civil engineering and architecture, op-
timization and simulation are used to find efficient ways to con-
struct a building, e.g., [Rafiq et al. 2003; Coleman 2007; Hale and
Long 2010]. While these methods mainly focus on optimizing con-
struction details for buildings that have a fixed shape, the methods
do not contribute to the shape modeling problem, as is our focus.
The exploration of shape variations is limited to buildings that con-
sist of one single box shape [Hale and Long 2010], or window ar-
rangements on a given mass model [Gagne and Andersen 2010], or
the layout of a housing blocks [Leblanc et al. 2011]. In another re-
search thread, Whiting et al. [2009; 2012] explored structural feasi-
bility in the context of modeling masonry buildings. They proposed
a gradient-based nonlinear optimization approach to search the pa-
rameter space in procedural models to generate stable buildings,
while modifying the geometry to achieve stability.

3 System Overview

At the beginning, the user has two options: (i) provide a parcel
boundary, select from a set of available hard and soft constraints,

navigation polygon

portal graph

main window

good layout
variation

good layout
sample

portal

portal transitions

Figure 3: Our system consists of four panels: a portal graph, a 2D
navigation polygon, portal transitions, and a main window to show
the current layout. Only good layouts are presented in the interface.

and generate initial layouts in a sampling stage; or, (ii) provide a
set of digitized or modeled building layouts, select soft constraints,
and extract (or select) relevant hard constraints consistent with the
input layouts. Subsequently, local shape spaces of good layouts are
generated, sampled, and then linked via portals (see Figure 2).

The layout space is now ready for exploration. The viewer has four
windows (see Figure 3): (a) a portal graph showing the current
shape space (around Γi) and active connection pathways leading
to other shape spaces; (b) a 2D navigation polygon showing the
current shape space where neighboring points have visually similar
layouts; (c) a set of portal transitions providing glimpses of neigh-
boring portals, and (d) a main window showing the current layout.
Only good layouts are made available to the user. The user can ex-
plore by selecting nodes in the portal graph, directly moving on the
navigation polygon, or by interactively adjusting edges in the main
window (see supplementary material). (We note that nodes may be
disconnected based on the current portal jump threshold). Based on
the selected building style (e.g., residential, warehouse, etc.) win-
dow and door elements are procedurally added to the current layout.

4 Problem Formulation

We evaluate goodness of building layouts based on input sets of
hard and soft constraints arising out of building regulations, con-
struction efficiency, economic factors, or livability considerations.
A layout is said to be valid if it satisfies all the hard constraints,
and desirable if it has a low (acceptable) cumulative soft constraint
energy. Layouts that are both valid and desirable are called good.
In this section, we formulate the layout generation problem as an
instance of constrained optimization. Later, aesthetic qualities are
judged by the user only in the interactive exploration phase.

Representation. We represent each building layout as a union of
a set of (overlapping) boxes, ∪iRi (see Figure 4). We parameter-
ize each box, Ri, using its size attributes (i.e., length li, width
wi, height hi) and position attributes (i.e., center (xi, yi), rota-
tion θi) and encode the attributes as a vector of six variables
[li, wi, hi, xi, yi, θi]. Thus, a building comprised of n boxes is rep-
resented as a single vector, Γ ∈ Rd (e.g., d = 6n). We denote such
parameterized buildings as Γ.

Hard Constraints. Buildings have to conform to certain hard
constraints, expressed as equality/inequality relations. Such con-
straints either arise from building guidelines (e.g., a building should
lie completely inside its designated parcel or building plot, lay-

θ

w

h

l

parcel boundary

(x,y)

building

Figure 4: We generate building layouts subject to hard constraints
and soft constraints. Layouts are encoded as unions of boxes, where
each box is parameterized by its position attributes, i.e., the center
(x, y) and rotation θ; and its size attributes (l, w, h).

out boundaries should maintain a minimum clearance from par-
cel boundaries, etc.), or from livability considerations (e.g., build-
ings should have a minimum thickness to facilitate access, or their
boundary lines should have a minimum length to prevent unreach-
able corners, etc.). We abstract such conditions as hard constraints
over the parameterized buildings as χ(Γ) = 0, indicating a valid
layout and invalid otherwise. In our setup, we take as input a
set of (linear) constraints (as equality/inequality constraint), say
{χ0, χ1, . . . }.

Soft Constraints. Certain building layouts are preferred over oth-
ers based on various preference and quality measures. For example,
layouts with target floor areas, layouts with courtyards that pro-
vide privacy and light, or buildings that are less in shadow can
be preferred. We abstract such quality measures as energy func-
tions, E(Γ), with lower energies indicating more desirable lay-
outs. We take as input a set of (nonlinear) quality measures, say
{E0, E1, . . . }.

Good Layout. A layout Γ is good, if χi(Γ) = 0, ∀i; and the
cumulative energyE :=

∑
j Ej(Γ) is less than an input threshold.

5 Algorithm

Overview. Our system starts with input sets of hard and soft con-
straints. Then, it uses either stochastic sampling to generate or dig-
itize existing layouts (e.g., extracted from city maps) to replicate
a set of valid layouts. In either case, these valid layouts are opti-
mized to generate a set of good layouts, say {Γi} (see Section 6).
For each such layout Γi, a local shape space of good layouts is
then characterized and sampled, based on the modal analysis of
the soft constraints (see Section 5.1). Any convex combinations of
such samples produce good layouts, thus yielding a compact en-
coding of the local shape space around Γi. However, configura-
tions from different Γi and Γj have different representations and
topologies, and cannot be directly combined. Hence, based on a
layout-space similarity distance, we extract connection pathways or
portals γij linking local shape spaces around Γi and Γj , such that
visual discontinuities arising from such jumps are minimized (see
Section 5.2). Note that γij denotes a discrete jump and not a contin-
uous transition. We expose the extracted layout space by allowing
discrete transitions via the portals and thus linking the continuous
local shape spaces built around each of the Γi (see Section 5.3).

5.1 Characterizing good local variations

Let Γi denote any good layout, i.e., both valid and desirable. Our
goal is to characterize the local shape space to generate further lay-
out variations Γ, which are all good. In this stage, we keep the di-
mension of the representation, say d, fixed.

Any vector, v ∈ Rd with ‖v‖ = 1, defines a newly suggested
layout, Γv ← Γi + v. A random direction v, however, can
quickly degrade the desirability of a layout, i.e., we allow only
small displacements without violating the constraints. In order to
preserve the current soft constraints, we restrict movements to di-
rections orthogonal to the gradient of the cumulative energy, i.e.,
(Γv − Γi)T∇E|Γi = 0, where ∇E|Γi denotes the gradient eval-
uated at the starting layout, Γi. Using Taylor expansion, the new
energy at Γv is given by:

E(Γv) ≈ E(Γi) + (Γv − Γi)TH|Γi(Γv − Γi)/2, (1)

where H denotes the Hessian of the energy function (see supple-
mentary material) because the first-order term vanishes due to the
previous condition. Note that, unlike Yang et al. [2011], we avoid
building a full local osculant, which simplifies the subsequent for-
mulation and exploration. Hence, if we restrict displacements to
the lowest k eigenvectors, ej for j = 1 : k of the Hessian H, i.e.,
v ∈

∑
j=1:k γjej , the energy is best preserved as:

E(Γv) ≈ E(Γi) +
∑
j=1:k

γ2
jλj/2 (2)

with λj denoting the corresponding eigenvalues. We decide on k
based on the spectral plot of H (see Figure 5) using k to be the
maximum |λk| ≤ 1.05|λ0| with λ0 being the eigenvalue with the
smallest absolute value (If k ≤ 4, we still use k = 5). Further,
‖v‖ = 1 amounts to

∑
j=1:k γ

2
j = 1. Thus, we have characterized

the space of desirable variations using k dimensions.

0
8010

0.5

|e
ig

en
va

lu
e|

index

Figure 5: A typical eigenvalue plot for Hessian matrix H of the soft
constraints evaluated at initial good layout Γi. We restrict sampling
and navigation to the low eigen-modes (e.g., k = 5) to preserve
layout desirability.

Unfortunately, picking a direction this way can violate the hard con-
straints. We restore layout validity by correcting for violated hard
constraints using quadratic programming (QP) as follows:

Γ? := argmin
Γ

1

2
(Γ− Γv)T (Γ− Γv)

s.t. (Γ− Γi)T∇E|Γi = 0

χj(Γ) = 0 ∀j. (3)

Thus, we project the displacement vector, v, to the good layout
space to obtain Γ?, giving an updated deformation, v? ← Γ?−Γi.
We invoke only the active linear constraints, i.e., those where the
current layout Γv is close to being violated based on an allowed
threshold. We solve the resultant QP in Equation 3 using Matlab’s
quadprog and line search along v? to refine the variation. Although
this projection step can affect the energy, E, in practice, we found
the effect to be negligible because the configurations Γv are close to
the shape space. Note that the projected solution may deviate from
the subspace spanned by the k eigenvectors of the Hessian.

Γ1

i

Γ2

i Γ3

i

Γ4

i

Γ
i

Γ
i

Γ1

i

Γ2

i

random

lowest 5 eigendirections
lowest 10 eigendirections

di
st

an
ce

Figure 6: Starting from a good layout, Γi (top), we use the lowest
k (k = 5) eigenvectors of the Hessian of the soft constraints to
explore the shape space. The solutions are then projected using a
QP formulation to produce good layouts of the form Γij . The graph
shows that restricting navigation based on vectors from the lowest k
eigen vectors (k=5 versus k=10) allows longer traversal (i.e., larger
variations), while preserving goodness of the layouts. Note that as
a hard constraint, the buildings cannot touch the white jagged line.

For larger variations, we use multiple steps (10 in our examples).
We reuse the original Hessian, H|Γi , instead of recomputing it, to
restrict movement in a consistent direction. Figure 6 shows a typ-
ical behavior where restricting navigation to the lowest few eigen-
modes of the Hessian leads to larger movements (i.e., variations) in
the shape space, while maintaining goodness of layouts.

For each random direction restricted to v ∈
∑
j=1:k γjej , we ob-

tain a (projected) good layout using shape space exploration as de-
scribed above. Thus, in the end, we obtain a set of good layout vari-
ations {Γi1,Γi2, . . . } all originating from Γi. In our tests, we gener-
ated a fixed number of variations (set to 100). These variations are
not necessarily all very distinct. One option is to cluster the varia-
tions based on their configuration parameters (c.f., [Vanegas et al.
2012]). But, configuration space similarity does not translate to vi-
sual similarity. Hence, we define a similarity distance directly in the
space of the layouts by XOR of the volumes of any two layouts, Γ1

1

4.25

4.5 portal
graph

local space
portal

A1 A2 A3

B1 B2 B3

C1 C2 C3

A1

A3

A2

B3
B2

B1
C1

C2

C3

Figure 7: Starting from a few good layout samples (A1, B3, C2),
we characterize good local variations via shape space exploration
to create local navigation polygons. Such local shape spaces are
then linked via portal connections (e.g., A3↔C3) where shorter
distances denote less visually noticeable transitions. The connec-
tivity between the generated local spaces are encoded as a portal
graph. Note that all the layouts have the same parcel boundary.

and Γ2, i.e.,

d(Γ1,Γ2) := vol(Γ1)⊕ vol(Γ2). (4)

Note that the configurations have the same parcel boundary and are
hence aligned. Using this distance, we perform farthest sampling
[Eldar et al. 1994] to retain only the top few (10 in our implemen-
tation) most visually different good layouts. Specifically, starting
from a random sample from {Γi1,Γi2, . . . }, we pick the farthest
sample (i.e., layout) from the remaining layouts; we progressively
select additional layouts that are farthest from the currently selected
layouts. Let, {Γi1, . . .Γik} denote these selected layouts.

By construction, all the layouts {Γi1, . . .Γik} are good. More impor-
tantly, since we work with linear hard constraints and sample from
the space of desirable layouts (using Hessian information), any con-
vex combination of the sampled configurations are also good. Thus,
for any good layout, Γi, we produce a continuous space of good lay-
out variations as

∑
j=1:k αjΓ

i
j with

∑
j=1:k αj = 1 and αj ≥ 0.

5.2 Extracting global portals

At this stage, we have a discrete set of shape spaces for good layouts
respectively built around initial good layouts {Γi}. These spaces,
however, are disjointed, preventing users from navigating across
these local shape spaces. Recall that each local space around Γi is
characterized by a convex combination of {Γij}, but the underlying
dimensionality of different shape spaces can be different. This pre-
vents any meaningful interpolation between two spaces, say Γi and
Γj . Instead, we look for good locations to jump between a pair of
such local spaces — we call such pathways portals. In the context
of layout exploration, we characterize good portals as those jumps
that lead to small visual changes.

Ideally, given any pair of good layout spaces around Γi and
Γj , we want to extract parameters {αl} and {βm} such that
d(
∑
l αlΓ

i
l,
∑
m βmΓjm) is minimized (subject to

∑
l αl =

1, αl ≥ 0 and
∑
m βm = 1 βm ≥ 0). Instead of directly solving

this optimization, we coarsely evaluate the solution space.

We compute pairwise distances between elements from Γi and Γj ,
and select the pair with γij := argminl,m d(Γil,Γ

j
m), where γij

denotes the portal. The information is encoded as a portal graph,
where each local shape space around Γi becomes a node; and any
two nodes are connected by an edge that represents the portal con-
necting them. For any edge, we take the corresponding volume-
distance as its cost (i.e., d(γij) with abuse of notation), with higher
costs denoting larger visual disparity. (Note that for the distance
computations, we assume that the parcel boundaries are consistent
across different local spaces and hence the layouts can be directly
compared.) Figure 7 shows an example.

For higher accuracy, it is possible to extract portals across the dense
sampling of points first (100 in our setting) in shape spaces of Γi to
find the portals and then use farthest point sampling by keeping the
portal entry points as fixed landmark locations.

5.3 Navigating good layouts

At this stage, we have generated a set of local shape spaces of good
layouts in the form {{Γ1

1, . . .Γ
1
k}, {Γ2

1, . . . ,Γ
2
k}, . . . } (for nota-

tional simplicity, we assume each local set has k good layouts).
Inside each local set, any layout of the form

∑
j=1:k αjΓ

i
j with∑

j=1:k αj = 1, αj ≥ 0 is a good layout by construction. We now
describe how to navigate and explore such good layouts, first lo-
cally and then globally across these local spaces.

Local exploration. We support two modes: (i) handle-driven ex-
ploration, where the user directly edits the current layout by drag-
ging the layout edges, while the system restricts changes to the
current local space; and (ii) navigation polygon-based exploration,
where the user can move on a 2D embedded map of the local shape
space where relative distances reflect the corresponding relative dis-
tances in terms of object space similarity (see Equation 4).

Handle-driven exploration. The user selects an edge of one of the
boxes of the current layout, say Γ0, and then prescribes a target lo-
cation. Note that the user selects an edge of Γ0 and not necessarily
a full facade (see Figure 8). Assume that {Γij} denotes the current
local set. Thus, the target layout is a new variation restricted to the
local convex set such that it also satisfies certain new (linear) con-
straints χl(Γ) = 0, e.g., moving certain edge(s) to new position(s).
In Figure 8, where the layout is axis-aligned, such a constraint is

Figure 8: The user can directly edit current layouts by dragging an
edge to a new position (left); the corresponding box changes (here
the green box is squeezed (middle)) and then we find a good solution
by solving a QP by restricting the solution to the low-dimensional
parameterization of the local shape space.

simply a requirement that the corresponding edge ends up with a
certain x (or y) coordinate. To obtain the new variation, we first try
to solve the following QP problem:

{α?j} := argmin
αj

1

2
(
∑
j=1:k

αjΓ
i
j − Γ0)T (

∑
j=1:k

αjΓ
i
j − Γ0)

s.t.
∑
j=1:k

αj = 1

αj ≥ 0 ∀j

χl(
∑
j=1:k

αjΓ
i
j) = 0 ∀l. (5)

Note that we do not require any additional conditions to ensure
goodness since the parameterization (with k parameters) already
ensures goodness. If no solution exists, then we satisfy the new con-
straints in a least-squares sense using:

{α?j} := argmin
αj

1

2

∑
l

χl(
∑
j=1:k

αjΓ
i
j)

2

s.t.
∑
j=1:k

αj = 1

αj ≥ 0 ∀j. (6)

The new variation is Γ? =
∑
j=1:k α

?
jΓ

i
j . In our setting, this opti-

mization runs at interactive rates, e.g., on the order of seconds for
layouts involving 10-20 boxes (see supplementary material).

Navigation-polygon. Local layout spaces are parameterized in k
(e.g., 10) dimensions, which are still large for the user to explore.
Hence, we map the samples to 2D producing a navigation poly-
gon (P i for Γi). Specifically, we compute all pairwise distances
of the form d(Γij ,Γ

i
k) and map the points to 2D using multidi-

mensional scaling (MDS) ([Borg and Groenen 2005], chapter 8).
Nearby points in this navigation polygon denote comparable lay-
outs. We mesh these 2D points {pij} using Delaunay triangulation
and allow the user to directly navigate inside the resulting triangu-
lation of the polygon, P i. Say, the user indicates point x ∈ P i. We
locate the corresponding triangle and find the barycentric coordi-
nates of x in this triangle. Navigation then amounts to using these
coordinates to interpolate the layouts corresponding to the triangle
vertices (i.e., three configurations of the form Γij).

Global exploration. We provide a visual representation of the
global space, via the portal graph, by drawing the navigation poly-
gons, P i, as nodes in a graph and linking them with edges. (The
nodes are embedded in 2D using MDS with the minimal distance
between pairs of local shape spaces.) The user can explore the space
of good layouts directly in one of the following ways: (i) if the user
is in the navigation polygon, P i, she can select any of the outgoing
edges (with the jump distance below the edge threshold) to use the
respective portal, γij , to transition to the navigation polygon, P j .
We animate this transition by first moving the current configuration
to the portal entry point in P i (i.e., interpolation using the naviga-
tion polygon) and then jumping to P j ; (ii) if the user selects a target
local space by selecting a node in the portal graph,the shortest path
in the portal graph to the node from the current location is com-
puted and then the path similar to interaction type #i is animated,
possibly via a sequence of alternating smooth interpolation and por-
tal jumps; and (iii) if the user, while navigating, is close to one or
more portals, the system suggests the current portal transition op-
tions for the user to select from or continues navigating using the
current navigation polygon. We found the last mode of navigation
particularly useful when the number of nodes/edges in the portal
graph is large making direct graph-based navigation cumbersome.
The supplementary demo presents these exploration options.

6 Generating Good Layouts

6.1 Initial Layout Generation

We provide two methods for the user to generate initial layouts, as
described next.

Simulated annealing. We start by generating candidate layouts
using simulated annealing (SA) (see also [Merrell et al. 2011; Yu
et al. 2011] for similar applications in the context of furniture lay-
out). While this stage can be also replaced by more advanced sam-
pling strategies like [Talton et al. 2011; Yeh et al. 2012], we found
SA to be sufficient for the initial sampling.

We start with a null layout, i.e., Γ ← ∅, and set the initial energy
to E ← ∞. We then iteratively apply one of the following steps,
chosen at random (see Figure 9):
(i) add a box b, i.e., Γ← Γ ∪ b;
(ii) remove an existing box b at random, i.e., Γ← Γ/b;
(iii) move an existing box b by randomly perturbing bx, by;
(iv) resize an existing box b by randomly changing its size,
bl, bw, bh.
For numerical reasons, vertices/edges of any pair of (aligned) rect-
angles that are closer than a threshold (set to 3% of the parcel size)
are snapped; similarly edges of b are snapped to parcel edges, if b is
sufficiently close to any parcel boundary. We calculate the energy
of the new layout as Enew.

iterations

en
er

gy

a

b
c

d
e f

a b c

d e f

Figure 9: (a–f) Evolution of a layout generated using simulated
annealing (SA) based sampling. The layout has a hard constraint
to lie entirely inside the parcel; while, the are soft constraints (e.g.,
target height distribution, desired floor area, number of courtyards,
etc.) are grouped together as a cumulative energy to guide SA.

If a sampled layout is not fully inside the input parcel, we simply
reject the sample. Otherwise, if Enew ≤ E, we accept the solu-
tion; else, in the annealing step, we accept the new solution with
probability of exp(−(Enew−E)/t), where t is the temperature. If
we accept the new solution, we set E ← Enew; otherwise the old
layout and energy are retained. In the annealing schedule, we pro-
gressively reduce temperature t in each iteration. We stop if either
the maximum number of steps (2000-5000 in our tests) has been
reached, or when E falls below a prescribed threshold.

In this stage, we use the topological properties to measure con-
figuration energy. For example, if a desirable attribute value is v′

and the current value is v(Γ), we set the normalized energy to

Enew(Γ) := ((v(Γ) − v′)/v′)2. In the examples, we set target
values for the number of boxes (3–30/parcel); the number of edges
on the layout boundary (4–100); the number of holes (0–3); and the
number of courtyards (0–5).

The height distribution is specified by a target histogram, i.e.,
number of floors as (f ′i , n

′
i) sorted according to normalized num-

ber of floors. For example, {(2, 3/6), (4, 2/6), (7, 1/6)}, means
3 boxes have 2 floors, 2 boxes have 4 floors, and 1 box has 7
floors. Similarly, for the current layout we compute the (sorted)
distribution (fi, ni/

∑
i ni). We define the corresponding energy

as Πi(|fi − f ′i |/fmax + 1)(|ni/
∑
i ni − n

′
i|+ 1)− 1.

We set the cumulative energy in the SA iterations as the weighted
sum of the above energies.

Digitizing existing layouts. Initial layouts can also be generated
by converting existing plans, modeling new layouts from scratch, or
digitizing layouts from existing city maps (we show examples of the
third option in Section 7). Given a set of layouts, constraints such as
parcel boundaries, minimum width, covered floor area, or distance
to the parcel boundary are automatically extracted and subsequently
(optionally) adjusted by the user.

6.2 Constrained Optimization

In the initial layout generation stage, we obtain a set of candidate
layouts. These layouts, however, may not yet be good as they may
violate the hard and soft constraints (e.g., for a digitized layout).
Let Γ be such a layout. If the current soft constraint energy is
higher than the desired threshold level, we first improve the de-
sirability of the current layout using gradient descent. Specifically,
if ‖∇E‖ is non-negligible (i.e., not already at a minima), we take
a step of size β (set to 0.1 by default) and refine the current lay-
out as Γg ← Γ − β∇E/‖∇E‖, where ∇E denotes the gradient
evaluated at the current configuration. Next, we restore the violated
hard constraints, if any, using a QP to project the layout to the good
shape space as:

Γ∗ := argmin
Γg

1

2
(Γg − Γ)T (Γg − Γ)

s.t. χi(Γg) = 0 ∀i. (7)

We update the current layout as Γ ← Γ∗ and start a new iteration
until the energy, E, falls below the input threshold, or a maximum

iteration number

en
er

gy

0
aΓ bΓ cΓ dΓ

aΓ cΓ

dΓ

bΓ

Figure 10: Starting from a sampled layout Γa (bottom-left), we
perform gradient descent using a QP formulation to produce valid
and desirable layout Γd. Here, we show a typical layout evolution
using a combination of courtyard and covered area energies.

number of iterations (50-100 in our tests) is reached. Figure 10
shows an example of this process.

6.3 Constraints

We now describe the different hard and soft constraints used in our
framework (see Figure 11). While our choices were motivated by
standard planning conventions and design guidelines, other con-
straints can similarly be formulated and handled.

Hard constraints. The following are the hard constraints, which
are all linear equality/inequality constraints.

Parcel constraints. All the boxes in any configuration Γ are con-
strained to remain inside the specified parcel boundary. Further,
edges on the parcel boundary can be constrained to remain on the
boundary (e.g., on construction lines).

Topology constraints. In order to preserve the connectivity of the
current union shape, we add appropriate (equality and inequality)
linear constraints to maintain relative sidedness between pairs of
edges (see supplementary demo).

Thickness constraints. It is desirable to avoid too narrow or too thick
buildings. We ensure this as a thickness constraint where the dis-
tance ti between pairs of candidate parallel lines is constrained as:
tmin ≤ ti ≤ tmax. We use an approximate medial axis of Γ to
identify participating parallel edge pairs.

Soft constraints. We now present the soft constraints, with lower
energies denoting more desirable configurations. The supplemen-
tary material includes detailed expressions and the associated gra-
dient and Hessian terms.

Covered area energy. We add an energy to measure the deviation
from the target occupied parcel area, A′c, as Ecov(Γ) := |(A1 −
A′c)/A

′
c|, where A′c denotes the target covered floor area of the

layout and A1 denotes the ground floor area.

Courtyard energy. In order to encourage larger courtyards, we com-
pute the area of the inner facades (i.e., facades inside a courtyard)
receiving sunlight from a fixed directional light and normalize the
area by the total area of the inner facades. We use this ratio as the
courtyard energy (see supplementary material for details).

Shadow energy. A building can block light access of its neighbor-
ing buildings, which is of particular concern in dense cities (e.g.,
London). We define an energy (see supplementary for details) to
penalize this shadowing effect onto adjacent buildings and onto the
building itself. For simplicity, we take the direction of light to be
given (e.g., the direction of sunlight at midday). Figure 12 shows
the effect of this shadow energy.

boundary
edges hole

courtyard

thickness

parcel
constraint

built area shadow

Figure 11: Various hard constraints (e.g., parcel) and soft con-
straints used in our framework.

optimized

shrunk

iterations

sh
ad

ow
 e

ne
rg

y

iterations
ot

he
r e

ne
rg

ie
s

0 0

shrunk

optimized

Figure 12: (Top) High-rises in a dense neighborhood often block
sunlight to the neighboring buildings. A naı̈ve reshaping by shrink-
ing buildings can reduce such shadowing effects, but at the cost
of degradation of other desirable energies. (Bottom) Our coupled
optimization reduces the shadow effect, while preserving the other
energies. Shadow energies (shown in blue and red) are computed
under a directional light assumption (see supplementary material).

Heat energy. A building with a low exposed surface area (i.e., ar-
eas of the outer walls and roof area) to enclosed volume ratio is
desirable as it better retains heat (see supplementary material for
details).

7 Results

We implemented our layout generation framework in C# with Mat-
lab as the backend for the QP optimization, while the shape space
exploration interface was written in C++. The exploration interface
supports procedural functions to add simple facade and roof ele-
ments to help better visualize the scale of the models (see supple-
mentary demo).

We generated five test datasets to evaluate our method: (i) offices:
commercial buildings generated by random sampling (see sample
results in Figure 1); (ii) villas: very large single family houses,
digitized from a map; (iii) skyscrapers: tall buildings digitized
from around the world; (iv) London: buildings in an axis-aligned
city block with initial layouts digitized from a London map; and
(v) Paris: residential buildings generated by random sampling in a

Table 1: Performance statistics on a 3.4GHz i7, 4GB RAM laptop
with time measured in seconds.

Name #nds #boxes QP init. opt. loc. sp. P.G.
offices 10 11.7 793.7 22.4 22.1 1.8 20.8
villas 10 10.3 496.6 - 14.0 0.6 5.9
skysc. 6 7.3 839.5 - 69.2 5.9 92.3

London 8 24.6 1189.9 - 40.5 5.1 23.3
Paris 6 14.3 785.5 31.8 46.8 2.8 11.6

office building

Paris

Figure 13: Trails left during local shape space exploration via nav-
igation polygons are visualized in the corresponding layout spaces.
Such a visualization highlights which parts of the layouts are more
constrained, i.e., sharp regions denote near-invariant locations,
while fuzzy regions indicate where it is easier to change layouts
while retaining their goodness. Such a preview is useful for decid-
ing where to apply constrained editing, e.g., see Figure 8.

city block (city block stems of Paris).

We report statistics for the five datasets in Table 1 including gen-
eration times (in seconds) for each step. The generation times are
already reasonably fast, but could be optimized using an integrated
C++ implementation. In practice, a bottleneck for layout genera-
tion is the large number of constraints arising mainly due to layout
topology, which can occasionally cause numerical problems. In fu-
ture work, we plan to explore smart interfaces to support manual
editing or adjusting the threshold used in the optimization.

The layout exploration runs at interactive rates and can be bet-
ter judged by the supplementary demo. In Figure 11, we illustrate
some of the constraints used in the test scenes. Figure 13 shows
aggregated renderings of explorations paths in local shape spaces.
By combining the layouts arising while traversing such a path, we
can get a quick overview of the major variation modes in this local
shape space. Further, by relaxing the allowed thresholds for the in-
put constraints, we can increase the extent of allowed variations, as

London Paris

Figure 14: The effect of varying the thresholds for the input set
of constraints on the resulting layout variations. As looser thresh-
olds are allowed (top-to-bottom), the corresponding local varia-
tions span larger spaces. This is visualized by aggregated render-
ings of many layouts from the local shape space. The supplementary
demo shows these variations.

(c) London

(d) Paris

(a) villas

(b) skyscrapers (c) London

Figure 15: Different layouts obtained using our shape space based local and global exploration of good building layouts.

shown in Figure 14. Here, we show some representative results for
each data set in Figures 1 and 15.

Limitations. Currently, our algorithm has several limitations.
First, we are restricted to mass models consisting of extruded boxes.
It seems conceivable to extend our framework to handle cylinders
and curved footprints. In contrast, an extension to free-form archi-
tecture would require a technically different approach. Second, we
only implemented a few example constraints and our list is by no
means exhaustive. Adding additional constraints will require some
programming efforts and cannot be done by an artist or architect.
Third, our work is currently restricted to mass models. While our
results can be enhanced by procedural methods, it would be inter-
esting to see, for example, how lighting considerations can improve
the layout of windows. Finally, in the current implementation, we
do not model the effects of the terrain on the layouts.

8 Conclusions and Future Work

In this paper, we addressed the problem of generating and exploring
good building layouts, i.e., layouts that fulfill certain hard and soft
constraints. First, we formulated this modeling problem using reg-
ulatory guidelines and functional quality measures, such as lighting
and heating. Second, we supported creation and exploration of lo-
cal and global shape spaces by analytically characterizing the local
shape space of good layouts around any given good layout, com-
pactly encoding multiple local spaces, and linking them via a portal
graph to support transitions across the different local spaces. Fi-
nally, we introduced a novel interface to explore the good layout
space via both discrete and continuous variations.

In the future, on the application side, we would like to explore the
applicability of our framework to other mixed continuous and dis-
crete layout problems, such as street graph design, landscape de-
sign, architectural paneling, and room layouts. Further, a very in-
teresting fundamental research question is how to combine explo-
ration with online optimization. An interesting question in this con-
text is how the user can specify areas of a shape space that should
be explored by the optimization. In a similar note, we still do not
have a systematic way to allow users to explore the full scope of
any design space, specifically, how to assert that parts of the under-
lying shape space do not remain invisible. In absence of a global
characterization, especially in high dimensions, this remains a fun-
damental problem and bottleneck. Finally, given the generality of
the proposed approach, it would be interesting to explore its appli-
cability in other areas.

Acknowledgements. We are grateful to Lars Hesselgren for in-
sightful comments and to the anonymous reviewers for their con-
structive comments. The work was partially supported by a KAUST
visiting scholarship, National Science Foundation, National Natu-
ral Science Foundation of China (No. 61271431 and 61172104),
and a Marie Curie Career Integration Grant. We thank Yoshihiro
Kobayashi and Christopher Grasso for their help with the render-
ings, and Charlotte Rakhit for video voiceover.

References

ALIAGA, D. G., ROSEN, P. A., AND BEKINS, D. R. 2007. Style
grammars for interactive visualization of architecture. IEEE
TVCG 13, 4, 786–797.

BENEŠ, B., ŠT’AVA, O., MĚCH, R., AND MILLER, G. 2011.
Guided procedural modeling. Eurographics 30, 2, 325–334.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connec-
tion between partial symmetry and inverse procedural modeling.
Proc. ACM SIGGRAPH 29, 4, 104:1–104:10.

BORG, I., AND GROENEN, P. J. 2005. Modern Multidimensional
Scaling Theory and Applications.

CABRAL, M., LEFEBVRE, S., DACHSBACHER, C., AND DRET-
TAKIS, G. 2009. Structure-preserving reshape for textured ar-
chitectural scenes. Eurographics 28, 2, 469–480.

COLEMAN, K., 2007. Building optimization- an integrated ap-
proach to the design of tall buildings. master thesis, MIT.

ELDAR, Y., LINDENBAUM, M., PORAT, M., AND ZEEVI, Y.
1994. The farthest point strategy for progressive image sam-
pling. In Pattern Recognition.

GAGNE, J., AND ANDERSEN, M. 2010. Multi-objective façade
optimization for daylighting design using a genetic algorithm.
In SimBuild 2010.

HABBECKE, M., AND KOBBELT, L. 2012. Linear analysis of
nonlinear constraints for interactive geometric modeling. Euro-
graphics 31, 2, 641–650.

HALE, E. T., AND LONG, N. L. 2010. Enumerating a diverse
set of building designs using discrete optimization. In SimBuild
2010.

KILIAN, M., MITRA, N. J., AND POTTMANN, H. 2007. Geomet-
ric modeling in shape space. Proc. ACM SIGGRAPH 26, 3, #64,
1–8.

LEBLANC, L., HOULE, J., AND POULIN, P. 2011. Component-
based modeling of complete buildings. In Graphics Interface
2011, 87–94.

LIN, J., COHEN-OR, D., ZHANG, H., LIANG, C., SHARF, A.,
DEUSSEN, O., AND CHEN, B. 2011. Structure-preserving re-
targeting of irregular 3D architecture. ACM TOG 30, 6, 183:1–
183:10.

LIPP, M., WONKA, P., AND WIMMER, M. 2008. Interactive visual
editing of grammars for procedural architecture. ACM TOG 27,
3, 102:1–102:10.

LIU, H., YANG, Y.-L., ALHALAWANI, S., AND MITRA, N. J.
2013. Constraint-aware interior layout exploration for precast
concrete-based buildings. The Visual Computer.

MARKS, J., ANDALMAN, B., BEARDSLEY, P., FREEMAN, W.,
GIBSON, S., HODGINS, J., KANG, T., MIRTICH, B., PFISTER,
H., RUML, W., RYALL, K., SEIMS, J., AND SHIEBER, S. 1997.
Design galleries: a general approach to setting params. for com-
puter graphics and animation. In Proc. SIGGRAPH, 389–400.

MERRELL, P., SCHKUFZA, E., AND KOLTUN, V. 2010.
Computer-generated residential building layouts. ACM TOG 29,
6, 181:1–181:12.

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND
KOLTUN, V. 2011. Interactive furniture layout using interior
design guidelines. Proc. ACM SIGGRAPH 30, 4, 87:1–87:9.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
TOG 25, 3, 614–623.

MÜLLER, P., ZENG, G., WONKA, P., AND GOOL, L. V. 2007.
Image-based procedural modeling of facades. ACM TOG 26, 3,
85:1–85:9.

MĚCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In Proc. SIGGRAPH,
397–410.

PARISH, Y. I. H., AND MÜLLER, P. 2001. Procedural modeling
of cities. In Proc. SIGGRAPH, 301–308.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND
LANE, B. 2001. The use of positional information in the mod-
eling of plants. In Proc. SIGGRAPH, 289–300.

RAFIQ, M. Y., MATHEWS, J. D., AND BULLOCK, G. N. 2003.
Conceptual building design – an evolutionary approach. ASCE
Journal of Computing in Civil Engineering 17, 3, 150–158.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2009. Image ap-
pearance exploration by model-based navigation. Eurographics
28, 2, 629–638.

ŠT’AVA, O., BENEŠ, B., MĚCH, R., ALIAGA, D. G., AND
KRIŠTOF, P. 2010. Inverse procedural modeling by automatic
generation of L-systems. Eurographics 29, 2, 665–674.

TALTON, J. O., GIBSON, D., YANG, L., HANRAHAN, P., AND
KOLTUN, V. 2009. Exploratory modeling with collaborative de-
sign spaces. ACM TOG (SIGGRAPH Asia) 28, 5, 167:1–167:10.

TALTON, J. O., LOU, Y., LESSER, S., DUKE, J., MĚCH, R., AND
KOLTUN, V. 2011. Metropolis procedural modeling. ACM TOG
30, 2, 11:1–11:14.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
TOG (SIGGRAPH) 31, 4, 86.

VANEGAS, C. A., GARCIA-DORADO, I., ALIAGA, D., BENES,
B., AND WADDELL, P. 2012. Inverse design of urban procedural
models. ACM TOG (SIGGRAPH Asia) 31, 6.

WHITING, E., OCHSENDORF, J., AND DURAND, F. 2009. Proce-
dural modeling of structurally-sound masonry buildings. ACM
TOG (SIGGRAPH Asia) 28, 5, 112:1–112:9.

WHITING, E., SHIN, H., WANG, R., OCHSENDORF, J., AND DU-
RAND, F. 2012. Structural optimization of 3D masonry build-
ings. ACM TOG (SIGGRAPH Asia) 31, 6, 159:1–159:11.

WONKA, P., WIMMER, M., SILLION, F. X., AND RIBARSKY, W.
2003. Instant architecture. ACM TOG 22, 3, 669–677.

YANG, Y.-L., YANG, Y.-J., POTTMANN, H., AND MITRA, N. J.
2011. Shape space exploration of constrained meshes. ACM
TOG (SIGGRAPH Asia) 30, 6, 124:1–124:12.

YEH, Y.-T., YANG, L., WATSON, M., GOODMAN, N. D., AND
HANRAHAN, P. 2012. Synthesizing open worlds with con-
straints using locally annealed reversible jump mcmc. Proc.
ACM SIGGRAPH 31, 4, 56:1–56:11.

YU, L.-F., YEUNG, S.-K., TANG, C.-K., TERZOPOULOS, D.,
CHAN, T. F., AND OSHER, S. 2011. Make it home: Automatic
optimization of furniture arrangement. Proc. ACM SIGGRAPH
30, 4, 86:1–86:11.

