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(Supplemental Material)

1 Deviation of the Dual Problem of Standard Lasso
1.1 Dual Formulation
Assuming the data matrix is X ∈ <N×p, the standard Lasso problem is given by:

inf
β∈<p

1

2
‖y −Xβ‖22 + λ‖β‖1 (1)

For completeness, we give a detailed deviation of the dual formulation of (1) in this section. Note that problem (1)
has no constraints. Therefore the dual problem is trivial and useless. A common trick [3] is to introduce a new set of
variables z = y −Xβ such that problem (1) becomes:

inf
β

1

2
‖z‖22 + λ‖β‖1 (2)

subject to z = y −Xβ

By introducing the dual variables η ∈ <N , we get the Lagrangian of problem (2):

L(β, z, η) =
1

2
‖z‖22 + λ‖β‖1 + ηT · (y −Xβ − z) (3)

For the Lagrangian, the primal variables are β and z. And the dual function g(η) is:

g(η) = inf
β,z

L(β, z, η) = ηTy + inf
β

(−ηTXβ + λ‖β‖1) + inf
z

(1

2
‖z‖22 − ηT z

)
(4)

In order to get g(η), we need to solve the following two optimization problems.

inf
β
−ηTXβ + λ‖β‖1 (5)

and
inf
z

1

2
‖z‖22 − ηT z (6)

Let us first consider problem (5). Denote the objective function of problem (5) as

f1(β) = −ηTXβ + λ‖β‖1. (7)

f1(β) is convex but not smooth. Therefore let us consider its subgradient

∂f1(β) = −XT η + λv

in which ‖v‖∞ ≤ 1 and vTβ = ‖β‖1, i.e., v is the subgradient of ‖β‖1.

The necessary condition for f1 to attain an optimum is

∃β′, such that 0 ∈ ∂f1(β′) = {−XT η + λv′}
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where v′ ∈ ∂‖β′‖1. In other words, β′,v′ should satisfy

v′ =
XT η

λ
, ‖v′‖∞ ≤ 1,v′

T
β′ = ‖β′‖1

which is equivalent to
|xTi η| ≤ λ, i = 1, 2, . . . , p. (8)

Then we plug v′ = XT η
λ and v′

T
β′ = ‖β′‖1 into Eq. (7):

f1(β′) = inf
β
f1(β) = −ηTXβ′ + λ

(XT η

λ

)T
β′ = 0 (9)

Therefore, the optimum value of problem (5) is 0.

Next, let us consider problem (6). Denote the objective function of problem (6) as f2(z). Let us rewrite f2(z) as:

f2(z) =
1

2
(‖z− η‖22 − ‖η‖22) (10)

Clearly,
z′ = argmin

z
f2(z) = η

and
inf
z
f2(z) = −1

2
‖η‖22

Combining everything above, we get the dual problem:

sup
η

g(η) = ηTy − 1

2
‖η‖22 (11)

subject to |xTi η| ≤ λ, i = 1, 2, . . . , p

which is equivalent to

sup
η

g(η) =
1

2
‖y‖22 −

1

2
‖η − y‖22 (12)

subject to |xTi η| ≤ λ, i = 1, 2, . . . , p

By a simple re-scaling of the dual variables η, i.e., let θ = η
λ , problem (12) transforms to:

sup
θ

g(θ) =
1

2
‖y‖22 −

λ2

2
‖θ − y

λ
‖22 (13)

subject to |xTi θ| ≤ 1, i = 1, 2, . . . , p

1.2 Relationship Between The Primal And Dual Variables
Problem (2) is clearly convex and its constraints are all affine. By Slater’s condition, as long as problem (2) is feasible
we will have strong duality. Denote β∗, z∗ and θ∗ as optimal primal and dual variables. The Lagrangian is

L(β, z, θ) =
1

2
‖z‖22 + λ‖β‖1 + λθT · (y −Xβ − z) (14)

From the KKT condition, we have

0 ∈ ∂βL(β∗, z∗, θ∗) = −λXT θ∗ + λv, in which ‖v‖∞ ≤ 1 and vTβ∗ = ‖β∗‖1 (15)

∇zL(β∗, z∗, θ∗) = z∗ − λθ∗ = 0 (16)

∇θL(β∗, z∗, θ∗) = λ(y −Xβ∗ − z∗) = 0 (17)
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From Eq. (16) and (17), we have:
y = Xβ∗ + λθ∗ (18)

From Eq. (15), we know there exists v∗ ∈ ∂‖β∗‖1 such that

XT θ∗ = v∗, ‖v∗‖∞ ≤ 1 and (v∗)Tβ∗ = ‖β∗‖1

which is equivalent to
|xTi θ∗| ≤ 1, i = 1, 2, . . . , p, and (θ∗)TXβ∗ = ‖β∗‖1 (19)

From Eq. (19), it is easy to conclude:

(θ∗)Txi ∈
{

sign(β)∗i if β∗i 6= 0

[−1, 1] if β∗i = 0
(20)

2 Lemmas A and B
Lemma A. [1] Let C be a convex set and PC(·) be the projection operator which projects an arbitrary point onto
C. Suppose w0 /∈ C and w̄ = PC(w0) be the projection of w0 onto C. Then for t ≥ 0, the projection of w(t) =
tw0 + (1− t)w̄ coincides with w̄, i.e. PC(w(t)) = w̄.

Lemma B. Given a data matrix X = [x1, . . . ,xp], where each column xi ∈ <N . Let F = {θ : |xTi θ| ≤ 1, i =
1, . . . , p}. Then, for an arbitrary nonzero vector y ∈ <N , we have

PF (y/λmax + tv1) = y/λmax, ∀t ≥ 0, (21)

where v1 = sign(xT∗ y)x∗, x∗ := argmaxxi
|xTi y|, and λmax = maxi |xTi y|.

Before we prove Lemma B, let us cite a general result as follows.

Theorem A. [1] Let C be a nonempty closed convex subset of a real Hilbert space H. Then, for every w ∈ H and
w ∈ C, we have

w = PC(w)⇔ 〈w −w,v −w〉 ≤ 0, ∀v ∈ C. (22)

Now, let us prove Lemma B.

Proof. For notational simplicity, let θ(t) = y/λmax + tv1. According to the definition, it is easy to see that

y/λmax ∈ F and vT1 (y/λmax) = 1.

Consider the closed half space H(v1)− = {θ : vT1 θ ≤ 1}. For any θ ∈ H(v1)−, we have

〈v1, θ − y/λmax〉 ≤ 0, (23)

which results in

〈y/λmax + tv1 − y/λmax, θ − y/λmax〉 ≤ 0, ∀t ≥ 0. (24)

Clearly, Eq. (24) is equivalent to

〈θ(t)− y/λmax, θ − y/λmax〉 ≤ 0, ∀θ ∈ H(v1)−, t ≥ 0. (25)

Moreover, we can observe that F ⊂ H(v1)−. Thus, in view of Theorem A, we have

PF (θ(t)) = y/λmax, ∀t ≥ 0,

which completes the proof.

3



3 Deviation of the Dual Problem of Group Lasso
3.1 Dual Formulation

Assuming the data matrix is Xg ∈ <N×ng and p =
∑G
g=1 ng , the group Lasso problem is given by:

inf
β∈<p

1

2
‖y −

G∑
g=1

Xgβg‖22 + λ

G∑
g=1

√
ng‖βg‖2 (26)

Let z = y −
∑G
g=1 Xgβg and problem (26) becomes:

inf
β

1

2
‖z‖22 + λ

G∑
g=1

√
ng‖βg‖2 (27)

subject to z = y −
G∑
g=1

Xgβg

By introducing the dual variables η ∈ <N , the Lagrangian of problem (27) is:

L(β, z, η) =
1

2
‖z‖22 + λ

G∑
g=1

√
ng‖βg‖2 + ηT · (y −

G∑
g=1

Xgβg − z) (28)

and the dual function g(η) is:

g(η) = inf
β,z

L(β, z, η) = ηTy + inf
β

(
− ηT

G∑
g=1

Xgβg + λ

G∑
g=1

√
ng‖βg‖2

)
+ inf

z

(1

2
‖z‖22 − ηT z

)
(29)

In order to get g(η), let us solve the following two optimization problems.

inf
β
−ηT

G∑
g=1

Xgβg + λ

G∑
g=1

√
ng‖βg‖2 (30)

and
inf
z

1

2
‖z‖22 − ηT z (31)

Let us first consider problem (30). Denote the objective function of problem (30) as

f̂(β) = −ηT
G∑
g=1

Xgβg + λ

G∑
g=1

√
ng‖βg‖2 (32)

Let
f̂g(βg) = −ηTXgβg + λ

√
ng‖βg‖2, g = 1, 2, . . . , G

then we can split problem (30) into a set of subproblems. Clearly f̂g(βg) is convex but not smooth because it has a
singular point at 0. Consider the subgradient of f̂g ,

∂f̂g(βg) = −XT
g η + λ

√
ngvg, g = 1, 2, . . . , G

where vg is the subgradient of ‖βg‖2:

vg ∈

{
βg

‖βg‖2 if βg 6= 0

u, ‖u‖2 ≤ 1 if βg = 0
(33)

Let β′g be the optimal solution of f̂g , then β′g satisfy

∃v′g ∈ ∂‖β′g‖2, −XT
g η + λ

√
ngv

′
g = 0.
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If β′g = 0, clearly, f̂g(β′g) = 0. Otherwise, since λ√ngv′g = XT
g η and v′g =

β′g
‖β′g‖2

, we have

f̂g(β
′
g) = −λ√ng

(β′g)
T

‖β′g‖2
β′g + λ

√
ng‖β′g‖2 = 0.

All together, we can conclude the
inf
βg

f̂g(βg) = 0, g = 1, 2, . . . , G

and thus

inf
β
f̂(β) = inf

β

G∑
g=1

f̂g(βg) =

G∑
g=1

inf
βg

f̂g(βg) = 0.

The second equality is due to the fact that βg’s are independent.

Note, from Eq. (33), it is easy to see ‖vg‖2 ≤ 1. Since λ√ngv′g = XT
g η, we get a constraint on η, i.e., η should

satisfy:
‖XT

g η‖2 ≤ λ
√
ng, g = 1, 2, . . . , G.

Next, let us consider problem (31). Since problem (31) is exactly the same as problem (6), we conclude:

z′ = argmin
z

1

2
‖z‖22 − ηT z = η

and
inf
z

1

2
‖z‖22 − ηT z = −1

2
‖η‖22

Therefore the dual function g(η) is:

g(η) = ηTy − 1

2
‖η‖22.

Combining everything above, we get the dual formulation of the group Lasso:

sup
η

g(η) = ηTy − 1

2
‖η‖22 (34)

subject to ‖XT
g η‖2 ≤ λ

√
ng, g = 1, 2, . . . , G

which is equivalent to

sup
η

g(η) =
1

2
‖y‖22 −

1

2
‖η − y‖22 (35)

subject to ‖XT
g η‖2 ≤ λ

√
ng, g = 1, 2, . . . , G

By a simple re-scaling of the dual variables η, i.e., let θ = η
λ , problem (35) transforms to:

sup
θ

g(θ) =
1

2
‖y‖22 −

λ2

2
‖θ − y

λ
‖22 (36)

subject to ‖XT
g θ‖2 ≤

√
ng, g = 1, 2, . . . , G

3.2 Relationship Between The Primal And Dual Variables
Clearly, problem (27) is convex and its constraints are all affine. By Slater’s condition, as long as problem (27) is
feasible we will have strong duality. Denote β∗, z∗ and θ∗ as optimal primal and dual variables. The Lagrangian is

L(β, z, θ) =
1

2
‖z‖22 + λ

G∑
g=1

√
ng‖βg‖2 + λθT · (y −

G∑
g=1

Xgβg − z) (37)
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From the KKT condition, we have

0 ∈ ∂βg
L(β∗, z∗, θ∗) = −λXT

g θ
∗ + λ

√
ngvg, in which vg ∈ ∂‖β∗g‖2, g = 1, 2, . . . , G (38)

∇zL(β∗, z∗, θ∗) = z∗ − λθ∗ = 0 (39)

∇θL(β∗, z∗, θ∗) = λ · (y −
G∑
g=1

Xgβ
∗
g − z∗) = 0 (40)

From Eq. (39) and (40), we have:

y =

G∑
g=1

Xgβ
∗
g + λθ∗ (41)

From Eq. (38), we know there exists v′g ∈ ∂‖β∗g‖2 such that

XT
g θ
∗ =
√
ngv

′
g

and

v′g ∈

{
β∗g
‖β∗g‖2

if β∗g 6= 0

u, ‖u‖2 ≤ 1 if β∗g = 0

Then the following holds:

XT
g θ
∗ ∈

{√
ng

β∗g
‖β∗g‖2

if β∗g 6= 0
√
ngu, ‖u‖2 ≤ 1 if β∗g = 0

(42)

for g = 1, 2, . . . , G. Clearly, if ‖XT
g θ
∗‖2 <

√
ng , we can conclude β∗g = 0.

4 Proof of Theorem 8
Proof. From the KKT conditions in Eq. (42), we know

‖XT
g θ
∗(λ′′)‖2 <

√
ng ⇒ β∗g (λ′′) = 0.

By the dual problem (36), θ∗(λ) is the projection of y
λ onto the feasible set which is closed and convex. Note, the

feasible set is in fact the intersection of ellipsoids:

{θ: ‖XT
g θ‖2 ≤

√
ng}, g = 1, 2, . . . , G.

According to the projection theorem [2] for closed convex sets, θ∗(λ) is continuous and nonexpansive, i.e.,

‖θ∗(λ′′)− θ∗(λ′)‖2 ≤
∥∥∥∥ y

λ′′
− y

λ′

∥∥∥∥
2

= ‖y‖2
∣∣∣∣ 1

λ′′
− 1

λ′

∣∣∣∣ (43)

Then

‖XT
g θ
∗(λ′′)‖2 ≤ ‖XT

g θ
∗(λ′′)−XT

g θ
∗(λ′)‖2 + ‖XT

g θ
∗(λ′)‖2 (44)

< ‖Xg‖2‖(θ∗(λ′′)− θ∗(λ′))‖2 +
√
ng − ‖Xg‖F ‖y‖2

∣∣∣∣ 1

λ′
− 1

λ′′

∣∣∣∣
≤ ‖Xg‖F ‖y‖2

∣∣∣∣ 1

λ′′
− 1

λ′

∣∣∣∣+
√
ng − ‖Xg‖F ‖y‖2

∣∣∣∣ 1

λ′
− 1

λ′′

∣∣∣∣ =
√
ng

which completes the proof.

We use the fact that ‖Xg‖2 ≤ ‖Xg‖F in the last inequality of Eq. (44). The subscript ‖ · ‖F denotes the Frobenius
norm.
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5 Lemma C
Lemma C. Given a data matrix X = [X1, . . . ,XG], where each Xg ∈ <N×ng . Let F = {θ : ‖XT

g θ‖2 ≤
√
ng, g =

1, . . . , G}. Then, for an arbitrary nonzero vector y ∈ <N , we have

PF (y/λmax + tv1) = y/λmax, ∀t ≥ 0, (45)

where v1 = X∗X
T
∗ y, X∗ := argmaxXg

‖XT
g y‖2/

√
ng , and λmax = maxg ‖XT

g y‖2/
√
ng .

Proof. For simplicity, let θ(t) = y/λmax + tv1. From the definition, it is easy to see that

‖XT
∗ y‖2√
n∗

= λmax, (46)

where n∗ is the number of columns of X∗.

Let u = v1/(λmax
√
n∗) and H(u)− = {θ : uT θ ≤ √n∗}. We can see that

uT (y/λmax) =
1
√
n∗

∥∥∥∥XT
∗ y

λmax

∥∥∥∥2
2

=
√
n∗, (47)

and thus

〈u, θ − y/λmax〉 ≤ 0, ∀θ ∈ H(u)−. (48)

According to the definition of u, we also have

〈v1, θ − y/λmax〉 ≤ 0, ∀θ ∈ H(u)−. (49)

Let F∗ = {θ : ‖XT
∗ θ‖2 ≤

√
n∗}. It is easy to see that F ⊂ F∗. Moreover, we claim that F∗ ⊂ H(u)−. Suppose

θ ∈ F∗, then

uT θ =
1

λmax
√
n∗
〈X∗XT

∗ y, θ〉 =
1

λmax
√
n∗
〈XT
∗ y,X

T
∗ θ〉 ≤

1

λmax
√
n∗
‖XT
∗ y‖2‖XT

∗ θ‖2 ≤
√
n∗. (50)

Therefore, we can see that θ ∈ H(u)− and thus F∗ ⊂ H(u)−. In summary, we have the following statement holds:

F ⊂ F∗ ⊂ H(u)−. (51)

In view of (49) and (51), we can conclude that

〈v1, θ − y/λmax〉 ≤ 0, ∀θ ∈ F, (52)

and thus

〈θ(t)− y/λmax, θ − y/λmax〉 ≤ 0, ∀θ ∈ F, t ≥ 0. (53)

Clearly, in view of Theorem A and (53), the statement follows directly.

6 Additional Empirical Results
In this section we report additional experimental results.
6.1 Synthetic Data Sets
We generate three synthetic data sets with different dimensions. For each of the cases, the entries of data matrix X
and response vector y are independent identically distributed by a standard Gaussian. Each data matrix contains 100
samples with p = 50, 500, and 5000 respectively. For each case, once we generate the data matrix X, we compare
the performance of DPP∗ rules with Dome along a sequence of 100 parameter values equally spaced on the λ/λmax
scale. Then we repeat the procedure 100 times and report the average performance of each rule.

The three subfigures of Fig. 1 correspond to the three different design matrices X and the average λmax is 0.249, 0.315
and 0.371 respectively. As shown in Fig. 1, the performance of DPP∗ is comparable to Dome but all the other DPP∗
rules significantly outperform Dome. In contrast to Dome which performs better with larger λmax [4], DPP∗ rules
exhibit stronger capability in discarding inactive predictors when λmax is small. The geometric intuition behind this
observation is due to the fact that the sparser the predictors distribute over the unit ball, the longer the line segment of
the regularization path is. If the length of the line segment of the regularization path is larger, the first few breakpoints
may correspond to very small λ values.
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(a) X ∈ <100×50 (b) X ∈ <100×500 (c) X ∈ <100×5000

Figure 1: Comparison of DPP∗ rules and Dome on three synthetic datasets. Each column corresponds to each of the
three synthetic data sets with different dimensions.

6.2 Discussions of GDPP
For the group Lasso problem, the feasible set of its dual variables is the intersection of ellipsoids and is thus no longer
a polytope. As a consequence, the path of the optimal solution is no longer piecewise linear. Due to this fact, it is more
complicated to characterize the path and find the breakpoints where groups of predictors enter or leave the active set.
However, if there are efficient algorithms which can find the breakpoints and the corresponding parameters like LARS
for Lasso, we can potentially make use of those breakpoints and the associated parameters to construct more effective
screening rules based on Theorem 8.
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