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Figure 1: Top row from left to right: original image, coloring result by [OBW∗08], new coloring result, automatic noise fitting
result. Bottom row: input curves, the 665 color points by [OBW∗08], the 283 color points by the new algorithm, final result
after manual editing.

Abstract
Diffusion curves are a powerful vector graphic representation that stores an image as a set of 2D Bezier curves
with colors defined on either side. These colors are diffused over the image plane, resulting in smooth color regions
as well as sharp boundaries. In this paper, we introduce a new automatic diffusion curve coloring algorithm. We
start by defining a geometric heuristic for the maximum density of color control points along the image curves.
Following this, we present a new algorithm to set the colors of these points so that the resulting diffused image is
as close as possible to a source image in a least squares sense. We compare our coloring solution to the existing
one which fails for textured regions, small features, and inaccurately placed curves. The second contribution of
the paper is to extend the diffusion curve representation to include texture details based on Gabor noise. Like the
curves themselves, the defined texture is resolution independent, and represented compactly. We define methods
to automatically make an initial guess for the noise texure, and we provide intuitive manual controls to edit the
parameters of the Gabor noise. Finally, we show that the diffusion curve representation itself extends to storing
any number of attributes in an image, and we demonstrate this functionality with image stippling an hatching
applications.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Display algorithms—
Three Dimensional Graphics and Realism [I.3.7]: Color, shading, shadowing and texture—
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1. Introduction

Diffusion Curve Images (DCI) are a powerful representation
for vector graphics containing complex color gradients. A
DCI represents an image as a set of Bezier curves with col-
ors defined on either side. The colors diffuse over the image
plane resolving to smooth colored regions with sharp, well
defined borders along the curves. Curve colors are modeled
along both sides of the curves using color control points. The
intuitive and compact nature of diffusion curves make them
a versatile tool for image encoding and manipulation.

In the original work introducing diffusion curves, Orzan
et al. [OBW∗08] present a number of methods to semi- and
fully automatically create Bezier curves and associated col-
ors for a source image. In our experiments we noticed that
this initial solution works well for simpler images, but the
method for automatically assigning the colors shows severe
problems in more difficult cases (see Fig. 1). In particular,
the method fails when there are small image features near the
curves, when the curves are mis-aligned with image edges by
more than a few pixels, and when the image has substantial
texture.

A main contribution of the paper is to define a method to
robustly solve the diffusion curve coloring problem. That is,
given an image and a set of Bezier curves (manually drawn
or automatically derived), automatically assign color values
to each curve so that the resulting diffused image closely
matches the original one. Our method is based on a least
squares formulation that finds the “best” colors and naturally
handles all of the problematic cases listed above. We also
show how to optimize the least squares setup by capturing
the influence of each color control point on each image pixel
in a single rendering step.

The second contribution of the paper extends the diffusion
curve specification to include procedural texture. This is im-
portant, because while many natural images and paintings
contain interesting and varied textural information, the orig-
inal diffusion curve representation only provides one distinct
look: image edges with very smooth regions in between.
Our technique adds procedural texture based on Gabor noise
[LLDD09] that mimics the character of a source image tex-
ture, rather than trying to exactly reproduce it. Because we
leverage the DCI idea of curves with attributes, our textural
representation is quite compact. The Gabor noise parame-
ters are defined only for a few points in the image (the color
points), and are diffused over the image exactly as image
colors. The Gabor noise parameters can be locally estimated
in the input image, fitted to the curves just like DCI color
information and then used to steer the noise synthesis. The
resulting DCIs resemble textured input images more closely
than common DCIs.

Besides colors and noise parameters, diffusion curves can
be used for any number of attributes that can be represented
by a diffusion process over the image plane. Based on this
idea, we create stippling and hatching applications that use

diffusion curves to represent the stipple density, hatch den-
sity and hatch direction. Once the diffusion has taken place,
we employ recursive Wang tiles [KCODL06] to place the
stipples and hatch strokes.

The main contributions of this paper are to:

• Formulate the problem of assigning colors to diffusion
curves so that the resulting image matches a given one
as closely as possible in a least squares sense.

• Present an optimized setup for the least squares solution
that avoids excessive memory requirements and computa-
tions.

• Propose Gabor noise as a means to add textural informa-
tion to DCIs.

• Automatically derive Gabor noise parameters to match an
input image, and allow efficient editing of DCI parame-
ters.

• Demonstrate the DCI representation in other contexts
such as NPR stippling and hatching.

2. Related Work

Most vector graphics systems in use today focus on out-
lines, providing only a few “fill options” for drawing prim-
itives. The individual representations vary mainly by the
complexity of the involved primitives, starting from trian-
gular patches [LL06], moving to higher order parametric
meshes [PB06], gradient meshes [SLWS07], and diffusion
curves [OBW∗08] to name a few. However, the required
number of primitives for representing an input image is usu-
ally directly related to the image frequencies. This makes
it hard to efficiently represent and conveniently edit high-
frequency image features like textures or noise. A few re-
searchers have attempted to superimpose edge information
on a raster image to form a hybrid of vector and raster im-
ages. Edge-aware textures [PZ08] are a good example of
this. While a successful compromise for rendering, such hy-
brid methods lose the compact storage and semantic quali-
ties of other vector graphics formats.

Diffusion curves. The Diffusion Curve Image (DCI) con-
cept introduced by Orzan et al. [OBW∗08] extends the work
of Elder et al. [EG01] and expands the expressive range of
vector graphics by defining image color as a diffusion pro-
cess. A DCI is made up of a set of Bezier curves with colors
specified on either side. These colors diffuse over the im-
age plane without crossing the curves, creating smooth color
gradients contained by sharp, well-defined borders. The col-
ors on the curves are specified at a number of points called
color control points (or, more simply, color points), which
are separate from the spatial control points of the curves.
Colors between these points along the curves are found by
linear interpolation. The diffusion process itself can be cast
as a solution to a Laplacian equation with Dirichlet bound-
ary conditions (e.g. fixed colors on the curves and a zero
Laplacian everywhere else).
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Despite the seeming straightforward setup of the problem,
robustly solving the Laplacian equation when the Dirich-
let boundaries are not pixel aligned has proven problematic.
Jeschke et al. [JCW09a] define a variable stencil size Lapla-
cian solver that works well for the diffusion curve prob-
lem, and fixes many of the problems associated with ear-
lier Multigrid solutions. A standard Jacobi solver iterates to-
wards the solution of the Laplacian equation in 2D by re-
placing each pixel Ix,y by the average of its 4 neighbors:

Ix,y = (Ix+1,y + Ix−1,y + Ix,y+1 + Ix,y−1)/4

The convergence of the Jacobi solver on this problem is slow,
however. A variable stencil size solver improves the conver-
gence by expanding the neighborhood to radius r, so that the
update becomes:

Ix,y = (Ix+r,y + Ix−r,y + Ix,y+r + Ix,y−r)/4

Initially the r value used at each pixel is set to the distance
to the nearest fixed point (nearest point on a curve), and this
slowly decreases over successive iterations.

Another important question is how to automatically spec-
ify the position and color of the color points when trying to
reproduce a source image. We dub this problem the diffu-
sion curve coloring problem. Orzan et al. [OBW∗08] solve
this problem as follows: for each Bezier curve they sample
the image colors densely on both sides, 3 pixels away from
the curve. Color outliers are eliminated, and then unneeded
samples are removed using the well known Douglas-Puecker
polyline simplification algorithm [DP73], with a threshold
of 30 units in L*a*b* space. The resulting colors and para-
metric locations define the color points, along the curve. Be-
cause the colors are assigned using only local information,
this method often produces poor results. For example, when
attempting to color a textured region, color outliers will be
common, leading to numerous color changes along a curve.
Visually, this problem manifests itself as a “wrinkled” or
“pinched” look near the curves (see Fig. 1). In addition, since
colors are only sampled at a fixed distance to a curve, inac-
curate curve placement and small features (i.e., smaller than
three pixels) result in wrong colors on the curve sides. Since
colors are diffused over the whole image, this can lead to
large wrongly-colored regions in the final diffused image.

In addition to rendering refinements, several functional
extensions to DCIs have been proposed. One of these is a
feature embedding algorithm that retains crisp, antialiased
curve edges when DCIs are used as texture maps [JCW09b].
DCIs have also been used to model heightfields [JCW09b]
and very recently with noise driven by diffused parame-
ters [HGA∗10]. Another extension adds controls for the dif-
fusion process itself, allowing the algorithm to specify how
colors spread out from the curves across the image plane
[BEDT10]. Winnemöller et al. [WOBT09] present a set of
tools to design (near) regular textures from diffusion curves
and realistically drape them onto objects in images.

Gabor noise. In this paper, we argue that much of the

character of a source image texture can be captured using
spatially varying noise of some kind. Lagae et al. [LLC∗10]
provide a comprehensive state-of-the-art survey of procedu-
ral noise functions. In this paper, we extend the DCI format
to include texture using Gabor noise, which was recently in-
troduced by Lagae et al. [LLDD09] and extented to spatially
varying noise [LLD10]. Essentially, Gabor noise works by
splatting a set of Gabor kernels onto texture space. The ker-
nel size, direction and its variation define the noise and its
spectral properties. Gabor noise has a number of desirable
characteristics: It is easily controllable with a few parame-
ters, it is naturally anisotropic, and can be rendered quickly.
This has recently been demonstrated in the context of non
photorealistic rendering [BLV∗10].

Another important quality of Gabor noise is that its pa-
rameters can be estimated locally in an input image. Ga-
bor space analysis has been extensively studied in the
computer vision community, mostly for texture discrimi-
nation [FS89, BCG90, MM96], but also for texture synthe-
sis [PZ89]. More recently, Gabor space analysis for texture
synthesis has again gained interest in the computer graphics
community [LVLD10, GDS10].

3. Robust Diffusion Curve Colorization

Given an image and a set of Bezier curves for a DCI, our goal
is to define the color points and the corresponding color val-
ues. Keeping the number of colors reasonably low while still
faithfully reproducing the image is essential for efficiently
storing and editing diffusion curves. Thus, we provide both
geometric and color based mechanisms to reduce the num-
ber of color points. The overall workflow for our algorithm
is as follows:

1. Generate a dense set of color points.
2. Sparsify these points based on a geometric constraint.
3. Solve for the best fit color values.
4. Remove unneeded points based on a color error estimate.

The last two steps are alternated until convergence as will be
described in the following subsections.

3.1. Color Point Placement

Appropriate spacing for color points. One approach to
spacing color points along the curves would be to attempt
to fit the image colors as closely as possible. This seems like
a worthwhile goal, but in practice too much color fidelity
along the curves often leads to unpleasing high frequency
artifacts. The “color wrinkles” seen in the densely-spaced
reconstructions in Fig. 2 are a good example of such color
overfitting. This observation leads us to a purely geometric
heuristic for the initial spacing of color points, namely that
the density of the color points usually should not greatly ex-
ceed the curve spacing, i.e., the distance to the neighboring
curve. This is also approximately the highest frequency that
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Figure 2: Color points derivation. Top row (from left to right): original image, 1130 dense color points, 675 sparse color points,
176 simplified color points. The bottom row shows the curves and color points according to the image above each.

can be faithfully reproduced away from the curves. Finer
color changes along the curves should be abstracted away,
as they cannot be satisfactorily reproduced. Of course, the
user can manually add back color points at arbitrary curve
locations to bring out particular details.

Geometry-based placement. In order to meet the above
criterion, we need to compute the curve spacing (distance to
the closest neighbor curve) along each curve. Based on these
distances, the color points can then be placed. In practice our
algorithm starts with a dense set of color points, and then
eliminates points until the proper density is reached. Initially
color points are added every 10 pixels along both sides of
the curves. We then render a Voronoi diagram of the points
(similar to Jeschke et al. [JCW09a]).

Let xi be a color point. We can approximate the major axis
of Voronoi region i as the furthest distance, di, from point xi
to any pixel in the region. To make the region square (to
equalize the representable frequencies both along and per-
pendicular to the curves) the major and minor axes of the
region should be the same, so the distance between xi and its
neighbors should also be di. Based on this idea, we remove
color points as follows: For each curve, start with the first
color point and retain it. Next, walk along the curve deleting
color points until the walked length is greater than the max-
imum distance encountered since the last retained point, d j.
Retain this color point (call it xk) and repeat until the second-
to-last color point on the curve. Finally, retain the last point.

Color simplification. After the initial placement based
on curve geometry, we remove any remaining superfluous
color points that are not needed to define the curve colors, as

follows: First, compute initial colors for all color points as
will be described in Sec. 3.2. Then, remove unneeded col-
ors using the same curve simplification procedure described
by Orzan et al. [OBW∗08]. We use an error threshold of 25
units in CIE L*a*b* space to determine whether to remove
color points in this procedure. Afterwards, colors are com-
puted again for the new (sparser) set of color points and sim-
plified. The process terminates when no more color points
are removed during the simplification step. Figure 2 shows
the process of deriving the color points, starting with a dense
set of points, removing some of them based on geometric
spacing, and arriving at a final set through iterative point re-
moval guided by the source image colors.

3.2. Automatic Color Value Assignment

Problem statement. In this section we assume that the color
points have already been identified (see Sec. 3.1), and we are
interested in solving for the according color values. Given an
image with m pixels and a number of diffusion curves with n
color points, a diffusion curve image can be defined in matrix
form as follows:

Ax = b, (1)

where b is a vector of length m defining the diffused image
and x is a vector of length n that contains the color values
of the color points. n is on the order of 20 to 2,000 for typi-
cal diffusion curve images and m is 262,144 for a 5122 pixel
image, for example. A is an n×m matrix containing in each
column n weights that define the amount of influence each
color point has on that particular pixel. With this definition,
the problem we have to solve is: given b (the image) and
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A (the influence matrix), compute x (the colors of the color
points) so that the resulting image b′ is “as close as possi-
ble” to b. We solve this equation in the least squares sense,
multiplying both sides of Equ. 1 by AT and solve the result-
ing system using a standard preconditioned conjugate gradi-
ent solver. ATA is a symmetric positive semi definite matrix
which is small enough so that it is quite easy to work with in
practice. By contrast, A is a very large matrix that is difficult
to capture and work with. While solving least squares op-
timization problems via the normal equations is a standard
approach, the technical contribution of our work is an ele-
gant and efficient algorithm to obtain the products ATA and
ATb without the need to construct A first.

Efficient acquisition of ATA and ATb. First we describe
how to form A by acquiring the according weights. After-
wards, we extend our discussion to the efficient acquisition
of ATA and ATb.

A simple process to obtain the influence of a particular
color point (call it xi) on each pixel of the output image is
as follows: set all color points in x to 0 except for xi that
is set to 1. Now diffuse the curve colors using for example
the variable stencil diffusion described in [JCW09a]. The re-
sulting image contains exactly the weights of xi for all pixels
(column i of matrix A). Fig. 3 (top, left) shows the resulting
weights for 3 color points. The process is repeated for all
color points, thus successively filling the rows of A. How-
ever, for a larger number n of color points, this approach
quickly causes computation and memory problems. Diffus-
ing the whole image for each xi will be slow for a large num-
ber of colors (n > 100). For example, for the 283 colors of
the chick in Fig. 1 this approach required 78.4 s compared to
0.43 s with the new approach. Even worse, each xi generates
a row with the same number of entries as there are pixels in
the image, which quickly exceeds the available memory.

In order to overcome this problem, instead of diffusing
each xi separately to form A, we diffuse all weights si-
multaneously in a single diffusion and form ATA and ATb
from the resulting image. For this we modified the solver of
Jeschke et al. [JCW09a]. The main innovation is to store the l
(in our case 4) most influential color point IDs at each pixel.
In each Jacobi iteration we (1) collect the color point IDs
and weights from four neighbours (potentially 4l). (2) Then
we merge identical color points (by adding their weights)
and (3) store from this set the four with the highest weights.
These four weights are (4) normalized to sum to one for each
pixel and finally stored for the next Jacobi iteration. This
process is repreated for the desired number of iterations (typ-
ically 8). Let W denote this combined weight image. Note
that every pixel in W contains precisely the l most influential
color points and according weights, so that all information
required to form ATA and ATb is present after a single dif-
fusion process. Of course, some nonzero coefficients are lost
since we only propagate the l most influencial color points
per pixel. This can be observed as the difference between the

Figure 3: Top row: weights for 3 color points, either indi-
vidually diffused (left) or diffused in parallel (right). Bottom
row: the according results of the solver.

left and right top image in Fig. 3. However, note that near the
color points where pixels have high weights, the weights are
fairly similar. In numerous tests we confirmed that the dif-
ferences to a solution built with an individual diffusion pass
per color point are hardly noticeable, as shown in the bottom
row in Fig. 3. We have also experimented with using fewer
than four significant colors. The result with three significant
colors is similar to the four color case, but when just one
or two significant colors are used, the reconstructed image
tends to appear flat and dull (see additional images, Fig. 11).

In practice, the diffusion process runs entirely in graphics
hardware, taking advantage of the highly parallel architec-
ture. In order to make best use of a single common 4 channel
floating point texture, we encode each color point ID and ac-
cording weight into a single float value with the integer part
defining the ID and the residual defining the weight. As a
result, l = 4 different color points can be stored per pixel. Of
course, l could trivially be increased by diffusing multiple
textures. However, as stated above, we did not see any need
for this in our experiments. Diffusing in this manner has the
added benefit of making A and ATA sparser.

The most striking aspect of W is that it implicitly encodes
the ATA product. Thus, ATA and ATb can directly be gen-
erated from W without having to create the potentially huge
matrix A first. To see how this is so, consider the diagrams
in Fig. 4. Each pixel in the image defines a (sparse) row in A
and a corresponding column in AT. This may seem a mun-
dane observation, but it becomes important when coupled
with the fact that row i in A interacts only with column i
of AT in the product. These correspond to the weights as-
sociated with pixel i in the A matrix. Consequently, to form
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Figure 4: ATA and ATb computation from a single image.

ATA, only the pairwise products of the l weights in every
pixel have to be multiplied and tallied in the according posi-
tions of ATA, as Fig. 4 (left) shows. ATb is computed anal-
ogously (see Fig. 4 (right)). In a sense, we can say that A
encodes the interactions between the image pixels and the
color points, and ATA encodes the interactions of the color
point colors with each other.

Solving ATAx = ATb. We use the preconditioned conju-
gate gradient solver included with the boost UBlas library
for solving the above equation. We tried several precondi-
tioners and found the diagonal one to work best for our prob-
lem. ATA as computed from W typically has a sparsity of
less than 5%, which makes computations quite efficient.

3.3. Manual Attribute Adjustment

The combined weight image W can additionally be used
as the basis for an intuitive user interface. Since W en-
codes the l most influencial color points, by simply click-
ing on any pixel the user is implicitly making a selection
of l color points (4 in our case). Based on this selection,
the user can change colors or other attributes to give the se-
lected pixel a desired value. For example, suppose the user
selects pixel p with color c = (r,g,b), and then specifies a
new color c′ = (r′,g′,b′). We need to calculate a change to
the corresponding color points, x1 . . .xl , that will cause p to
have color c′. Our current implementation accomplishes the
change by simply adding c′− c to each of the selected color
points. In the future, we would like to explore the relative
merits of making the change on each color point proportional
to its weight in the selected pixel.

All attributes in our system can be edited using “click
and drag” operations, including color, edge blur, noise color,
noise frequency, direction, and the variances of noise fre-
quency and direction. This interface proved to be a very ef-
ficient and intuitive tool, as one just has to click at the place
where changes should be applied rather than selecting and
changing color points individually.

4. Adding Texture with Gabor Noise

Adding texture to vector graphics could be done with a
recently proposed texture synthesis algorithm in the sense
of “Texture by Numbers” presented by Hertzman et al.
[HJO∗01]. Problems with such an approach are the required
definition of representative texture sample patches for dif-
ferent image regions, raster sampling issues, and the poten-
tial need to spatially change texture appearance in a gradual
manner. Instead, we take a different route and define tex-
ture in a procedural way with Gabor noise [LLDD09]. Gabor
noise parameters can be locally estimated in the input image,
fitted to the curves just like colors and then used to steer the
noise synthesis. The resulting DCIs allow for a number of
rendering effects not possible with standard diffusion curves.

Here we briefly review the foundations of Gabor noise.
The basic idea is to splat and accumulate Gabor kernels. A
Gabor kernel g(x,y) for position (x,y) is defined by a Gaus-
sian envelope multiplied with a harmonic sinusoidal carrier.
Both are defined with only 4 parameters, K, a, ω0 and F0:

g(x,y) = Ke−πa2(x2+y2)cos[2πF0(xcosω0 + ysinω0)], (2)

where ω0 is the noise direction and F0 is the scale of the si-
nusoidal carrier. K is the magnitude (fixed to 1 in this work)
and a determines the Gaussian envelope diameter. We fixed
this diameter to 40 pixels for rendering. In practice, we found
that this looked better than using variable-sized splats. Note
that a only determines the lowest possible noise frequency
(which depends on the splat size), whereas F0 defines the
actual noise frequency. One desirable property is that all
above parameters can be varied over an image plane, as was
demonstrated in [BLV∗10, LLD10].

To create a textured diffusion curve, we diffuse the curve
colors, a noise color and four noise parameters that define
its directional and frequency variation. Then the curve blur
is applied to the resulting images containing color, noise
color and noise parameters, respectively. Afterwards, a per
pixel noise generation process is implemented that takes the
noise parameters as input and generates a Gabor noise image
in the range [−1..1]. The noise generation is implemented
in a pixel shader based on the code provided by Lagae et
al. [LLDD09]. Finally, for each pixel the noise image is mul-
tiplied with the noise color image and added to the diffused
color image, resulting in the final image.

4.1. Noise Parameter Estimation

Given an input image and corresponding diffusion curves
with color points, the task is to automatically derive noise
parameters for the color points. After diffusing these param-
eters, we can then apply a noise generation process to ap-
proximate the original image. The fact that it is not possi-
ble to analyze the whole image at once excludes techniques
like Fourier analysis, color channel decorrelation, histogram
matching etc. that rely on coherent texture patches, e.g.
[LVLD10, GDS10].
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We start by locally estimating the Gabor parameters per
pixel. These values are then fitted to the curves just like the
colors (Sec. 3.2). For each pixel we apply Gabor filter anal-
ysis similar to [PZ89,FS89,BCG90]. More precisely, for the
40 pixel diameter circle around each pixel a set of Gabor
wavelets is drawn from a filter bank and each is convolved
with the input image. This is done with phase shifts of 0 and
π

2 radians for the sinusoidal carrier and the L2 norm of the
results is computed, making the filter response invariant to
phase shift [FS89]. The responses of the three color channels
are simply added. This works reasonably well in practice,
but more elaborate methods could be employed [BCG90].
The filter bank consists of sinusoidal carriers at 15 degree
angular rotations ω from 0 to 165 degrees. The Gabor kernel
size (which determines the noise frequency) varies from 3.4
to 40 pixels with a factor of 1.4 between consecutive sizes,
a total of 8 different sizes. After convolution the parameters
with the maximum response are kept for each pixel. (Note
that the analysis uses different kernel sizes, but for texture
synthesis we use a fixed kernel width of 40 pixels. Also, be-
cause we only record a single dominant frequency, we only
capture a rough impression of many textures.) These are then
fitted to the curves exactly like the color fitting described in
Sec. 3.2. An important technical detail is that rotation angles
cannot directly be fitted because they cannot be interpolated.
Instead, we use the tensor notation described by Zhang et
al. [ZHT07]. The same tensor notation will is used in the
diffusion and blur process during rendering.

(An)isotropy and scale variation: Most textures do not
consist of a single frequency, but rather have a distribution
of frequencies. Further, the direction of anisotropic features
in a texture is likely to form a distribution rather than just
being smooth flow lines. Thus, to capture a texture, we can-
not simply fit smoothly varying Gabor kernel parameters to
a region. We have to capture the distribution of those param-
eters.

In our system, we treat the noise parameters as Gaussian
distributions, employing a simple maximum likelihood esti-
mator for 4 noise parameters, the mean noise frequency µs,
its variance σ

2
s , and the mean noise direction µd and its vari-

ance σ
2
d . The maximum likelihood for each of these parame-

ters is computed on a per-pixel basis as follows: around each
pixel a local neighborhood 40 pixels in diameter is consid-
ered. First mean values for µd and µs within the kernel are
computed. Then the according variance σ

2
d and σ

2
s within the

footprint f are computed as

σ
2
d =

1
N ∑

i∈ f
(di−µd)2, σ

2
s =

1
N ∑

i∈ f
(si−µs)2 (3)

with N being the number of pixels in the footprint and di
and si the estimated direction and size for the respective
pixel i. During DCI rendering, the Gabor kernel splatting
process simply chooses kernels with parameters drawn from
the Gaussian distributions just described.

Noise color: We estimate the noise color (amplitude in
RGB) similar to its frequency and direction: for each pixel
an RGB mean color µc is computed using the same 40 pixel
diameter footprint f . Then the variance

σ
2
c =

2
N ∑

i∈ f
(ci−µc)2 (4)

is computed with ci being the noise color of a particular
pixel in the footprint. Note that the factor 2 in 4 is needed
because σ

2
c is the variance of the color function. However,

when multiplied with the Gabor noise, the maximum varia-
tion is required to retain the amount of color variation as in
the original image. Because Gabor noise models variations
with trigonometric functions, dividing the noise color by the
variance of a trigonometric function (which is known to be
1
2 ) provides the original contrast.

Curve-constraint sampling: In the parameter estima-
tions described above, a circular region around each pixel is
sampled. These regions might cross curves, which is not de-
sirable as textures typically change on curves. While in gen-
eral it is complicated to determine if the sampling process
crossed a curve, a simple yet effective method was found
that uses the combined weight image W again (see Sec. 3.2).
Before sampling a region, the l most influencial color point
IDs are read from W at the pixel position under consider-
ation. Then, during the sampling process these color point
IDs are also read for each sample in the circular region. If
at least one of the l IDs matches an ID of the center posi-
tion, the sample is considered to be valid. Otherwise, it is
considered invalid and must not influence the sampling pro-
cess, as it is presumably on the other side of a curve. When
convolving with the Gabor filters, invalid pixels are assigned
the average value of all valid pixels in the kernel, weighted
by the Gaussion envelope. During the estimation of noise
variation in direction, size and color, invalid pixels are just
skipped and N is reduced accordingly in Equ. 3 and Equ. 4.

5. Application to Stippling and Hatching

The proposed fitting of parameters can also be used to
drive other processes besides Gabor noise, such as stip-
pling and hatching. After diffusing color, a DCI can directly
be used to define the point density for a stippling process.
We used the recursive Wang tile code provided by Kopf et
al. [KCODL06] to generate a stippled image that allows for
infinite zoom-ins. The points are generated on the CPU and
rendered by the GPU. Hatches can be placed by the same
process, as can be seen in Fig. 5.

6. Results

The DCI coloring and texturing algorithms decribed in sec-
tions 3 to 5 have been implemented on an Intel I7 920 CPU
running at 2.7 GHz with 6 GB of RAM, an NVIDIA 8800
GTX graphics board and Windows 7 operating system. The
diffusion and rendering were performed in DirectX10.
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Figure 5: Left: a cup rendering using diffusion curves and
stippling. The insert shows the handle when zoomed in, still
providing crisp boundaries. The right image shows the chick
from Fig. 1 rendered with hatches, where the hatch directions
are determined in the same way as noise directions.

Visual results. The chick graphic in Fig. 1 is a good ex-
ample of the kind of result that can be achieved by adding
noise texture to a DCI. Notice how our least squares coloring
solution differs from the sampling approach in [OBW∗08].
Because the edge of the chick is fuzzy, sampling the edge
colors leads to numerous color outliers. In contrast, our app-
proach has no problem with fuzzy and highly textured re-
gions. The top right image shows how the automatic algo-
rithm succesfully determined the directions of the feathers.
Even the inflection point on the stomach is well reproduced.
Some manual touchup was needed on this (and most images
we tried), in part because the Gabor filters tend to latch onto
large color gradients on fuzzy edges.

Most of the Lena image in Fig. 6 is well-reproduced by
common diffusion curves. However, the shawl, hat and the
hair look flat and blurred out without textures. By contrast,
adding the Gabor noise textures provides a stylized visual
impression that is more like the original photograph. Again,
the automatic algorithm properly identified the directions
and scale of the textures, which greatly reduced the time for
manual editing afterwards.

The Gabor noise was also able to give a rough impres-
sion of the textures of the bottle in the beach example and
the scales of the fish in Fig. 7. These subtle details could
not be identified by the automatic algorithm, but were man-
ually modeled using our interactive tool. Nevertheless, they
demonstrate the usefulness of adding Gabor noise textures
to DCIs. The directions and scales of the fin textures on the
fish were automatically found, and make a great deal of dif-
ference in the visual impression of the rendering.

Timings. Table 1 displays statistics and timings for all of
the examples shown in this paper. The number of curves for
these graphics (25-136) is fairly typical of hand-generated
DCIs. The overall color point generation took between 3 and
23 seconds, with the sparsification (see Sec.3.1) taking more
than half of it. While this is not real time, it is certainly an
acceptable wait in the context of an interactive editing ses-

Figure # 1 2 6 7a 7b
Name chick boat lena beach fish
Input image size 512 512 512 800 800
Number of curves 42 25 136 101 44
Color pnt. generation
Sparse points (s) 2.4 1.9 5.5 17.4 7.5
Simplification (s) 1.6 1.4 5.5 5.3 2.8
Overall time (s) 4.0 3.3 11.0 22.7 10.3
Final number 283 176 682 586 361
[Orzan et al.08] 665 549 1178 850 754
Parameter fitting
Gabor analysis (s) 17.7 17.8 23.2 46.3 44.3
Overall time (s) 19.7 19.6 26.6 49.9 47.5
Overall time (s) 23.7 22.9 37.7 72.6 57.8
Manual work
Curve creation (min) 10 5 35 20 20
Parameter edit (min) 4 2 4 9 12

Table 1: Statistics for the examples shown in the paper.

sion. All of the examples in the table took between 4 and 6
iterations for the point simplification, with most of the points
being culled in the first pass. In general, the coloring solution
of Orzan et al. [OBW∗08] outputs 1.5 to 3 times as many
color points as ours, and is prone to color overfitting. As an
aside, we were quite surprised at how bad the overfitting can
be in some instances, and by the fact that it can happen even
when using the least squares solver to obtain the colors.

The time needed to fit attributes to the color points de-
pends on two main steps. The first step is the generation of
ATA and ATb from W , which includes a diffusion process
and the matrix construction. Both of these steps depend pri-
marily on the image resolution. We recorded times of 234
ms for 400 × 400 images and 468 ms for 800 × 800 images
using our test setup. These numbers are fairly independent
of curve complexity and the number of color points. The
second step, the matrix solver, depends heavily on the num-
ber of color points and the matrix sparseness. Here, our test
setup obtained speeds between 11 ms for 283 color points
and 717 ms for 2700 color points.

Turning to the Gabor texture parameter fitting, overall the
automatic fitting process is reasonbly fast (between 20 and
75 seconds). Most of the time is taken by the Gabor filter
analysis (Sec.4.1). We note that our implementation is not
optimized, and more elaborate methods could make it more
practical. We did not observe a need to change the color
point positions, nor their number after running the automatic
generation process in any of the examples. While texturing
parameter estimates were not always ideal, they did make
a good starting point for manual editing. It seems unlikely
that the color point placement and value assignments can
be manually done at this quality in reasonable time without
the automated assistance. The relatively few automatically
generated color points, automated color and noise parameter
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Figure 6: The “Lena” image. (from left to right): original image, 682 automatically applied curve colors, result after the
automatic texture parameter fitting, final image after manual editing.

estimation, and the pixel-based editing interface all combine
to make textured DCI authoring easier and more intuitive.

Rendering a textured DCI takes place in two stages, first
the color and noise parameters are diffused over the image,
then noise is rendered based on these parameters. At res-
olution 800 × 800, the fast diffusion method of Jeschke et
al. [JCW09a] achieves 64 frames per second (FPS) when dif-
fusing a single RGBA floating point image. Diffusing two
additional images that contain noise color and parameters
reduces the frame rate to 25 FPS. However, the most time
consuming part of the rendering process is the Gabor noise
application. As described in [LLDD09] the noise is rendered
by dividing the domain into a spatial grid of cells into which
Gabor kernels are splatted. The cells have the same width
as a kernel, so rendering requires looking up the splats in a
3×3 grid neighborhood. Using 46 Gabor splats per cell pro-
vides interactive feedback with 12 FPS, but only at preview
quality. With 128 splats very good image quality is achieved
at 6.5 FPS. 256 splats provide excellent quality but only at
4 FPS. Example images are provided in a separate docu-
ment due to space constraints. For high image quality, sig-
nificantly more splats are required compared to [LLDD09],
particularly for regions with high variation in noise direction
and frequency. However, we note that our rendering is not
yet optimized and cite [BLV∗10] as a faster implementation.

Limitations Gabor noise as presented obviously has its
limitations and can only model certain types of textures sat-
isfactorily. Better noise models [PS99] that support multiple
texture scales and directions, histogram matching, etc. would
be desirable. In addition, the Gabor noise changes when the
curves are animated as the underlying Gabor grid remains
rigid. This becomes especially apparent for singular points
in the tensor diffusion, which sometimes erratically change
position during curve parameter editing.

7. Conclusions and Future Work

We have developed a method that automatically colors diffu-
sion curves by choosing color points and calculating optimal
colors for them. We showed that the algorithm works ro-
bustly, even when curves are placed inaccurately, and when

small features and textures are present in the source image.
Further, we derived parameters that drive a Gabor noise gen-
eration process in order to simulate textural details in vector
graphics. Noise color, direction and scale variations were au-
tomatically estimated and an efficient tool was presented to
edit curve parameters in an intuitive manner.

We believe that the topic of textured vector graphics will
continue to be important in the future. In terms of exten-
sion to the work presented here, it would be interesting to be
able to add more textural detail as one zooms in [HRRG08],
for example. Automatically finding curves to separate differ-
ent textured regions is another possibility for future work. In
addition, storing separate control points for each parameter
to be diffused might further improve the compactness and
editability of our representation. We were also quite grati-
fied by the success of the pixel-based parameter editor. We
are planning to improve the interface and to apply similar
ideas in different contexts. For example, our parameter fit-
ting might be useful to efficiently compute harmonic coordi-
nates [JMD∗07].
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