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Figure 1: Our research question is what edits are possible to control the irregular vertices of a triangle mesh. We visualize the impact of
irregular vertices in a design application. Top: A designer-generated mesh (left) is used as input to assign panel ids for a procedural geometry
replacement system (middle and right). The irregular vertices force strips of width two as well as many degenerate shapes between strips.
Bottom: Editing the type, location, and number of irregular vertices (left) yields a design with smooth strips of width one (middle and right).

Abstract

We describe an interactive editing framework that provides control
over the type, location, and number of irregular vertices in a tri-
angle mesh. We first provide a theoretical analysis to identify the
simplest possible operations for editing irregular vertices and then
introduce a hierarchy of editing operations to control the type, lo-
cation, and number of irregular vertices. We demonstrate the power
of our editing framework with an example application in pattern
design on surfaces.
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1 Introduction

In this paper we introduce mesh editing operations to control the
type, location, and number of the irregular vertices in a triangle
mesh. An irregular vertex is a vertex that has a valence not equal to
six. The existence of irregular vertices is linked to the topology and
geometry of the underlying surface. Topologically, given a closed
mesh surface whose Euler characteristic is not zero, there is at least
one irregular vertex. Geometrically, irregular vertices naturally ap-
pear in high discrete Gauss curvature regions in the surface, with
their types dependent on the Gauss curvature. The ability to control
the type, location, and number of irregular vertices in a mesh is im-
portant in several applications such as isotropic remeshing, pattern
synthesis, architectural design, mesh-based modeling, simplifica-
tion, and subdivision surfaces. For example, in isotropic remeshing
irregular vertices in flat regions can lead to angular distortions. The
appearance of irregular vertices can also cause visual artifacts in
circle packing for architectural designs and interpolation difficul-
ties for subdivision surfaces. Our work provides what we believe to
be the first direct control mechanism for the irregular vertices in a
triangle mesh.

Controlling the irregular vertices in a triangle mesh is a challeng-
ing problem. Previous work in mesh optimization mainly focuses
on preserving the geometric details and the shape of the triangles,
while the topological properties of the triangle mesh are not treated
very systematically. Some work [Hoppe et al. 1993; Surazhsky and
Gotsman 2003] mentions topological editing, but only very briefly.



The challenge of this work is that these discrete topological oper-
ations are not very intuitive. For example, when designing con-
tinuous vector and tensor fields we can draw from Poincaré and
Conley theories to move a singularity and cancel a singularity pair.
Therefore, it is somewhat surprising that in the discrete case it is
not possible to move a single irregular vertex or to cancel a valence
5 and a valence 7 irregular vertex pair. We therefore argue that
previous work did not even establish what operations are possible
and how these possible operations could be performed. Unlike vec-
tor and tensor field editing [Zhang et al. 2006; Zhang et al. 2007;
Palacios and Zhang 2007; Fisher et al. 2007; Ray et al. 2008], the
atomic operations involving irregular vertices require at least two
irregular vertices for movement and three for cancellation. Conse-
quently, defining the functionalities of irregular vertex editing, both
atomic and composite, is a needed task for which no prior solution
has been given. The second difficulty is related to the implementa-
tion of these operations. For example, what lower-level operations
are needed in order to implement an atomic irregular vertex edit-
ing operation? Also, given a higher-level editing operation, how
can it be realized through atomic editing operations. Besides the
aforementioned applications, the main motivation behind our work
is intellectual curiosity. What is possible and impossible when it
comes to controlling the irregular vertices in a triangle mesh? The
main idea of this paper is to use the three basic topological oper-
ations, edge flip, edge collapse, and vertex split to redistribute the
valence deficit over the mesh (hence move the irregular vertices),
such that the type, location, and number of the irregular vertices
can be edited interactively. The contributions of this paper are:

• We analyze what atomic operations are possible on triangle
meshes for the movement, cancellation, clustering, merging,
split, and generation of irregular vertices.

• We provide efficient implementation of these editing opera-
tions based on well known low-level graph editing operations.

• We develop a framework to interactively edit the irregular ver-
tices in a triangle mesh. Composite editing operations are
identified and their implementation based on atomic editing
operations is provided.

We demonstrate the power of our system with regular texture and
geometry synthesis on surfaces, e.g. see Fig. 1.

2 Related Work

We review related work in mesh optimization and field editing.

Mesh Optimization: Our work can be considered as a comple-
ment to many existing mesh optimization algorithms discussed in
the literature, e.g. mesh smoothing [Desbrun et al. 1999]. To con-
struct higher-level editing operations we combine low-level editing
operations discussed in the literature, such as edge collapse [Hoppe
1996], vertex split, and edge flip. An alternative set of low-level
operations can be derived from Stellar theory [Lewiner et al. 2010].
Our work shares some common goals with triangular remesh-
ing [Turk 1992; Gu et al. 2002; Alliez et al. 2002; Alliez et al.
2003; Surazhsky et al. 2003], but the control of irregular vertices
is not treated systematically in previous work. An interesting ex-
ception is the work by Surazhsky and Gotsman [2003]. They also
suggest to use edits based on edge flips to reduce the number of
irregular vertices, but their proposed work does not have enough
editing operations and only few operations are possible. Akleman
and Chen argue why extremal points and saddles should be modeled
with irregular vertices [2006]. The location of irregular vertices in-
fluences inverse subdivision algorithms [Taubin 2002]. Note that
our goal is different from topological mesh processing and shape

editing [Nealen et al. 2005]. These approaches are also comple-
mentary to our work.

Vector and Tensor Field Design: Irregular vertices in a mesh play
a similar role of singularities in a vector field or umbilical points in
the curvature tensor. They all represent some irregularity in their
respective domain. It is therefore not surprising we borrow notions
from vector and tensor field design for the control over irregular
vertices [Zhang et al. 2006; Zhang et al. 2007; Palacios and Zhang
2007; Fisher et al. 2007; Ray et al. 2008; Bommes et al. 2009].
Due to the index theory, a pair of singularities with opposite indexes
must be removed simultaneously [Zhang et al. 2006]. On the other
hand, a singularity can be moved without impacting the topology of
the field. In fact, singularity pair cancellation and movement are the
atomic operations to control singularities in vector and tensor fields,
and their implementation is based on Poincaré and Conley theories.
However, we have found that it is impossible to move an irregular
vertex without introducing more irregular vertices and to cancel an
irregular vertex pair with opposite discrete Gauss curvatures.

3 Overview

The input to our system is a triangle mesh M that represents a closed
manifold surface. The valence of a vertex v in M, which we denote
as l(v), is the number of edges in the mesh incident to v. A vertex
with a valence of n is denoted as vn, e.g., v5 and v7. We set out
to define effective and comprehensive semantic editing operations
to control the type, location, and number of irregular vertices. We
structure these desired editing operations in four groups: altering
the valence of irregular vertices (type change), changing the loca-
tion of irregular vertices (move), decreasing the number of irregular
vertices (remove), and increasing the number of irregular vertices
(generation). To avoid a convoluted exposition we exclude irregular
vertices with valence that are multiples of 6 from the remainder of
the overview section.

Type change: The most fundamental and thus common irregular
vertices are v5 and v7. Any other irregular vertex can be converted
into multiple close-by v5 or v7 vertices. For example, a v4 ver-
tex can be split into two v5 vertices connected by two edges. The
other direction is not as simple as there are some constraints on
the arrangement, e.g. two adjacent v5 vertices cannot be converted
into a v4 vertex. However, other operations (moving, generating,
and removing) of vertices with valence other than 5 and 7 can be
performed by converting to v5 and v7 before the editing operation
and then converting back afterwards. This is because the vertices
typically stay in an appropriate configuration that can be converted
back. In our implementation of the other operations we therefore
focus on v5 and v7 vertices and provide the user with type change
operations to manipulate irregular vertices of valence other than 5
and 7. See Section 6.3 for type change operations.

Move: Moving a set of irregular vertices refers to changing the
location of the vertices while the other irregular vertices are not im-
pacted. Analogous to previous work in field design, we would have
liked to design an interface that enables the user to select a single ir-
regular vertex and move it using drag and drop. Unfortunately, this
is impossible for vertices whose valence is not a multiple of 6. We
provide an analysis of the problem in Section 5. This is somewhat
surprising and makes irregular vertex control a challenging prob-
lem. The most fundamental operations that we provide thus are for
the movement of irregular vertex pairs. In all cases the user can se-
lect two vertices and specify the movement direction of one of the
vertices. The movement direction of the other vertex is always spec-
ified implicitly and has no more degree of freedom. The three most
important operations are the following: 1) moving a 5− 7 vertex
pair. Both vertices can move over the mesh similar to translation or



parallel transport [Zhang et al. 2006]. The relative distance and rel-
ative orientation between the vertex pair stay the same. 2) moving
a 5− 5 vertex pair. The vertices can move closer together, further
apart, or circle around a fixed point in between the two vertices.
This is only an intuitive description and the precise results will be
given in Section 7.1. 3) moving a 7−7 pair, which has a behavior
similar to moving a 5−5 pair.

Remove: From Poincaré index theory and Conley index theory we
know that removing a single irregular vertex is not feasible. How-
ever, surprisingly canceling two irregular vertices is also not possi-
ble (see Section 5). This is another reason why valence control is
difficult. While it is possible to cancel four irregular vertices, they
have to be in a specific and uncommon configuration. The two most
important removal operations operate on irregular vertex triples. A
5− 7− 7 triple can be removed while generating a new v7 vertex.
A 5−5−7 triple can be removed while generating a new v5 vertex.
Removal operations are described in Section 7.2.

Generation: Generation of irregular vertices is the inverse opera-
tion of removal. We can therefore use the same mechanisms as re-
moval. The only practical difference is that generating a quadruple
from a regular vertex is always possible, while finding a quadru-
ple in the right configuration on an existing mesh is difficult. See
Section 7.3.

In addition to the aforementioned topological editing operations,
geometric operations to optimize the shape of triangles are also
provided (see Section 8). We structure our semantic editing oper-
ations into fundamental semantic editing operations and composite
semantic editing operations. Before we can explain the most pow-
erful operations described above, we will lay the groundwork with
fundamental semantic editing operations in Section 6.

4 Background

In this section we briefly review most relevant results from al-
gebraic topology and discrete differential geometry. Further, we
present some of our own definitions and observations.

Given an ideal triangulation in which all triangles are equilateral,
the valence of a vertex v is related to the discrete Gauss curvature
of v, defined in the following fashion:

G(v) = (6− l(v))
π

3
(1)

Consequently, v6 vertices are considered as regular vertices and all
other vertices as irregular vertices. However, note that the defini-
tions of regular and irregular vertices are purely topological, i.e.,
they do not require the ideal triangulation.

In the remainder of the paper we will often consider paths and re-
gions on a mesh, which require the following definitions. A path
γ (Fig. 2 left) on the mesh M consists of a sequence of edges
ei = (vi,vi+1) for 0 ≤ i < N. N is the length of γ . A path is a
loop if v0 = vN . Otherwise, γ is an open path. A loop γ is degener-
ate if there exists a vertex in γ that is incident to at least three edges
in γ . A degenerate open path can be defined in a similar fashion.
In the remainder of the paper we will only consider non-degenerate
open paths and loops.

A path (open path or loop) γ consisting of only regular vertices is
regular. For a regular path γ , the edges in γ divide the 1-ring neigh-
borhood of any interior vertex v on γ into two subsets of triangles.
v is a turn point if the numbers of triangles on the two sides are
different from each other. Otherwise, it is a non-turn point. A path
γ is straight if every interior vertex in γ is regular and non-turning.

Figure 2: Left: an open path. Right: a region whose boundary loop
has turn points: convex (red) and concave (blue).

A region R is a subset of the triangles in M whose dual graph is
connected. That is, for any two triangles s and t in R, there is a
sequence of triangles such that t0 = s, tN = t, and ti and ti+1 share
an edge in R for all 0 ≤ i < N. The boundary of R, denoted by
∂R, is a loop in non-degenerate cases. We further require that the
boundary loop be regular, i.e., it does not contain irregular vertices.
In this paper we are interested in properties of loops that can be
derived from knowing only the exterior R̄ (complement of R in the
mesh). A turn point on ∂R is convex if it has more than 3 adjacent
triangles in R̄. If less than three triangles are in the exterior the turn
point is concave (See Fig. 2). The angle of a turn v, denoted by
k(v), is (m(v)−3) π

3 where m(v) is the number of incident triangles
of v outside R. The angle of turn is positive for a convex turn point,
negative for a concave point, and zero for a non-turn point. A region
R is convex if there is no concave turn points on ∂R. Otherwise, it
is concave.

The discrete Gauss-Bonnet theorem relates the total turning angle
∑v∈∂R k(v) along the boundary ∂R to the total discrete Gauss cur-
vature l(v) of the interior vertices of R as follows:

∑
v∈∂R

(m(v)−3)+ ∑
v∈intR

(6− l(v)) = 6χ(M) (2)

where χ(M) is the Euler characteristic of M.

Several results in this paper are derived by analyzing convex regions
and their boundaries. The boundary loop of region R can be inter-
preted as a polygon. The turn points partition the loop into sides si.
The number of edges of side si is denoted as bi. If we consider a
vertex v0 in R then di is the graph distance of si to v0 (See Fig. 4
left). For convenience, we will always introduce a zero-length side
anytime an angle of turn is 2π

3 . This zero-length side is delimited
by two virtual turn points each with a turn angle of π

3 . For example,
in Fig. 4 left b5 equals 0 but we still consider the boundary loop
as pentagon. We do not need to consider cases where the angle of
turn is greater than 2π

3 as such cases are degenerate. Consequently,
there cannot be any consecutive zero-length segments.

Using Equation 2 and the consideration of zero-length sides and
virtual turn points, it is easy to establish the following facts about
a convex region R: 1) All turn points on the boundary of R have an
angle of turn of π

3 . 2) If R contains exactly one irregular vertex v0 in
its interior then the boundary of R has l(v0) turns. 3) If R contains
no irregular vertex then the boundary of R is a hexagon, i.e. has 6
turns. 4) If R contains two irregular vertices v1 and v2 in its interior
with l(v1)+ l(v2) = 12 then the boundary of R is also a hexagon.

5 Impossible Editing Operations

The goal of our system is to provide the ability to control the type,
location, and number of the irregular vertices without degrading
the quality of the mesh. Similar goals have been set in vector and
tensor field processing [Zhang et al. 2006; Zhang et al. 2007; Pala-
cios and Zhang 2007; Fisher et al. 2007; Ray et al. 2008; Bommes
et al. 2009] to control the number and location of singularities. Two
types of fundamental operations have been proposed: singularity



Figure 3: A v5 vertex in blue and its five separatrices in green. The
straight path in purple is divided into three pure segments p1, p2,
and p3. Only p2 is distance preserving and p1 and p3 are distance
varying.

movement in which a singularity is moved to a more desirable lo-
cation, and singularity pair cancellation, in which a singularity pair
with opposite singularity indices is removed simultaneously from
the field.

Unfortunately, the corresponding operations in our setting, i.e., the
movement of an irregular vertex or the cancellation of an irregular
vertex pair are in general impossible in the following sense:

Theorem 5.1 Consider a convex region R that contains exactly one
irregular vertex v0 in its interior. If l(v0), the valence of v0, is not a
multiple of 6, then it is impossible to remesh the interior triangles
of R to have a different configuration that still contains only one
irregular vertex.

To prove this statement we need the following:

Definition 5.2 Given a mesh M and an irregular vertex v0 with a
valence of l(v0), a valid neighborhood R of v0 is a simply-connected
region in M whose boundary is a regular loop and whose only ir-
regular vertex is v0.

Definition 5.3 An open separatrix is an open and straight path
whose interior vertices are regular and at least one of the end ver-
tices is irregular. If both vertices are irregular, the separatrix is
double-sided. Otherwise, it is single-sided. A closed separatrix is
a loop that contains exactly one irregular vertex. In the remainder
of the paper we are only interested in open separatrices. There are
l(v0) separatrices emanating from v0.

The separatrices of v0 divide any of its valid neighborhoods into
l(v0) sectors, with each sector bounded by two separatrices and ∂R.
A straight path inside a valid neighborhood R can intersect at most
three sectors, resulting in three pure segments, i.e., a segment con-
tained entirely inside one sector. A segment is distance preserving
if the graph distance of any vertex on the segment to the irregular
vertex v0 is the same. Otherwise, the distance will monotonically
increase or decrease along the segment, in which case the segment
is referred to as distance varying (see Fig. 3). If there are at least
two segments on a straight path, one of them must be distance pre-
serving (the middle segment if there are three segments) while the
others are distance varying. The length of the straight path is the
number of edges on the path, and the distance of the path to the
irregular singularity v0 is the minimal graph distance of any vertex
on the segment to v0. Furthermore, any path intersecting the two
separatrices bounding a sector must be distance preserving.

The following lemma is needed to prove Theorem 5.1:

Lemma 5.4 Consider a convex region R that contains exactly one
irregular vertex v0 in its interior. Then bi = di+1 +di−1−di.

Figure 4: Left: A convex pentagon enclosing a v5 vertex. The
length of each side and its distance to the irregular vertex are de-
noted as bi and di, respectively. Right: An illustration of variables
used in the proof of Theorem 5.1. ∂R is shown as red loop and sec-
tor S1 is shown in yellow. In this example d1 = d5 = d3 = 3 and
d2 = 4; q4,3 and q4,5 have length 2. We also show how a side can
intersect one, two, or three sectors.

Proof From previous discussion we know that each sector can only
intersect at most three sides of ∂R. Let qi, j = si

⋂
S j where S j is the

j-th sector. If S j only intersects one side, say si, then qi, j must be
distance preserving and length(qi, j) = di. If S j intersects si and
si+1, then exactly one of them is distance preserving and the other
distance varying. We will assume si is distance preserving. Then
length(qi, j) = di+1 and length(qi+1, j) = di− di+1. Finally, if S j
intersects sides si−1, si, and si+1, then length(qi−1, j) = di− di−1,
length(qi+1, j) = di−di+1, and length(qi, j) = di−1+di+1−di (See
Fig. 4 right).

Recall that side si can intersect at most three sectors. If si in-
tersects exactly one sector, notice that the lemma is correct given
the last equation from the last paragraph. If si intersects two sec-
tors, then si will be distance preserving in exactly one (say sec-
tor S j) and distance varying in the other (say sector S j+1). Then
bi = length(qi, j) + length(qi, j+1) = di−1 + (di+1 − di). If si in-
tersects three sectors S j−1, S j , and S j+1, then qi, j is distance pre-
serving and qi+1, j and qi−1, j are distance varying. Consequently,
bi = length(qi, j−1)+ length(qi, j)+ length(qi, j+1) = (di−1−di)+
di +(di+1−di) = di−1 +di+1−di.

We now present the proof for Theorem 5.1.

Proof Given Lemma 5.4, we know that any convex region R sat-
isfying the condition of this theorem will have l(v0) sides and the
length and distance of these sides satisfy

bi = di−1 +di+1−di (3)

for all 0≤ i< l(v0). Assume that we have retriangulated the interior
of region R such that there is a unique irregular vertex v′0. Let d′i be
the distance of v′0 to side si. Then we have

bi = d′i−1 +d′i+1−d′i (4)

In other words, the configurations of the interior of R before and
after the retriangulation satisfy the same system of equations Ad = b
where d = [d1, ...,dl(v0)], b = [b1, ...,bl(v0)], and A = ai j in which
ai j = 0 except aii =−1 and ai,i+1 = ai+1,i = 1. Notice that A has a
non-zero determinant if l(v0) mod 6 6= 0, which means that there is
a unique solution for di. Consequently, the retriangulations before
and after represent the same configuration and the irregular vertex
cannot be moved. If the valence is a multiple of six the determinant
of A is 0 and multiple solutions exist.

While Theorem 5.1 only states that moving a single irregular ver-
tex within a convex region is impossible, we have not found a case
where we can move an irregular vertex in practice. In fact, the re-
quirement in the theorem that the enclosing polygon is convex can



be relaxed. Basically, if the polygon can be enlarged to a convex
one without including any additional irregular vertex, then it is im-
possible to move the irregular vertex in the original polygon which
may be concave.

Similarly, we have found that it is in general impossible to cancel
a pair of irregular vertices with opposite indexes as stated in the
following theorem.

Theorem 5.5 Consider a convex region R that contains exactly two
irregular vertices v1 and v2 in its interior. If l(v1)+ l(v2) = 12, i.e.,
v1 and v2 have opposite discrete Gauss curvatures, it is impossible
to retriangulate the interior of R to have a different configuration
that is free of irregular vertices.

Without loss of generality, we will assume that l(v1) < l(v2). Fur-
thermore, we are not interested in the degenerate cases with l(v1)≤
2. The proof of this theorem depends on the following lemmas.

Lemma 5.6 Consider a convex region R that contains no irregular
vertex v0 in its interior. The lengths of the six sides of ∂R satisfy
that b1 +b2 = b4 +b5, b2 +b3 = b5 +b6, and b3 +b4 = b6 +b1.

Proof We select an arbitrary interior vertex v0 which must have a
valence of 6. It is straightforward to verify bi = di−1 + di+1− di
using argument similar to that for Lemma 5.4. Consequently, b1 +
b2 = (d6 +d2−d1)+(d1 +d3−d2) = (d3 +d5−d4)+(d4 +d6−
d5) = b4 +b5. Similarly we have b2 +b3 = b5 +b6 and b3 +b4 =
b6 +b1.

For convenience, we will express the three equa-
tions from Lemma 5.6 simply as AbR = 0 where

A =

 1 1 0 −1 −1 0
0 1 1 0 −1 −1
−1 0 1 1 0 −1

 and bR = (b1,b2, ...,b6).

We now prove Theorem 5.5 by showing that AbR 6= 0 if the convex
region R contains an irregular vertex pair. In the main part of the
paper, we will only show that this property is true for the small-
est enclosing convex hexagon K for the irregular vertex pair. This
part is interesting because it illustrates the different possible con-
figurations. The remaining two parts are that the smallest enclosing
hexagon is unique and that any enclosing convex hexagon R for the
irregular vertex pair can be reduced to K and AbR = AbK . These
two parts are shown in the appendix.

Lemma 5.7 Under the assumption of Theorem 5.5, the smallest
enclosing convex hexagon K for v1 and v2 satisfies that AbK 6= 0.

Proof Figure 5 illustrates the minimal enclosing polygons for an
irregular vertex pair. If the irregular vertex pair is connected by a
separatrix, it is straightforward to verify that the minimal enclosing
polygon K is the 1-ring neighborhood of the separatrix (Figure 5
(left column)).

If v1 and v2 are not connected by a separatrix, note that v1 is in a
sector of v2 and v2 is in a sector of v1 since they are not connected
by a separatrix. The intersection of the two sectors is a parallelo-
gram with sides of lengths L1 and L2, respectively.

If l(v1) = 5 and l(v2) = 7 (Figure 5 (2a)) and if l(v1) = 4 and
l(v2) = 8 (Figure 5 (2b)), we can show that ∂K is the 1-ring neigh-
borhood of the parallelogram.

If l(v1) = 3 and l(v2) = 9 (Figure 5 (2c)), ∂K includes four sides of
∂N2, and the extensions of two more sides of ∂N2 which intersect
after winding around N1 from opposing sides. We denote the 1-ring
neighborhood of v1 and v2 as N1 and N2, respectively. The fact that
the extensions of two sides of ∂N2 can intersect is a result of the
triangulation around v1. We omit the details in the interest of space.

(1a) (2a)

(1b) (2b)

(1c) (2c)

Figure 5: Minimal enclosing convex hexagon for an irregular ver-
tex pair: (a) v5/v7, (b) v4/v8, and (c) v3/v9. In the left column, the
pair is connected by a separatrix, while the pair in the right column
is not. The minimal enclosing polygon is colored in blue.

From the above characterization of K (also see Figure 5) it is clear
that bi = 1 for at least two i’s which are sides of N2. We will find
the first such side in a counterclockwise fashion and name it s1.
We will then label other sides incrementally. Consequently, bK,1 +
bK,2 = 2. Notice that with the exception of v3/v9 pair connected
by a separatrix, in all other cases either bK,4 or bK,5 or both are
larger than 1 due to the separation between the irregular vertex pair.
Consequently, bK,4+bK,5 > 2= bK,1+bK,2. Thus AbK 6= 0 in these
five cases. In the case of v3/v9 connected by a separatrix, we have
bK,i = 1 for 1 ≤ i ≤ 5 and bK,6 > 1. Consequently, bK,2 + bK,3 =
2 < bK,5 +bK,6 and therefore AbK 6= 0.

Lemma 5.8 Under the assumption of Theorem 5.5, the smallest
enclosing convex hexagon for v1 and v2 is unique (see appendix for
the proof).

Lemma 5.9 Under the assumption of Theorem 5.5, any enclosing
convex polygon R for v1 and v2 satisfies that AbR = AbK 6= 0 (see
appendix for the proof).

We now give the proof of Theorem 5.5.

Proof Given a convex polygon R enclosing an irregular vertex pair



v1 and v2 where l(v1) + l(v2) = 12, we have AbR 6= 0 based on
Lemma 5.9. Assume that it is possible to retriangulate the in-
terior of R such that it no longer contains any irregular vertex.
Call the new triangulated region R′. According to Lemma 5.6 we
have AbR′ = 0. However, bR = bR′ as the retriangulation does
not change the boundary connectivity. Consequently, we have
0 = AbR′ = AbR 6= 0, a contradiction.

Additionally, an irregular vertex pair cannot be canceled inside any
sub-region of an enclosing convex hexagon. Consequently, an ir-
regular vertex pair cannot be canceled inside any region that can
be enlarged to a convex hexagon by adding only regular vertices.
Furthermore, bi of any enclosing convex hexagon satisfy formu-
las similar to but not the same as those from the irregular vertex
movement case. We did not count on such facts for the proof of
Theorem 5.5 but believe they are valuable.

Together, Theorems 5.1 and 5.5 demonstrate that irregular vertex
editing is a much different and possibly more challenging problem
than topological control in vector and tensor field processing. We
need to identify new fundamental operations for the control of the
type, location, and number of irregular vertices.

6 Fundamental Semantic Editing Operations

In this section we lay the groundwork for the (more powerful) com-
posite semantic editing operations. First, we review the graph edit-
ing operations (edge flip, edge collapse, and vertex split) that are the
most basic atomic primitives that we employ to edit a mesh. These
operations are local, but they do not have an intuitive semantic in-
terpretation when it comes to mesh connectivity editing. Therefore,
the second subsection introduces fundamental semantic operations
for v5 and v7 vertices. These fundamental semantic operations are
achieved by one or multiple graph editing operations. They have
local influence and enable a semantic interpretation to the graph
editing operations. Similarly, we introduce two classes of opera-
tions to reduce any irregular vertex to a set of v5 or v7 vertices in
the third subsection.

6.1 Graph Editing Operations

We selected edge flip, edge collapse, and vertex split as graph edit-
ing operations because they are relatively simple and robust and
allow constructing all fundamental and composite semantic editing
operations with systematic combinations of these operations. How-
ever, we have found that the influence of these operations on vertex
valence is not very intuitive and difficult to understand. We there-
fore provide a semantic interpretation for these edits in the next
subsection.

Edge Flip: There are four vertices involved in an edge flip. After
an edge flip, the valence of two vertices will be increased by 1, and
the valence of the other two vertices will be decreased by 1. The
inverse operation of an edge flip is another edge flip of the same
edge.

Edge Collapse: There are four vertices involved in an edge col-
lapse. After an edge collapse, the valence of two vertices will be de-
creased by 1, the valence of one vertex w is d(w) = d(u)+d(v)−4
( (u,v) is the collapsed edge, w is the remaining vertex), and one
vertex will be deleted.

Vertex Split: There are four vertices involved in a vertex split. To
define a vertex split, two edges incident to the split vertex w need to
be selected. The two incident edges separate the remaining edges
incident to w in two groups containing d1 and d2 edges. After a
vertex split, the valence of two vertices will be increased by 1, the

valences of the other two vertices u, v are d(u) = d1 + 3, d(v) =
d2 +3.

6.2 Atomic Semantic Editing Operations

We now describe five atomic fundamental semantic editing opera-
tions which can be combined to achieve the higher-level composite
semantic operations for v5 and v7 vertices. The challenge in this
section is to give all operations the correct semantic interpretation.
While the final results are simple, the proposed structure and se-
mantics are very important for understanding the proposed opera-
tions.

Atomic 5−7 Movement: A 5−7 irregular vertex pair that is con-
nected by an edge is moved. This operation corresponds to applying
the three graph editing operations (edge flip, edge collapse, and ver-
tex split) to an existing 5−7 pair. Each graph editing operation can
be applied in two different configurations resulting in six possible
movement directions. Assuming surrounding vertices are regular
the directions correspond to the six edges per regular vertex. We
show one configuration for each graph editing operation in Fig. 6.
For example, in Fig. 6 (a) we show an irregular vertex pair plus the
selected edge before and after the flipping operation. Performing
an edge flip will make the original irregular vertex pair into regular
vertices and two neighboring vertices into a new 5−7 pair. Notice
that the newly created irregular vertices are still adjacent to each
other, and the edge connecting them is parallel to the edge connect-
ing the original irregular vertex pair before the move. Continuing
edge flip operations will have the effect of parallel transporting the
5− 7 pair in the zone shown in cyan. This is similar to the notion
of parallel transport of a vector (the edge) along the mesh surface.
Performing appropriate edge collapses and vertex splits will have
similar effects as shown in Fig. 6 (b, c). Moreover, existing trian-
gles can be eliminated during edge collapses and new triangles can
be created during vertex splits. With a combination of the three
basic operations the 5−7 pair can move anywhere on the mesh.

Atomic v5 (v7) Movement and 5−7 Generation: We briefly ex-
plain this operation for a v5 vertex because the operation on a v7
vertex is similar. A v5 vertex can move one step in one of six di-
rections. As a side effect an adjacent 5− 7 pair is generated. This
operation corresponds to applying one of the three graph editing
operations (edge flip, edge collapse, and vertex split) to an existing
v5 vertex (see Fig. 7). In Fig. 7 (a) a single v5 vertex is moved
by an edge flip. Since there are two new v5 vertices we have to
pick one as the moved v5 vertex and the other one as part of the
generated 5− 7 pair. This means that exactly the same edge flip
can have two different semantic interpretations based on which v5
vertex is picked. Knowing the correct semantic interpretation of
this proposed atomic operation is a key insight necessary to build
higher-level semantic operations.

Atomic v5 (v7) Movement and 5−7 Removal: This fundamental
operation is the inverse of the operation described above. It can be
understood by reading Fig. 7 in the reverse direction and replacing
edge collapses by vertex splits.

Atomic Two v5 and Two v7 Generation: A regular vertex is split
into a 5− 5− 7− 7 irregular vertex quadruple that is contained
in two triangles. This operation corresponds to applying the three
graph editing operations (edge flip, edge collapse, and vertex split)
to a regular triangulation (see Fig. 8). Interestingly, one configura-
tion is generated by two subsequent graph editing operations.

Atomic Two v5 and Two v7 Removal: This fundamental opera-
tion is the inverse of the operation described above. It can be un-
derstood by reading Fig. 8 in the reverse direction.



(a) Translating a 5− 7 pair in the mesh by edge
flips. The cyan region indicates where the pair can
move. The number of triangles is not changed.

(b) Translating a 5− 7 pair in the mesh by edge
collapse. The cyan region indicates where the pair
can move. A triangle strip is deleted through sub-
sequent edge collapse operations.

(c) Translating a 5− 7 pair in the mesh by vertex
split. The cyan region indicates where the pair can
move to. A new triangle strip is created.

Figure 6: Atomic 5−7 irregular vertex movement. v5 vertices are shown in blue and v7 vertices in orange.

(a) Edge Flip (b) Edge Collapse (c) Vertex Split

Figure 7: Atomic v5 movement and 5−7 pair generation: v5 vertices are shown in blue and v7 vertices in orange.

6.3 Fundamental Problem Reduction Operations

There are two classes of operations to reduce the editing problem
to v5 and v7 vertices. We call them vertex type splitting and vertex
type aggregation.

Type Splitting: There are two classes of operations. The first class
of operations splits a vk (k > 7) vertex into k− 6 v7 vertices. The
second class of operations splits a v4 (or v3) vertex into two (or
three) v5 vertices. There are many possible configurations and we
show three examples in Fig. 9.

Type Aggregation: There are two classes of operations. The first
class combines multiple v7 vertices into one vk (k > 7) vertex. The
second class of operations combines two (or three) v5 vertices into
one v4 (or v3) vertex. This operation is the inverse of type splitting.

7 Composite Semantic Editing Operations

We describe the algorithms and constraints for the composite se-
mantic editing operations. We consider movement, removal, and
generation in the following three subsections.

7.1 Irregular Vertex Movement

In this section we describe operations for moving a pair of irregular
vertices, i.e., an m−n pair. There are three categories: 1) m,n > 6,
2) m,n < 6, and 3) m < 6 < n. Through splitting and merging of
irregular vertices, we can reduce these to three fundamental cases:
7−7, 5−5, and 5−7. We will provide the detail for the last case,
i.e., 5−7, since the other two are fundamentally similar.

7.1.1 Complex Topology Editing: Moving 5−7 Pairs

Here we describe the general case of a moving 5−7 pair when the
two vertices are not adjacent. We can first construct a simple path
between the two irregular vertices by finding the intersection of two
separatrices, each from one irregular vertex. The intersection point
will be the turn point unless the separatrices completely overlap. To
move the pair, we make use of the following three-step pipeline:

1. Apply the atomic v5 one step movement and 5−7 pair gener-
ation operation to move the v5 vertex in the desired direction.

2. Move the adjacent 5− 7 pair towards the original v7 vertex
through a sequence of atomic 5−7 movement operations, un-
til the pair and the v7 vertex are adjacent.

3. Apply the atomic v7 one step movement and 5− 7 pair re-
moval operation to convert the triple so that only one v5 vertex
is left, at a shifted location.

The final result is that the old 5− 7 pair (u,v) is moved to a new
location (u′,v′). The relative position of the two vertices remains
the same. If we use the different combinations of the basic opera-
tions, we can move the pair in different directions. Since some of
the moving directions are redundant, there are 6 different directions
in total (Fig. 10). The movement is explained in the caption. Alter-
natively, the reverse sequence can be started from the v7 vertex.

7.1.2 Complex Topology Editing: Moving 5−5 and 7−7 Pairs

Moving a pair of 5− 5 or 7− 7 irregular vertices (not necessar-
ily adjacent) is similar to moving a 5− 7 pair. As with a simply
connected or complex connected 5− 7 pair, there are 6 different
directions of movement. However, in contrast to the purely transla-
tive movement of the 5− 7 pair, after the movement, the relative
location of the irregular vertices will be changed.

We explain the possible movements by the example shown in
Fig. 11 left. There are two irregular vertices of valence 5, which
are connected by 2 simple paths. Each of the paths consists of two
segments of length L1 and L2. We can select an arbitrary quad loop,
with side lengths b1, . . . ,b4, and the distance between the sides and
irregular vertices can be specified by d1, . . . ,d4. We have the fol-
lowing set of equations: bi = di−1 + di+1− di + Lp for 1 ≤ i ≤ 4
where p = 1 if i = 1,3 and p = 2 if i = 2,4.

The solution of these equations is not unique. The general solution
is: d1 = t1, d2 = t2, d3 = b1 − b3 + t1, d4 = b2 − b4 + t2, L1 =
b1 +b4−b2 + t1−2t2, and L2 = b2 +b3−b1 + t2−2t1.

From this solution, we know that if we change d1 and d2 (move one
irregular vertex), d2 and d4 will change correspondingly (the other
irregular vertex will also be moved). Additionally, since ∆d1 = ∆d3
and ∆d2 = ∆d4, the movement of the two irregular points will be
symmetric. In other words, the turn point on the path connecting
the two irregular vertices may slide along the path, leaving the im-



(a) Edge Flip (b) Edge Collapse and Edge Flip (c) Vertex Split

Figure 8: Atomic two v5 and two v7 generation: v5 vertices are shown in blue, v7 vertices in orange, and the v8 vertex in red.

(a) Splitting a v4 vertex (b) Splitting a v8 vertex (c) Splitting a v9 vertex

Figure 9: Examples of type splitting operations. Higher order irregular vertices are reduced to multiple v5 or v7 vertices.

pression the two end vertices (irregular) are approaching or leaving
each other as well as rotating about the middle point between the
two vertices (not necessarily on the path). We refer the readers to
the accompanying video for a live demonstration.

7.2 Irregular Vertex Removal

The most common irregular vertex removal operations are 5−5−
7 or 5− 7− 7 triple cancellation. Without losing generality, we
discuss the case of 5− 5− 7, as the 5− 7− 7 triple cancellation is
almost identical. In this section we describe how to cancel triples
that are not adjacent to each other. We select a 5−7 pair (say u and
v) and move it towards w (5 vertex) until v (valence 7) is adjacent
to w (valence 5). We then move the 5− 7 pair of v and w towards
u until either v or w or both are adjacent to u. We then apply the
atomic v5 movement and 5− 7 removal operation to convert the
triple into a 5 vertex and thus complete the operation. The second
high-level operation is to cancel a 5− 5− 7− 7 quadruple. This
operation is described in the next section as it is more important for
generation than for removal.

7.3 Irregular Vertex Generation

We consider two operations. The first is the inverse of 5−5−7 or
5− 7− 7 triple cancellation described in the previous subsection.
The second operation is to split a regular vertex into a 5−5−7−7
irregular vertex quadruple. We always generate at least two 5− 7
pairs. But these two pairs are not arbitrary since they must satisfy
some constraints. See Fig. 11 for an illustration of this configura-
tion. We denote the four vertices by v1,v2,v3,v4, and connect vi to
vi+1 by the shortest complex path pi that walks clockwise. Such a
path pi is composed by two straight paths, whose lengths are xi and
yi. The pair (xi,yi) can denote the distance between vi and vi+1.
All the paths form a convex polygon, whose opposite sides must
have the same length. In other words, xi = xi+2, yi = yi+2, for i =
1, . . . ,4. The proof is based on employing the argument of con-
tradiction, which we do not include in the paper in the interest of
space. Otherwise, we could remove one 5− 7 pair and we would
have generated a single 5−7 pair from a regular triangulation. This
is impossible according to our proof in Section 5.

8 Geometric Operations

Here we discuss relaxation operations on the mesh geometry.

Global Relaxation: The connectivity editing operations often re-
sult in triangles with poor aspect ratios. Therefore, we use a global
relaxation to make the length of edges in the mesh uniform and the
angles around each vertex divided into equal partitions. To achieve
this, we can move the vertices to new locations on the surfaces such
that an energy term is minimized. Let pi be the position of vertex
vi, Ni be the set of neighbors of vertex vi, d be the average length
of all edges, and ui j be the unit length target tangent vector. The
energy term is defined as follows:

E(p) = ∑
i

∑
j∈Ni

‖p j− (pi +dui j)‖2. (5)

Suppose the tangent plane at vertex position pi is P. If we project
the vector −−→pi p j to P, we get another vector −−→pi p j p. The angle be-
tween −−→pi p j p and the local x direction Px is denoted by α0

i j. Our
goal is that the tangent space is equally partitioned angularly by
these tangent vectors so that we can calculate the target angle αi j
between the target tangent vector ui j and Px. Let k j denote the in-
dex of the v j sorted in counterclockwise order, and α0 denote the
angle between the target tangent vector with index 0 and vector Px.
Then the angle between αi j and α0 is βi j = k j(2π/l(vi)). We can
calculate the best α0 = ∑p j∈Ni

(α0
i j−βi j)/l(vi), so αi j = α0 +βi j.

After we calculate αi j, ui j can be calculated by rotating Px around
the normal at vi by an angle of αi j.

The constraint that all vertices are on the surface of mesh M can be
approximated by the constraint that all vertices lie on their previous
plane. After the location of a vertex is changed, it is projected to
the surface of the mesh again. This constraint is linear in every
step, which leads to a quadratic energy function that can be solved
by quadratic solvers, such as UMFPACK.

Local Relaxation: Local relaxation is a simpler smoothing algo-
rithm where vertices are moved one at a time [Turk 1992]. We
implemented global and local relaxation in our framework. For our
results we ended up using local relaxation more often simply be-
cause it is faster.

9 Interface

User interface: We implemented all modeling operations de-
scribed in the paper. We provide tools for selecting sets of vertices,
faces, and edges. In our experience most editing time is spent using
the vertex pair movement operations. Our interface allows the user



Figure 10: Moving a 5− 7 vertex pair. In the top left and the top
right we show how the vertex pair moves one step to the right (con-
figuration one). In the bottom left and bottom right we show config-
urations two and three. The blue triangle strips remain unchanged.
The purple arrows show the two possible movement directions for
each configuration. The yellow strip is either removed or extended
depending on which direction the 5−7 pair moves. The red strips
are modified by edge flips. The green triangles will be generated or
removed depending on the direction of the movement. In the gen-
eral case, the number of triangle strips affected is determined by the
length of the connecting path and the position of the turning point.

Figure 11: Left: moving a 5−5 vertex pair. Right: irregular vertex
generation.

to select a vertex pair and one of six movement directions of one
selected vertex. The movement of the other vertex is determined.
According to our analysis of possible and impossible editing op-
erations this is the most intuitive composite editing operation that
gives the user full control over the outcome. Movement operations
are interleaved with local and global relaxation. Selected editing
operations are demonstrated in the video accompanying the paper.

Example Application: We visualize the impact of irregular ver-
tices using pattern design as example application. We implemented
manual and procedural tools for assigning material IDs to triangles
and edges and to replace triangles with more complex geometry.
This application is inspired by recent papers in architectural geom-
etry, e.g. [Liu et al. 2006; Schiftner et al. 2009]. The goal is to
demonstrate that it is not sufficient to optimize vertex locations. If
the mesh edges are part of the design, the irregular vertices will
have a strong visual impact.

10 Application & Result

In this section we will describe modeling results for four selected
models. The input models were preprocessed by a greedy retrian-
gulation algorithm and also smoothed with the algorithm described
in the paper. As a result all input models have a reasonably nice
geometry. If a general mesh would be taken as input, the geometry
would become locally smooth at the locations of the edits. There-
fore, our current main limitation is that we cannot retain sharp fea-
tures during editing. It would be necessary to implement additional
geometry processing operations, e.g. feature-preserving relaxation
algorithms. The results consist of two parts: the editing of irregular
vertices and the application of a pattern. The patterns were chosen
to motivate different goals for editing the irregular vertices.

Duck: We designed a star pattern on a duck with approximately
10K triangles. The input mesh has 160 irregular vertices (86 v5 and
74 v7) and the output mesh has 46 irregular vertices (29 v5 and 17
v7). The input mesh, the designed mesh, and the applied pattern
are shown in Fig. 12. The goals of the design were as follows: 1)
reduce the number of irregular vertices to smooth the mesh, 2) put
irregular vertices close to regions of high curvature, and 3) ensure
that several v5 vertices do not have other irregular vertices nearby
so that a star pattern can be seeded from these vertices.

Bunny: We designed a zebra pattern on a bunny with approxi-
mately 40K triangles. The input mesh has 1265 irregular vertices (1
v4, 639 v5, 621 v7, and 4 v8) and the output mesh has 84 irregular
vertices (48 v5 and 36 v7). The input mesh, the designed mesh, and
the applied pattern are shown in Fig. 13. The zebra pattern requires
that singularities are placed according to aesthetic criteria.

Souzou Model: We designed a circle pattern on a U-shaped model
with approximately 2500 triangles (Fig. 14). The interesting char-
acteristic of this pattern is that many irregular vertices are generated
intentionally to create circles with the triangulation. The input mesh
has 36 irregular vertices (2 v4, 21 v5, and 13 v7). The first editing
step was to reduce the irregular vertices to a minimum of 12 v5 ver-
tices. Subsequently many irregular vertices are added to form the
circle pattern. The final mesh has 3 v4, 282 v5, and 276 v7 irregular
vertices.

Architectural Model: We designed a stripe patterns on the 2-peak
architectural model with approximately 10K triangles ( Fig. 1). The
input mesh has 278 irregular vertices ( 10 v4, 133 v5 vertices, 132
v7, and 3 v8) and the output mesh has 24 irregular vertices (18 v5
vertices and 6 v7). We also show what happens if the stripe pat-
tern is applied to the original model. First, in the edited model we
can ensure that stripes have only a width of one, but in the origi-
nal model we have stripes of width one and two. Second, in the
edited model the shapes between stripes are simple hexagons and
pentagons, but in the original model the shapes can be fairly com-
plex. Finally, the stripes are smoother in the edited model, but in
the original model they make sharper turns.

11 Conclusion

In this paper we introduce the problem of explicit mesh connec-
tivity optimization for the control of irregular vertices. We also
present to our knowledge the first system that provides control over
the type, location, and number of irregular vertices in a triangle
mesh. As part of this research, we present a supporting theoretical
analysis as well as identify a comprehensive set of operations that
provides sufficient flexibility to the user. We have also developed
a taxonomy of operations, at different levels. We provide efficient
composite semantic editing from a set of fundamental operations,
which themselves are implemented with graph-level editing opera-



Figure 12: From left to right: input model, edited model, star pattern.

Figure 13: From left to right: input model, edited model, zebra pattern.

tions. We demonstrate the usefulness of our approach with a num-
ber of examples in pattern design and architectural modeling.

In the future we wish to explore adapting the system to the edit-
ing of quad meshes. We also plan to investigate how to adapt our
system for remeshing purposes, with the possibility of performing
geometry-aware mesh editing.
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ALLIEZ, P., DE VERDIÈRE, É. C., DEVILLERS, O., AND ISEN-
BURG, M. 2003. Isotropic surface remeshing. In Proceedings
of Shape Modeling International, 49–58.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Transactions on Graphics (TOG)
28, 3, 77.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
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Appendix

Lemma 5.8: Under the assumption of Theorem 5.5, the smallest
enclosing convex hexagon for v1 and v2 is unique.

Proof We first make the following comment. A regular polygon R
(no irregular vertices on ∂R) is convex if and only if for any vertices
u,v ∈ R any shortest path connecting them is also in R. A sketch
of the proof is as follows. Assume that the polygon is convex yet
there exist u,v ∈ R such that a shortest path γ connecting u and v
is partially outside R. Then γ must intersect ∂R an even number of
times. Consider the first two such intersection points w1 and w2.
Then there must be a negative angle of turn on ∂R between w1 and
w2. This contradicts that R is convex. For the other direction of
the comment, assume that R is not convex yet for any u,v ∈ R we
have γ ⊂ R where γ is any shortest path connecting u and v. In this
case we can find two sides of ∂R that have a negative turn since R
is concave. Let the two sides be si and si+1 and the point of turn
is w. Consider the vertices on ∂R immediately before and after
w. They are located on si and si+1, respectively. Between these
vertices there is a shortest path connecting them but is outside R,
again a contradiction.

Given the comment, it is straightforward to show that the minimal
enclosing convex polygon is unique. Assume there are two such

Figure 15: An example shrinking operation.

minimal polygons U 6=V . Then W =U
⋂

V must be strictly smaller
than U or V . Say W is strictly smaller than U . Furthermore, since
U and V are convex they both satisfy the condition that for any
vertices u,v ∈ R any shortest path connecting them is also in R.
Consequently, W satisfies this condition as well yet it is smaller
than U . Thus U is not minimal which is a contradiction.

Lemma 5.9: Under the assumption of Theorem 5.5, any enclosing
convex polygon R for v1 and v2 satisfies that AbR = AbK 6= 0.

Proof Let dR = ∑
6
i=1 dR,i where dR,i = dist(sR,i,K) is the distance

between side i of ∂R and K. We will use mathematical induction
on dR.

If dR = 0, we have R =K and AbR = AbK 6= 0 based on the previous
lemma. We now assume that for any enclosing convex polygon R
whose dR = N − 1 we have AbR = AbK 6= 0. Given a region R
such that dR = N, we will consider the shortest side i of ∂R such
that dR,i > 0. Given that it is the shortest, bR,i−1 and bR,i+1 must
both be positive or we will have two zero-length sides (bR,i = 0 and
either bR,i1 = 0 or bR,i+1 = 0) which corresponds to a π turn, i.e.,
a degenerate case. Consider the straight path γ that is parallel to
side i and has a distance of dR,i−1 to K (Figure 15). Then γ must
intersect sides i−1 and i+1 of R at an angle of π

3 since bR,i−1 > 0
and bR,i+1 > 0. Consequently, removing from R the trapezoidal
strip bounded by γ and sides i− 1, i, and i+ 1 of R results in a
convex hexagon R′. Number the sides of R′ such that its side i is
on γ and its sides i− 1 and i+ 1 are on the sides of i− 1 and i+ 1
of R, respectively. From the construction of R′ we have dR′,i−1 =
dR,i−1, dR′,i+1 = dR,i+1, and dR′,i = dR,i− 1. Consequently, dR′ =
dR − 1 = N − 1 and by assumption AbR′ = AbK 6= 0. Moreover,
bR′,i−1 = bR,i− 1, bR′,i+1 = bR,i+1− 1, and bR′,i = bR,i + 1 while
other sides are unaffected. Consequently, bR,i−1 +bR,i = bR′,i−1 +
RR′,i, bR,i+1 +bR,i = bR′,i+1 +RR′,i, and bR,i−2 +bR,i−1 = bR′,i−2 +
bR′,i−1−1 = bR′,i+2+bR′,i+1−1 = bR,i+2+bR,i+1. In other words,
AbR = AbR′ = AbK 6= 0.


