IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH/APRIL 2009 1

Compressed Facade Displacement Maps

Saif Ali, Jieping Ye, Member, IEEE, Anshuman Razdan, Member, IEEE, and
Peter Wonka, Member, IEEE

Abstract—We describe an approach to render massive urban models. To prevent a memory transfer bottleneck, we propose to render
the models from a compressed representation directly. Our solution is based on rendering crude building outlines as polygons and
generating details by ray-tracing displacement maps in the fragment shader. We demonstrate how to compress a displacement map
so that a decompression algorithm can selectively and quickly access individual entries in a fragment shader. Our prototype
implementation shows how a massive urban model can be compressed by a factor of 85 and outperform a basic geometry-based

renderer by a factor of 40 to 80 in rendering speed.

Index Terms—Massive urban models, displacement mapping, real-time rendering, compression.

1 INTRODUCTION

N this paper, we describe an approach to render

massive urban models requiring several gigabytes of
data. It is especially difficult to render fly overs, where
almost the complete model is visible, and the visual
portion of the scene requires more memory than is
available on the graphics card and in the main memory.
As a solution, we present a framework that renders from
a compressed representation directly and avoids slow
memory transfers from the disk to the main memory and
GPU at every frame.

We assume that building facades are stored as large
polygons and facade details are stored as displacement
maps and material index maps. A displacement map is a
matrix D € R™*", where each entry represents a displace-
ment from a reference plane, and a material index map is a
matrix M € N™*", where each entry references a texture in a
texture library. To render this representation, the large
facade polygons are rasterized to initialize a fragment
shader that computes an exact ray-surface intersection (see
Fig. 1) using ray casting. The idea of the fragment shader ray
caster is to march a ray over the displacement map until a
surface intersection is found. While a naive algorithm uses a
large number of very small steps, it is often beneficial to use
acceleration data structures to allow the ray to jump larger
distances in regions of free space. Two prominent examples
of acceleration data structures are cones [1] or spheres [2] of
free space. These acceleration data structures are stored as

e S. Ali is with AMD, 2145 3rd street, Santa Clara, CA 95054.
E-mail: mail.saifali@gmail.com.

e |. Ye is with the Department of Computer Science and Engineering,
Arizona State University, Box 878809, Tempe, AZ 85287-8809.
E-mail: jieping.ye@asu.edu.

e A. Razdan is with the Division of Computing Studies, Arizona State
University, Mail Code 0180, Tempe, AZ 85287-5906.
E-mail: razdan@asu.edu.

o P. Wonka is with Arizona State University, 342 Byeng, Brickyard Building,
3rd Floor, 699 S. Mill Avenue, Tempe, AZ 85281.
E-mail: pwonka@gmail.com.

Manuscript received 8 Sept. 2007; revised 6 May 2008; accepted 2 July 2008;
published online 17 July 2008.

Recommended for acceptance by P. Dutre.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2007-09-0135.
Digital Object Identifier no. 10.1109/TVCG.2008.98.

1077-2626/09/$25.00 © 2009 IEEE

an additional matrix A (or several additional matrices). We
call the matrices D, M, and A the detail maps of a facade.

In this paper, we will present a rendering framework
that precomputes compressed detail maps and decom-
presses individual matrix entries in the fragment shader.
We need to tackle two challenges. First, we have to find a
suitable compression algorithm. Second, we have to adapt
current fragment shader ray-tracing algorithms. The solu-
tions to these two problems are the major contributions of
this paper:

e We present a novel lossless compression algorithm
for facade detail maps. While the combination of
compression and fragment shader ray tracing is a
novel approach by itself, we additionally improve the
best previously used algorithm, the singular value
decomposition (SVD). The SVD was used in different
contexts, for example, to compress BRDFs [3]. Our
results show that our representation is 2.5 to 8.6 times
smaller and takes a shorter time to decompress
(resulting in faster rendering speed). The main idea
of our approach is to factor a matrix using binary
values instead of floating-point values.

e We analyze existing fragment ray-tracing techniques
and propose a new acceleration data structure A: we
store indices of boxes of free space for each entry in D.
We need to adapt previous work 1) because of visual
quality and efficiency issues connected with render-
ing discontinuities and 2) because previous accelera-
tion data structures do not compress well and
therefore do not fit into our framework. While our
new data structure and the rendering algorithm are
not very sophisticated, the explanation of algorithm
details and the connection between acceleration data
structure design and compression ratios is important
for understanding the overall framework. We will
show that our rendering times are a factor of three to
seven faster than a naive combination of previous
work in displacement mapping (relief mapping) and
compression (SVD).

We call our new representation CFDM for Compressed
Facade Displacement Map. For massive model rendering, our

Published by the IEEE Computer Society

Fig. 1. A box rendered with compressed facade displacement maps.

results will show that we can render a city of 30,000 buildings
in real-time rates using a memory footprint of 1.62 Gbytes at
30-60 fps, depending on the screen size. Geometry-based
rendering would require 23-Gbyte memory for 180 million
triangles and corresponding textures rendered in about
0.5 fps. While our approach gives very strong results for
typical building facades, the compression requires detail
maps (matrices) that can be broken down into larger
submatrices that have identical entries. The extension of
CFDM to general displacement maps D is future work.

2 RELATED WORK

We structure and review related literature in the following
groups: polygonal height field rendering, ray tracing of
height fields, displacement mapping, fragment shader ray
tracing, and matrix factorization. While we use massive
model rendering as the motivational framework, our
contribution is not related (and mostly orthogonal) to
system papers describing level-of-detail, occlusion culling,
and memory management strategies for massive models.
We therefore chose not the review these techniques in detail
but refer to two recent papers that include a nice overview
of the literature [4], [5].

Polygonal rendering. Many height fields, e.g., terrains
stemming from geospatial data sets, are sampled on a
regular grid. This data structure is identical to a classical
displacement map. The focus of research in terrain render-
ing is to compute triangular levels of detail to limit the
number of polygons selected for rendering [6], [7], [8].

Traditional ray tracing. There are many algorithms to
compute a ray intersection with related data structures such
as height fields [9], [1], [10], [11] or displacement mapped
triangle meshes [12]. The approach closest to our work is
described in [1] and [10].

Displacement mapping. Cook introduced displacement
mapping [13] as an improvement over bump mapping [14] to
render detailed surfaces with correct silhouettes. Several

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH/APRIL 2009

approaches were proposed for rendering displacement
mapped geometry by on-the-fly retessellation of a base mesh
using specialized hardware architectures [15], [16], [17].
These necessitated alterations in the standard graphics
pipelines or the installment of dedicated displacement
mapping units.

Fragment shader ray tracing. There are two important
parts to traditional displacement mapping. The first part is
to set up bounding prisms placed over the base triangular
mesh [18] and how to consider surface curvature. This part
is straightforward for our application as we currently only
consider flat facades. The second part is to find efficient ray
displacement map intersection strategies. Previous papers
propose several interesting root finding methods, e.g., [19]
and [20], and acceleration data structures [2], [21], [22], [23],
[24] to help the intersection computation. In this paper, we
propose a method that outperforms previous approaches for
our specific application but sacrifices generality so that it is
not suitable to render general displacement maps consid-
ered by other authors. Our general compression framework,
however, could be used in conjunction with other methods.

Matrix factorization in computer graphics. Most success-
ful compression strategies for real-time rendering are related
to matrix factorization. Matrix factorization is a powerful tool
with many applications in computer graphics. The most
popular method is the SVD [25], which is commonly used for
principal component analysis (PCA) [26]. SVD allows us to
compute the optimal low-rank approximation of a matrix in
terms of both the Frobenius norm and the 2-norm. PCA and
SVD were used to compress many computer graphics
data sets, for example, bidirectional reflectance functions
(BRDFs) [3], [27], [28], a view-dependent distance function
[23], animation data [29], image databases [30], [31], and
precomputed radiance transfer [32]. Early work by Kautz and
McCool [3] proposes a simple rank-one matrix approxima-
tion scheme to avoid the costly and memory-intensive
computation of the SVD for large data sets. Homomorphic
factorization allows us to decompose a matrix as the product
of multiple matrices. This approach has been explored for the
compression of BRDF data [33], [34]. A more general
formulation that mixes sums and products is the chained
matrix factorization proposed by Suykens et al. [35]. Mod-
ifications in the factorization, such as nonnegative factoriza-
tion (NMEF) [36], allows the incorporation of constraints and
weights. This is helpful for importance sampling [37], editing
[38], and diagonal dominant BSSRDF data [39]. Clustered
PCA (called local PCA in machine learning) first partitions
data into different clusters and performs PCA locally.
Examples of clustered PCA in computer graphics include
radiance transfer [40], [41], mesh animations [42], and motion
capture databases [43]. In this paper, we will also use SVD for
compression. Additionally, we propose a new factorization
algorithm that outperforms SVD for our application.

3 OVERVIEW OF THE METHOD

We first provide the system overview and then describe the
two main building blocks of this paper.

ALI ET AL.: COMPRESSED FACADE DISPLACEMENT MAPS

System overview. Before a massive model can be
rendered, it has to be created. Recent work in industry
[44] and academia [45] shows how building textures can be
analyzed and segmented so that displacement maps D €
R™" and material index maps M € N™*" can be created.
As it will take a few more years until these models are
created in a large scale, we use Photoshop to model a few
example facades and replicate them to create a massive
model. We use a material library of several wall, glass, and
wood materials stored in a texture array. We assume that
the facades are characterized by regular, repetitive, and
boxlike patterns. The question that we address in this paper
is the following: how can we render these building models
as efficiently as possible from a compressed representation
so that we have high compression rates with only a modest
impact on rendering performance?

Facade ray tracing. We investigated several existing
fragment shader ray-tracing algorithms and propose a new
modification. Instead of storing cones or spheres of free
space for each texel in a displacement map, we store indices
to boxes of free space. In Section 4, we will explain the
details of this acceleration data structure A and the
fragment shader ray tracer. We also discuss several
alternative design choices that we experimented with and
the reasons they were not as successful.

Map compression. The amount of memory required to
store the detail maps D, M, and A even for a single facade is
significant. Therefore, we propose a solution that interprets
all maps as matrices and factors them into the product of
three matrices (X, S, and Y). The reconstruction of the
original matrices can be computed in the fragment shader
for each matrix entry individually. In Section 5, we provide
details about the factorization algorithm, the representation,
the reconstruction in the fragment shader, and integration
with the ray tracer.

4 FAcCADE RAY TRACING

This section describes a new acceleration data structure and
the corresponding ray tracing algorithm for facade displace-
ment maps. Our compression and decompression frame-
work can be easily integrated into this fragment shader ray-
tracing algorithm, by substituting lookup functions in
2D textures by compressed lookup functions. The key to
designing a successful algorithm is to find an acceleration
data structure that leads to very few search steps and that is
simple enough so that it compresses well. The short
explanation of our solution is that we extend the idea of
the cone data structure proposed by Paglieroni [1], [10] from
cones of free space to indices of boxes of free space. We first
analyze previous work in the context of facade displacement
maps and then give the details of our algorithm.

The displacement map D is a sampled representation of
a discontinuous function f(u,v) — height over a rectangu-
lar domain [0, 1] x [0, 1] that is stored in a matrix. In contrast
to displacement maps for continuous functions, we are not
interested in a smooth reconstruction, as we need to retain
the sharp edges prominent in building facades. Therefore,
the reconstruction of choice is the box filter. See Fig. 2a for a
2D example displacement map.

1 2 3 5764

(a) (b)

Fig. 2. (a) A sampled facade displacement map is reconstructed with a
box filter. Please note the resulting discontinuities. (b) An intersection
algorithm can use a combination of linear and binary search to find the
intersection of a ray and a facade displacement map. The first four
samples in the sequence are linear search steps, and the last three
samples result from a binary search.

4.1 Analysis of Previous Work

A very simple method to compute the intersection of a
displacement map and a ray is to use a large number of
linear search steps. On a 1,000 x 1,000 map, this would
require at least 1,000 steps. While huge accelerations are
possible by using fewer search steps, this strategy simply
ignores most of the data. A good optimization in practice is
to use a linear search with larger search steps to get an
estimate of the location of the intersection point and then
use a binary search to compute a more exact intersection.
This algorithm was proposed by Policarpo et al. [19] and is
shown in Fig. 2. The strength of this algorithm is its
simplicity and the fact that the algorithm does not need to
store an acceleration data structure. We will use this
algorithm for comparison. The main challenge of this
algorithm is that it uses unnecessary search steps if used
with facade displacement maps. This is especially a
problem in compressed rendering where search steps are
getting more expensive.

Therefore, we experimented with acceleration data
structures to accelerate rendering by space leaping. The
general idea of space leaping is to store a bounding
primitive of free space for each texel in the displacement
map. In recent papers, spheres and cones were proposed as
acceleration data structures (see Fig. 4). We experimented
with both data structures but dismissed spheres because
they require a 3D rather than 2D data structure. Cones need
less memory, but we encountered three problems: 1) Near a
discontinuity (and we have many), the cones will get very
narrow, and the intersection routine becomes inefficient.
We found that the intersection computation typically
requires 3 to 10 times more steps than our proposed
method (please note that this is only true for facade
displacement maps and not the general case). 2) Disconti-
nuities cannot be handled well by cone step mapping (and
also other previous methods), because the discontinuities
are not appropriately textured. A simple solution is to
texture discontinuities with the texture of the higher
surface. This gives correct results in almost all cases for
architectural models, but this modification is difficult to
integrate in previous work. Fig. 3 illustrates the importance
of discontinuity handling. A related problem is that the all
the discussed methods need a separate normal map N to
store normals at discontinuities that would require addi-
tional memory. 3) The acceleration data structure has little
coherence between neighboring texels. This leads to low
compression rates and slow decompression times. The
overall rendering times of compressed cone step mapping is
therefore often slower than compressed relief mapping,
because the slow decompression of the acceleration data
structure negates the performance gain of space leaping. In

(a) (b)

Fig. 3. This figure shows the necessity of handling discontinuities in the
displacement map. (a) The combined linear and binary search technique
creates noticeable texturing artifacts. (b) Space leaping with boxes can
nicely render and texture discontinuities.

the next section, we explain how to modify the ideas from
previous work to adapt them to compressed facade
displacement mapping.

4.2 Facade Displacement Mapping

Due to the nature of facade displacement maps, we chose to
store a box of free space for each texel in the displacement
map. This will allow the ray to jump until it hits a boundary
of the box. Fig. 5 shows a free box over a point p. To obtain
the best acceleration, we are interested in computing the
largest possible box. While the largest box is not always
uniquely defined, we do not expect these special cases to
have any major impact. Therefore, we use a robust and fast
algorithm to make our approach as practical as possible.
We use a greedy search that computes the box for a texel ¢
with the following steps: 1) initialize the box to have the
size of t, 2) grow the box in all four directions by either one
texel if there is free space or zero texels if there is no space,
and 3) repeat step 2 until the box cannot grow in any of the
four directions. The key part is that all texels with the same
height that touch the bottom of that box can share the same
box and do not need to start their own computation (see
Fig. 5b for all texels that can share a box). Please note that
the boxes can overlap (see Fig. 6). An alternative algorithm
was proposed in the context of occlusion culling [46]. This
algorithm is faster but might produce lower quality results.

Given the maximally free box, we have several options to
store the acceleration data structure. The first choice to
make is the number of values to be used to describe a box. If
we only store one or two values rather than four values, we
can only store a conservative approximation, but the
algorithm will be simpler and more efficient. For example,

alpha1 alpha2
r r2 < > —
L'—L\°_|—\:|—'_r 1_L°'l—l_lo-l"_r
p1 p2
(a) (b)

Fig. 4. This figure shows the idea of using spheres and cones as
bounding primitives of free space. (a) The radius of the maximally free
sphere is stored for each point in a 3D data structure. Please note that
the other bounding primitives only lead to 2D data structures. (b) The
opening angle of the maximally free cone is stored for each texel in the
displacement map. Please note that multiple geometric quantities can
be used to describe the cone.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH/APRIL 2009

(a) (b)

Fig. 5. (a) For a point p, the biggest free box over p is shown in orange.
The box is represented by the locations of the four side planes to the top,
bottom, left, and right in the local displacement map coordinate system.
(b) The data structure results in significant coherence. All locations
(texels) marked in red share the same values of the acceleration data
structure as the point p to the left.

the analog to cone step mapping would be to store the
largest square for each texel. While this approach is still
faster than cone step mapping, it results in too many search
steps and the loss of coherence between neighboring texels.
The second question is if we should store the absolute
values of the four sides of the box in the facade coordinate
system or the relative values as seen from the center of each
texel. It is important to note that only the first version works
in our framework, because most texels are associated with
the same box as their neighbors. This type of coherence is
crucial for compression. The third choice was to store one
index into a list of four values instead of four values for
each texel. By storing indices, we only need to store one
entry in A for each entry in D (rather than four entries).
Next, we explain the ray-tracing algorithm.

Over each facade, we need to render one quad for the
top and zero to four quads on the side to initialize the ray
tracing in the fragment shader. A quad is needed for all
sides that have a displacement greater than zero. The ray
tracer has the following functionality: 1) starting from a
rasterized pixel on one of the quads, it has to intersect a ray
from the eye through the rasterized position, and 2) at the
hitpoint, it has to compute a normal on the fly, look up a
material index in the material map, and use the material
index to access a material texture in a texture atlas (or
texture array on newer graphics cards). We focus our
discussion on the ray displacement map intersection. The
intersection of a ray with the facade displacement map is
computed in tangent space, employing a parametric
intersection routine in the fragment shader program. A
ray is parameterized by the parameter ¢, and any point p(t)
on the ray is given by

p(t) =po+1txd, (1)

where pj is the ray origin, and d is the direction vector.
The viewing ray and direction vector are computed for
the four corners of the quad and passed to the fragment
stage as a varying parameter. At each ray-tracing step, we
look up the acceleration data structure and the displace-
ment map to get to get the four nearest sides and the bottom
of the free box over the current texel. The top face is always
at zero. These six values define six planes of the box to be

Fig. 6. This figure shows the boxes used in the acceleration data
structure. Please note that the boxes can overlap.

ALI ET AL.: COMPRESSED FACADE DISPLACEMENT MAPS

Start

| Hit

Fig. 7. This figure shows the steps of a ray in the intersection
computation. The step size is determined by the acceleration data
structure.

intersected. The goal now is to compute which plane the ray
hits first. We compute the ray-bounding-plane intersection
for every bounding plane producing a set of six values ;,
1 <i < 6. The desired intersection is obtained by choosing
the minimum positive parameter value, which also deter-
mines the step size for the next step. Fig. 7 shows an
example intersection computation in 2D.

Similar to all other ray tracing algorithms, aliasing can
become noticeable. We can use texture filtering in the
material library and make use of simplified displacement
maps to alleviate some of the problem. Further, full-screen
antialiasing techniques can also help. Please note that we do
not use these techniques in the result section, because it
makes comparisons difficult.

5 FacADE COMPRESSION

The detail maps D, M, and A require several megabytes of
data per facade. It is necessary to store higher resolution
maps for close-up views. Lower resolution maps would
distort the geometry too much and make it impossible to
capture details such as window frames.

Please note that we use integer indices for the material
index map M and the acceleration data structure A.
Therefore, the compression has to be lossless, because
similar integer values can index very different entities. This
rules out popular lossy compression techniques that use a
cosine or wavelet transform (e.g., JPEG). The second
important requirement on the compression scheme is that
it has to allow for random access to each entry in a matrix.
Almost all existing lossless compression algorithms such as
zip and rar need to consider larger blocks at once, and it
would be impossible to decompress individual elements
using random access. Our constraints require that we trade
off compression efficiency and decompression speed.

Our approach is inspired by the observation that
facades can be modeled based on combinations of function
pairs with one vertical function and one horizontal
function [47]. See Fig. 8 for a simple example of a facade
displacement map D. In this example, all windows and
doors are simple rectangles that are displaced by the same
value s. The walls are not displaced, and therefore, the
corresponding entries in D are zero. The functions « and y
are also represented in discretized form as vectors with
entries of either one or zero. We can now reconstruct the
facade displacement map D using the outer product of the
two vectors « and y and scaling the result by s:

D =zsy’. (2)

y

Fig. 8. This figure shows the idea of representing a facade as a
combination of vertical and horizontal functions.

The main advantage of this representation is that it allows
random access to entries of the matrix. Each entry D[z, j] is
computed as the product of three scalar values z[i] * s * y[j].
The reconstructed matrix has rank one, as all column
vectors are linearly dependent. A more complex displace-
ment map, i.e., a displacement map that corresponds to a
matrix of higher rank, cannot be compressed with a scaled
outer product of two vectors. For such a displacement map,
it will be necessary to use the sum of multiple such outer
products. Note that diag(S) stands for a diagonal matrix
constructed from vector S:

D:xlslle + xQSQyQT + x353y3T +...= X xdiag(S) * YT, (3)

To achieve reasonable lossless compression of a matrix as
the sum of scaled outer vector products, it is a necessary
condition that the matrix has a low rank. This condition is
fulfilled by most facade displacement maps due to the
dominant rectangular structures.

The efficiency of this type of compression is mainly
determined by two different factors. The first factor is the
number of outer products we need to reconstruct a matrix.
The second factor is the storage requirement per matrix entry.

We propose two methods for factorization explained in
the following. First, we will explain how to compute a
solution when all elements are restricted to floating-point
values. This can be done by computing the SVD of a matrix.
Second, we explain a novel factorization algorithm based
on binary factorization that gives even better results. The
key idea is to restrict the entries of z;, and y; to binary
values and s; to floating-point or integer values. This will
require more outer products, but each outer product will
have significantly less memory requirement. In the follow-
ing, we will only refer to the factorization of matrices D, but
the compression and decompression algorithm for M and A
is identical.

5.1 Floating-Point Factorization
If D is an m x n matrix, then D can be expressed as

D= XSY", (4)

where X is an m x m matrix, S is an m x n diagonal matrix,
Y is an nz x n matrix, and X and Y have orthogonal
columns. The entries in .S are positive or zero and are called
the singular values of the matrix D. Any matrix D can be

V, V, V, V, V
[}

x1 x2 x3 x5

1112213 =
Ve
3|4|4|0]|a V..
olalalo]|a V..
1|1|4|3]|3
Ve

Fig. 9. Left: Input matrix. Right: The binary matrix of the maximum
values.

written as a weighted sum of outer products of columns of
X and Y, where the weights are the singular values s; [48]:

N-1
Dij =Y si XYy (5)
k=0

The singular values appear along the diagonal in the
matrix S in descending order. We can safely discard the
singular values that are zero because the terms in the above
outer product corresponding to these singular values will
vanish. In our application, we can expect the singular
values to go quickly toward zero. To reconstruct the
element D(i, j),, we use the following formula (here, the
subscript p indicates the number of singular values

retained):

p—1
D(i,j), = ZXLkSAkY,k (6)

k=0
To guarantee lossless compression for integer entries in
M and A, we use as many singular values as are required to
guarantee that the rounded reconstructed values are
identical to the original values. For D, we keep all singular
values that are nonzero. Due to the regularity of facades,
there is a clear jump from nonzero to zero singular values.

5.2 Binary Factorization

The idea for the binary factorization is to factor an arbitrary
matrix D into the product of three matrices D = XSY7,
similar to SVD. However, we want to restrict the entries in
X and Y to binary values while allowing floating-point
values for the entries in the diagonal matrix S. All
previously described factorization methods produce sin-
gular values and singular vectors with continuous entries.
There are only few exceptions of discrete factorization, e.g.,
[49] and [50], but previous papers impose restrictions on
the matrices that are not useful for the given application.
We therefore propose a new numerical algorithm based on
two building blocks: First, we want to find the approxima-
tion of a matrix as a scaled outer product of two binary
vectors x and y. Second, we describe how to use this
building block for a complete algorithm.

Rank-one approximation. We first consider the rank-
one binary matrix factorization, where for a given matrix
D e R™", we find the optimal z € {0,1}", y € {0,1}", and
o such that ozy’ approximates the matrix D. In our
applications, the entries in D consist of a small set of
positive integers. Let d” =max;;{D;;} be the maximum
integer in D. We simply set o = d”. The concept can best

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH/APRIL 2009

Fig. 10. (a) Bipartite graph corresponding to entries in =z and y.
(b) Subset of nodes that form a complete subgraph. (c) The
rank-one approximation.

be visualized by a binary matrix with entries € {0, 1},
where all entries that are equal to the highest entry are
one, and all others are zero. See Fig. 9 for an example. We
then build a bipartite graph G = (E,V, UV,), where each
entry in x corresponds to a node in graph V,, each entry in
y corresponds to a node in the other graph V,, and £ is the
set of edges between V, and V). There is an edge between
the ith entry in 2 and the jth entry in y if and only if
D;; = dP. For the example in Fig. 9, we show the resulting
graph in Fig. 10a. Next, we look for a subset of nodes in V,
and a subset of nodes in V; so that the subgraph induced
by these two subsets forms a maximum complete bipartite
subgraph. This is an NP-hard problem [51]. We apply a
greedy heuristic for the computation as follows:

Among all the vertices of V,,, we find a vertex u such that
the total number of neighbors in V,, (v € V,, is a neighbor of u
if there is an edge between these two nodes) is maximum. We
add u to an initially empty set L, and add all the neighbors of
u to another empty set L,. It is clear that these two sets L, and
L, form a clique, as all vertices in L, are connected to all
vertices in L,. Denote |L, x L,| = |L.||L,| as the size of the
clique formed by L, and L,, where |L,| and |L,| denote the
number of vertices in L, and L,, respectively. ~

We then repeat the above step on the subgraph G of G
induced by the neighbors L, of u, where the vertices of G
consist of the ones from both V, and the current L,. That is,
among the vertices V, not in the current L,, we find a vertex @
such that the total number of neighbors in L, is maximum and
add @ to L,. The set L, will also be updated by removing all
vertices that are not neighbors of 4. And so on, until at some
point the current set L, becomes empty. At this point, we geta
sequence of cliques formed by different sets L, and L,. We
find the one with the maximum size |L, x L,|and output the
vector « from L, and the vector y from L. See Figs. 10b and
10c for an example.

Rank-p approximation. The idea of the complete algo-
rithm is the following iterative algorithm: 1) compute a
rank-one binary factorization, 2) subtract the rank-one
solution from the matrix, and 3) if the algorithm is not
converged go to step 1. The formula for a rank-p binary
matrix factorization is given by

P
Dp = Z(Tiibiyzr, (7)
i—1
where (zy,yy, o) can be obtained by computing the rank-
one binary factorization of the residue matrix:

k-1

D — Zoixiy;ﬁr =D - Dkfl. (8)
i=1

ALI ET AL.: COMPRESSED FACADE DISPLACEMENT MAPS

Fig. 11. This figure shows the approximation of a facade displacement
map (top left) as a scaled sum of five outer products of binary vectors.
The illustration focuses on the structure and does not show the scale of
the outer products.

Fig. 11 shows the factorization of a facade displacement
map. The algorithm is guaranteed to converge, because
each iteration of the algorithm provides an exact recon-
struction of at least one more matrix entry. The worst case
input to our algorithm is an m x n matrix where each entry
is unique. Then, we will need m *n outer products to
reconstruct the matrix.

6 GPU RECONSTRUCTION

The reconstruction of compressed matrices using SVD and
binary factorization is similar. Here, we describe the details
for the binary representation, because it is slightly more
involved. The binary matrix factorization algorithm pro-
duces three matrices (just like the SVD) with the important
difference that elements X and Y are restricted to being
either zero or one. While we would use 32-bit floating-point
luminance textures of sizes m x p (X), nxp (YY), and 1 x
p (S) for SVD-based factorization, we need to pack values
when using binary factorization. We can consider blocks of
32 consecutive elements in each row of a matrix and pack

TABLE 1
Memory Consumption for Four Facades

| [NOCOMP | WINRAR | SVD | BIN

Facadel

Heightfield 586 4 63 8

Material 586 4 63 5

Acceleration DS 2344 7 150 96
Total 3516 15 276 109
Facade2

Heightfield 3072 7 195 30
Material 3072 7 195 30
Acceleration DS 12378 33 616 141
Total 18522 47 1006 | 201
Facade3

Heightfield 768 3 72 9

Material 768 3 72 9

Acceleration DS 3072 7 252 36
Total 4608 13 1208 140
Facade4

Heightfield 1059 4 73 4

Material 1059 4 73 4

Acceleration DS 4236 9 90 78
Total 6354 17 236 86

We compare kilobytes of storage for four representations: NOCOMP—
no compression, RAR—rar compressed format, SVD—SVD-based
factorization, and BIN—binary factorization.

them inside a 32-bit integer. Thus, each texel finally
contains 32 elements from the original matrix, and the
matrix is reduced by a factor of 32 in one dimension. For
this, we assume that the number of columns in matrices X
and Y is an exact multiple of 32. If not, it can be padded
with zeros. The OpenGL texture format used is GL_LU-
MINANCE32UI_EXT. The reconstruction of a single value
D(i,j) is obtained by componentwise multiplication of
three vectors. The first vector is the row ¢ of X, the second
vector is the diagonal of S, and the third vector is the row j
of Y. We give the implementation details and code in the
Appendix for easier reconstruction of our results.

7 REesSuLTS

The results are structured in three parts. First, we compare
the compression rates for selected texture maps to the state
of the art. Second, we compare rendering times for a single
building to previous work in displacement mapping. Third,
we compare rendering times and memory consumption for
a fly over of a larger city to triangle-based rendering. The
test computer uses a GeForce 8800 GTX graphics card.
Compression rates. We modeled four facades to evalu-
ate compression rates (see Table 1). Each facade consists of a
displacement map, a material index map, an acceleration
data structure map, and an indexed acceleration data
structure map. We compare several different algorithms:

1. No compression (NOCOMP).

2. WinRar, a software tool that provides lossless
compression based on LZSS and Huffman encoding.
This algorithm gives a reasonable estimate for an
upper bound of compression ratios we can achieve.
WinRar is a significantly more complex algorithm
that would take several orders of magnitude longer
to decompress.

3. Factorization based on the SVD (SVD).

4. Binary factorization (BIN).

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH/APRIL 2009

77

ALLLLRRRR AN
i,

NN
RLLETTLLALARANIAN
sy
Y1y
T
it

1777

qa

Z

st

Bl
|

S

BEEH
L]

AT
L

I‘I![

—7

v
-
-
[2

-
-
[
[
|
[
[
[

LW

o

-
-
-
-
[
]

A\

u

L Y\ L}
L
al

Fig. 12. This figure shows the four test facades used in the result section of the paper.

The facades we selected for the tests are shown in Fig. 12.
The image sizes of the facades are F1: 600 x 1,000,
F2: 1,536 x 2,048, F3: 1,024 x 768, and F4: 930 x 1,166. We
computed that the facades would require between 1,000 to
5,000 triangles in a triangular representation. Please note
that our new algorithm, binary factorization, results in
representations that are up to 18 times smaller than
compressed representations computed with SVD-based
factorization. Please also note that most previous graphics

algorithms used factorization for lossy compression. As a
result, they would typically only keep the most important
four to eight outer products. As our algorithm uses lossless
compression, we have to expect to keep more values. In our
tests, we needed 12-24 outer products to compress the
displacement maps using SVD and 32-96 for the binary
factorization. To compress the acceleration data structures,
we keep up to 44 outer products for SVD-based factoriza-
tion and up to 480 outer products using binary factorization.

ALI ET AL.: COMPRESSED FACADE DISPLACEMENT MAPS

TABLE 2
Rendering Speeds for Four Selected Facades

[[Rendering Method | F1 [F2 [F3 | F4

uncompressed displacement mapping
RM (previous work) 443 94 360
FDM 730 | 387 | 712

compressed displacement mapping
CRM (previous work) 30 28 34 35

209
369

BCRM 110 | 67 111 | 43
CFDM 219 | 82 | 137 | 116
BCFDM 213 | 124 | 230 | 104

We compare average frames per second for several rendering
algorithms: RM—Relief Mapping without compression (20 linear and
6 binary steps), FDM—Facade Displacement Mapping without com-
pression, CRM—Relief mapping with compression using SVD (20 linear
and 6 binary steps), BCRM—Relief Mapping with compression using
BMF, CFDM—facade displacement mapping with compression using
SVD, and BCFDM—facade displacement mapping with compression
using BMF.

The compression algorithm works better for the height field
and material information than for the acceleration data
structure. The acceleration data structure contains a type of
coherence that is not a very good match for the binary
factorization. For example, consider a simple model with
rectangular facade elements having identical displacements
(see Fig. 8). The displacements and material information can
be encoded in a single term using binary factorization.
However, the values in the acceleration data structure have
only some coherence in the vertical and horizontal direction
so that multiple terms are needed.

Rendering speed. We compare the rendering speed for
the four selected facades by recording short animation
sequences of 1,000 frames and measuring the frames per
second. We render using 1,600 x 1,200 screen resolution. We
compare several different algorithms. The first two algo-
rithms are uncompressed displacement mapping strategies,
and algorithms 3-6 are compressed rendering algorithms.

1. Policarpo’s Relief Mapping method (RM) using
modified code from his web page [19] with 20 linear
and 6 binary steps,

2. Facade Displacement Maps without compression
(FDM),

3. Policarpo’s relief mapping method using the SVD
compression algorithm (CRM),

4. Policarpo’s relief mapping method using our BMF
compression algorithm (BCRM),

5. Compressed Facade Displacement Maps algorithm
with SVD compression (CFDM), and

6. Binary Compressed Facade Displacement Maps
algorithm using our BMF compression (BCFDM).

See Table 2 for an overview of the results. Our main

observation is the following: our uncompressed displace-
ment mapping algorithm (FDM) gives speedup factors of
1.6, 4.1, 2, and 1.8 compared to previous work (RM). For
compressed displacement mapping, our best algorithm
(BCFDM) gives speedup factors of 7.1, 4.4, 6.8, and 3.0
compared against CRM. We also want to make two
remarks. First, our algorithm is not only faster, but it is
also necessary to achieve good visual quality. Second, we
consider relief mapping the state of the art, even though
there are several other algorithms that perform faster in the

uncompressed version. However, as mentioned in Section 4,
all other algorithms require data structures that do not
compress well and therefore lose their advantage over relief
mapping in compressed rendering.

Scalability. We created a large city to test the scalability
of our algorithm and to compare it to geometry-based
rendering. See Fig. 13. The city consists of 30,000 buildings.
Each building has four or more facades. We recorded a fly
over of the city and compared two rendering methods. The
first method is BCFDM, our best compressed displacement
mapping technique. The second method is geometry
rendering using textured triangles as a primitive. For
polygonal rendering, we triangulated the facades to give
the same geometric detail as a displacement mapper (about
1,500 triangles per facade), and we use a 512 x 512 texture
for appearance. We used instancing for rendering, because
otherwise, the comparison would be impossible. See Table 3
for the results.

We want to emphasize a few observations. To accelerate
displacement mapping using early z-culling, the scene can
be rendered once to initialize the z-buffer, or it can be
traversed from front to back. As expected, our algorithm is
mainly fill limited, while the geometry-based rendering is
transform limited. We see that the speedup that our method
can achieve ranges from a factor of 40 to 80, depending on
the resolution. Additionally, we can observe that geometry-
based rendering requires a factor of 14.5 more memory. It is
not possible to efficiently use hardware-based occlusion
queries to cull single buildings, because we were recording
a fly over and not a walk-through. We used a simple city
for this test to avoid overly complicated state switching and
texture sorting for the geometry-based renderer. The simple
city can be rendered as geometry by instancing several
large vertex buffer objects. The city uses six different facade
detail maps.

8 DISCUSSION

Importance. We believe that the current strong interest in
urban reconstruction will result in detailed city models being
generated over the next three to five years. The vast amount
of generated data will be difficult to manage, and therefore, it
seems to be important to explore compressed representa-
tions that can be easily integrated into the rendering
pipeline. This will allow us to create better fly overs and
walk-throughs, because memory management has become a
problematic bottleneck in real-time rendering. Our approach
is a modern rendering strategy, because we render coarse
geometry as triangles and add details by fragment shader
ray tracing [52]. While the approach does not provide an
advantage over triangle-based rendering for single build-
ings, we demonstrated that our rendering speeds are much
faster for larger environments. This paper is a first step in the
direction of investigating compressed representations for
massive urban rendering, and we hope that our promising
results invite others to join this research direction.
Limitations. The first limitation of the compression and
rendering algorithm is that it only works with matrices
(textures) that can be partitioned into larger submatrices
with identical entries. We believe that this is a reasonable
assumption for most building facades. We argue that this

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH/APRIL 2009

= R, He R =

-\ CLLTIMEEEEIGEEA, - e 1me =
4 i\ T T EEEH D M-

a

o5

{

Fig. 13. A complete city rendered with Compressed Facade Displacement Maps. The city consists of 30,000 buildings.

class of matrices is important enough so that it warrants a
separate solution for rendering and compression. In future
work, we plan to address the compression of general
displacement maps to complement our compression algo-
rithm for facade displacement maps. We intend to use
constrained matrix factorization algorithms to cull the
computation of outer products.

Comparison to other compression algorithms. It is
difficult to make a formal comparison of compression
algorithms, because we focus on a special class of matrices
(textures), and we require very fast decompression. We did
not expect to outperform strong algorithms such as rar with
our compression technique, but we were surprised to see a
significant improvement over SVD. We believe that matrix
factorization is a great tool for compression in the context of
real-time rendering, because it allows random access by
decompressing any entry in the matrix separately. During the
course of this research project, we also experimented with
other techniques such as the wavelet transform and tensor
factorization, but the decompression is much more sophis-
ticated and cannot easily be integrated into a shader program.

9 CONCLUSIONS

This paper presents a method to efficiently render massive
urban models. Our main idea is to model the city using
displacement maps and to render from a compressed
representation directly. We demonstrated that our render-
ing framework outperforms existing displacement mapping
techniques and geometry-based rendering for large models.
We believe that texture compression will be a crucial aspect

of the future development of real-time rendering, and we
are interested to pursue related avenues of research.

APPENDIX
SouRrce CODE

We briefly discuss the implementation of the reconstruction
of binary factorized matrices. Let us look at the code Listing 1.
We take as input three sampler variables containing the X, Y,
and S matrices, input texture coordinates, and the number of
iterations required for reconstruction. We start a loop that
performs the reconstruction. There are a couple of important
things to note. Recall that when the original matrices are
encoded in textures every 32-bit texel contains 32 elements of
the original matrix. Thus, in one lookup, we have access to
32 matrix elements. For us, the value of the integer looked up
from the texture has no meaning; we treat it like a binary

TABLE 3
This Table Compares the Rendering Speed and Memory
Consumption of Our Algorithm against
Geometry-Based Rendering

| [Our Algorithm | Geometry |

1600 x 1200 screen size 21.5 fps 0.5 fps
1200 x 900 screen size 30.2 fps 0.6 fps
800 x 600 screen size 46 fps 0.6 fps
Uncompressed Size in GB 138 23.93
Compressed Size in GB 1.62 N/A

ALI ET AL.: COMPRESSED FACADE DISPLACEMENT MAPS

string because we are interested in individual bits. The
simple way to reconstruct would be to knock out 1 bit at a
time using bitwise mask and multiply. This has complexity
O(n), where n is the length of the binary string. We observe
that the matrices obtained by BMF are sparse, and most of the
elements are zeros. These do not contribute to the reconstruc-
tion, and it is inefficient to perform bitwise shifts and
multiplications for each zero encountered. We use a method
based on discrete logarithms [53] to efficiently find the
rightmost one in a binary string. Inside the loop, we find the
position of the rightmost one and right shift the string so that
this one is shifted out. We then look up the matrix S in the
appropriately shifted location and simply add the looked up
value to our partial sum. The loop terminates when all the
ones have been shifted out at which point the value of the
integer becomes zero.

Listing 1 bmflookup_grayscale: Lookup routine for gray-
scale images factorized with BMF
float bmflookup_grayscale (
uniform isamplerRECT X,

uniform samplerRECT S,

uniform isamplerRECT Y,

float2 texCoords,

int recon)

float4 sk = float4(0,0,0,0);

float ¢ =0.0;

int4 xk, vk, x_vec, y_vec;

int xk_and_yk = 0, position =0, i =0;

for (int k = 0; k < recon; k += 32)
{
xk = texRECT(X,
float2 (float (k/32), texCoords.y));
yk = texRECT(Y,
float2 (float (k/32),texCoords.x));
xk_and_yk = xk.x & yk.x;

for (int j = O;xk_and yk = 0;j ++)
{
position = discrete_logs [
(xk_and_vk & (-xk_and_vyk)) % 37];
xk_and_yk = xk_and_yk >>
(position + 1);
i =1+ position + sign(j);
sk = texRECT(S, float2(k + i,0.0)) . x;
c +=sk.x;
}
}
return c;

}

ACKNOWLEDGMENTS

The authors thank Pushpak Karnick for code reviews and
facade modeling, John Owens for paper review and
feedback, and all reviewers for their helpful comments.
The authors would like to acknowledge the support of US
National Science Foundation (NSF) Contracts IIS 0612269,
CCF 0811790, and 1IIS 0757623 and NGA Contract HM1582-
05-1-2004.

11

REFERENCES

[1] D.W. Paglieroni and S.M. Petersen, “Height Distributional
Distance Transform Methods for Height Field Ray Tracing,”
ACM Trans. Graphics, vol. 13, no. 4, pp. 376-399, 1994.

[2] W. Donnelly, “Per-Pixel Displacement Mapping with Distance
Functions,” GPU Gems 2, 2005.

[3] J.Kautz and M.D. McCool, “Interactive Rendering with Arbitrary
BRDFs Using Separable Approximations,” Proc. Eurographics
Workshop Rendering Techniques, 253-253, 1999.

[4] L. Borgeat, G. Godin, F. Blais, P. Massicotte, and C. Lahanier,
“GoLD: Interactive Display of Huge Colored and Textured
Models,” ACM Trans. Graphics, vol. 26, no. 3, pp. 869-877,
July 2005.

[5] E. Gobbetti and F. Marton, “Far Voxels: A Multiresolution
Framework for interactive Rendering of Huge Complex 3D
Models on Commodity Graphics Platforms,” ACM Trans. Graphics,
vol. 24, no. 3, pp. 878-885, July 2005.

[6] P.Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and
G.A. Turner, “Real-Time, Continuous Level of Detail Rendering of
Height Fields,” Proc. ACM SIGGRAPH ’96, vol. 30, no. Ann. Conf.
Series, pp. 109-118, 1996.

[7] F. Losasso and H. Hoppe, “Geometry Clipmaps: Terrain Render-
ing Using Nested Regular Grids,” ACM Trans. Graphics, vol. 23,
no. 3, pp. 769-776, Aug. 2004.

[8] E. Gobbetti, F. Marton, P. Cignoni, M.D. Benedetto, and
F. Ganovelli, “C-BDAM—Compressed Batched Dynamic Adap-
tive Meshes for Terrain Rendering,” Computer Graphics Forum,
vol. 25, no. 3, Sept. 2006.

[9] F. Musgrave, “Grid Tracing: Fast Ray Tracing for Height Fields,”
technical report, 1988.

[10] D.W. Paglieroni, “The Directional Parameter Plane Transform of a
Height Field,” ACM Trans. Graphics, vol. 17, no. 1, pp. 50-70, 1998.

[11] C.-H. Lee and Y.-G. Shin, “A Terrain Rendering Method Using
Vertical Ray Coherence,” |. Visualization and Computer Animation,
vol. 8, no. 2, pp. 97-114, 1997.

[12] B.E. Smits, P. Shirley, and M.M. Stark, “Direct Ray Tracing of
Displacement Mapped Triangles,” Proc. Eurographics Workshop
Rendering Techniques, pp. 307-318, 2000.

[13] R.L. Cook, “Shade Trees,” Proc. ACM SIGGRAPH "84, pp. 223-231,
1984.

[14] J.F. Blinn, “Simulation of Wrinkled Surfaces,” Proc. ACM
SIGGRAPH 78, pp. 286-292, 1978.

[15] S. Gumhold and T. Huettner, “Multiresolution Rendering with
Displacement Mapping,” Proc. ACM SIGGRAPH/Eurographics
Workshop Graphics Hardware (HWWS "99), pp. 55-66, 1999.

[16] M. Doggett and J. Hirche, “Adaptive View Dependent Tessellation
of Displacement Maps,” Proc. ACM SIGGRAPH/Eurographics
Workshop Graphics Hardware (HWWS "00), pp. 59-66, 2000.

[17] K. Moule and M.D. McCool, “Efficient Bounded Adaptive
Tessellation of Displacement Maps,” Proc. Conf. Graphics Interface
(GI '02), pp. 171-180, May 2002.

[18] J. Hirche, A. Ehlert, S. Guthe, and M. Doggett, “Hardware
Accelerated Per-Pixel Displacement Mapping,” Proc. Conf. Gra-
phics Interface (GI '04), pp. 153-158, 2004.

[19] E. Policarpo, M.M. Oliveira, and A.L.D.C. Jo, “Real-Time Relief
Mapping on Arbitrary Polygonal Surfaces,” Proc. ACM
SIGGRAPH Symp. Interactive 3D Graphics and Games (13D '05),
pp. 155-162, 2005.

[20] E.A. Risser, M.A. Shah, and S. Pattanaik, “Interval Mapping,”
technical report, School of Eng. and Computer Science, Univ. of
Central Florida, 2006.

[21] L. Baboud and X. Décoret, “Rendering Geometry with Relief
Textures,” Proc. Conf. Graphics Interface (GI '06), pp. 195-201, 2006.

[22] J. Dummer, “Cone Step Mapping: An Iterative Ray-Heightfield
Intersection Algorithm,” technical report, http://www .lonesock.
net/files/ConeStepMapping.pdf, 2006.

[23] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum,
“View-Dependent Displacement Mapping,” ACM Trans. Graphics,
vol. 22, no. 3, pp. 334-339, 2003.

[24] N. Tatarchuk, “Dynamic Parallax Occlusion Mapping with
Approximate Soft Shadows,” Proc. ACM SIGGRAPH Symp.
Interactive 3D Graphics and Games (I3D "06), pp. 63-69, 2006.

[25] G.H. Golub and C.F. Van Loan, Matrix Computations, third ed.
Johns Hopkins Univ. Press, 1996.

[26] LT. Jolliffe, Principal Component Analysis. Springer, 1986.

(27]

(28]

(29]

(30]

31]

[32]

(33]

(34]

(33]

[36]

[37]

(38]

[39]

(40]

[41]

(42]

[43]

(44]

[45]

[40]

[47]
(48]

(49]

[50]

[51]
(52]

(53]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH/APRIL 2009

A. Fournier, “Separating Reflection Functions for Linear
Radiosity,” Proc. Eurographics Workshop Rendering Techniques,
pp- 296-305, 1995.

R. Wang, J. Tran, and D.P. Luebke, “All-Frequency Relighting
of Non-Diffuse Objects Using Separable BRDF Approxima-
tion,” Proc. 15th Eurographics Workshop Rendering Techniques,
pp. 345-354, 2004.

M. Alexa and W. Miiller, “Representing Animations by Principal
Components,” Computer Graphics Forum, vol. 19, no. 3, 2000.

K. Nishino, Y. Sato, and K. Ikeuchi, “Eigen-Texture Method:
Appearance Compression Based on 3D Model,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR 99), pp. 618-624,
1999.

M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive
Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

J. Lehtinen and J. Kautz, “Matrix Radiance Transfer,” Proc. ACM
SIGGRAPH Symp. Interactive 3D Graphics (I3D '03), pp. 59-64,
Apr. 2003.

L. Latta and A. Kolb, “Homomorphic Factorization of BRDF-
Based Lighting Computation,” Proc. ACM SIGGRAPH 02,
pp. 509-516, 2002.

M.D. McCool, J. Ang, and A. Ahmad, “Homomorphic Factoriza-
tion of BRDFs for High-Performance Rendering,” Proc. ACM
SIGGRAPH 01, pp. 171-178, 2001.

F. Suykens, K. vom Berge, A. Lagae, and P. Dutré, “Interactive
Rendering with Bidirectional Texture Functions,” Computer
Graphics Forum, vol. 22, no. 3, pp. 463-472, Sept. 2003.

D.D. Lee and H.S. Seung, Algorithms for Non-Negative Matrix
Factorization. MIT Press, pp. 556-562, 2000.

J. Lawrence, S. Rusinkiewicz, and R. Ramamoorthi, “Efficient
BRDF Importance Sampling Using a Factored Representation,”
ACM Trans. Graphics, vol. 23, no. 3, pp. 496-505, 2004.

J. Lawrence, A. Ben-Artzi, C. DeCoro, W. Matusik, H. Pfister,
R. Ramamoorthi, and S. Rusinkiewicz, “Inverse Shade Trees
for Non-Parametric Material Representation and Editing,” ACM
Trans. Graphics, vol. 25, no. 3, pp. 735-745, 2006.

P. Peers, K. vom Berge, W. Matusik, R. Ramamoorthi, J. Lawrence,
S. Rusinkiewicz, and P. Dutré, “A Compact Factored Representa-
tion of Heterogeneous Subsurface Scattering,” ACM Trans.
Graphics, vol. 25, no. 3, pp. 746-753, 2006.

P.-P.J. Sloan, J. Hall,].C. Hart, and J. Snyder, “Clustered Principal
Components for Precomputed Radiance Transfer,” ACM Trans.
Graphics, vol. 22, no. 3, pp. 382-391, 2003.

A.W. Kristensen, T. Akenine-Moller, and H.W. Jensen, “Precom-
puted Local Radiance Transfer for Real-Time Lighting Design,”
ACM Trans. Graphics, vol. 24, no. 3, pp. 1208-1215, 2005.

M. Sattler, R. Sarlette, and R. Klein, “Simple and Efficient
Compression of Animation Sequences,” Proc. ACM SIGGRAPH/
Eurographics Symp. Computer Animation (SCA '05), pp. 209-218,
2005.

O. Arikan, “Compression of Motion Capture Databases,” ACM
Trans. Graphics, vol. 25, no. 3, pp. 890-897, http://doi.acm.org/
10.1145/1141911.1141971, 2006.

J. Ricard,]J. Royan, and O. Aubault, “From Photographs to
Procedural Facade Models,” ACM SIGGRAPH 07, p. 75, 2007.

P. Miiller, G. Zeng, P. Wonka, and L.V. Gool, “Image-Based
Procedural Modeling of Facades,” ACM Trans. Graphics, vol. 24,
no. 3, p. 85, 2007.

G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion, “Conserva-
tive Volumetric Visibility with Occluder Fusion,” Proc. ACM
SIGGRAPH ’00, pp. 229-238, 2000.

Y.LH. Parish and P. Miiller, “Procedural Modeling of Cities,” Proc.
ACM SIGGRAPH 01, E. Fiume, ed., pp. 301-308, 2001.

W.H. Press, W.T. Vetterling, S.A. Teukolsky, and B.P. Flannery,
Numerical Recipes in C++: The Art of Scientific Computing, 2002.

M. Koyutiirk and A. Grama, “PROXIMUS: A Framework for
Analyzing Very High Dimensional Discrete-Attributed Datasets,”
Proc. ACM SIGKDD ’03, pp. 147-156, 2003.

T. Kolda and D. O’Leary, “A Semidiscrete Matrix Decomposition
for Latent Semantic Indexing Information Retrieval,” ACM Trans.
Information Systems, vol. 16, no. 4, pp. 322-346, 1998.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

D. Blythe, “The Direct3d 10 System,” ACM Trans. Graphics, vol. 25,
no. 3, pp. 724-734, 2006.

C. Sturtivant, Finding the Right One, http://blog.lib.umn.edu/
sturt001/sturtivant/2006/12/finding_the_right_one.html, 2008.

Saif Ali received the BS degree in computer
engineering from Jamia Millia Islamia, New
Delhi, India, and the MS degree in computer
science and a concentration in arts, media, and
engineering from Arizona State University in
September 2007. He is a member of the Stream
Computing SDK team at AMD, where he writes
code for GPGPU on next-generation graphics
hardware. He cultivates a parallel interest in
photography.

Jieping Ye received the PhD degree in compu-
ter science from the University of Minnesota-
Twin Cities in 2005. He is currently an assistant
professor in the Department of Computer
Science and Engineering, Arizona State Uni-
versity. He has been a core faculty member of
the Center for Evolutionary Functional Geno-
mics, Bio-design Institute, Arizona State Uni-
versity, since August 2005. His research
interests include machine learning, data mining,
and bioinformatics. He has published extensively in these areas. He
received the Guidant Fellowship in 2004 and 2005. In 2004, his paper on
generalized low-rank approximations of matrices won the outstanding
student paper award at the 21st International Conference on Machine
Learning. He is a member of the IEEE and the ACM.

Anshuman Razdan received the BS and MS
degrees in mechanical engineering and the PhD
degree in computer science. He is an associate
professor in the Division of Computing Studies
and the Director of Advanced Technology
Innovation Collaboratory (ATIC) and the
I3DEA Laboratory (i3deas.asu.edu) at Arizona
State University (ASU), Polytechnic campus. He
has been a pioneer in computing-based inter-
disciplinary collaboration and research at ASU.
His research interests include geometric design, computer graphics,
document exploitation, and geospatial visualization and analysis. He is
the principal investigator and a collaborator on several federal grants
from agencies, including the US National Science Foundation (NSF),
NGA, and NIH. He is a member of the IEEE.

Peter Wonka received the MS degree in urban
planning and the doctorate in computer science
from the Technical University of Vienna. He is
currently with Arizona State University (ASU).
Prior to coming to ASU, he was a postdoctorate
researcher at the Georgia Institute of Technol-
ogy for two years. His research interests include
various topics in computer graphics, visualiza-
tion, and image processing. He is a member of
the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

