
Volume 0 (1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

A Shape Grammar for Developing Glyph-based

Visualizations

P. Karnick†1 and S. Jeschke1 and D. Cline1 and A. Razdan2 and E. Wentz3 and P. Wonka1

1Department of Computer Science and Engineering, Arizona State University, Tempe USA
2Division of Computing Studies, Arizona State University Polytechnic, Mesa USA

3School of Geographical Sciences, Arizona State University, Tempe USA

Abstract

In this paper we address the question of how to quickly model glyph-based GIS visualizations. Our solution is

based on using shape grammars to set up the different aspects of a visualization, including the geometric content

of the visualization, methods for resolving layout conflicts and interaction methods. Our approach significantly

increases modeling efficiency over similarly flexible systems currently in use.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems I.3.4
[Computer Graphics]: Graphics Utilities

1. Introduction

This paper describes a method for authoring interactive vi-
sualizations for the Geographic Information System (GIS)
pipeline [Gah05]. The task of designing a GIS visualization
usually means generating meaningful visual representations
of primitives (typically points, lines, and polygons associ-
ated with attribute data). Various tools have been developed,
both commercially (3D Analyst from ESRI, Creator Suite
from Multigen-Paradigm, Google Maps, Microsoft Virtual
Earth) and within the research community (GeoVista Studio,
GeoViz) that address this issue.

Approaches to generating GIS visualizations can be
broadly classified into two categories: (1) Simple and fast
methods that require very limited visualization setup via a
graphical user interface. Visualizations in this category can
be generated in a few minutes, but flexible design is not
possible. (2) Custom visualizations programmed with a low-
level language like Java, Javabeans or C++. These visualiza-
tions can be customized, but the low level languages used do
not offer many tools to simplify or speed up the customiza-
tion process. There is thus a need for tools that allow flexibil-
ity in modeling, while producing GIS visualizations within
reasonable time.

† pushpak@asu.edu

In this paper we describe a solution to the GIS Visual-
ization modeling problem based on procedural modeling.
The solution is aimed towards allowing domain experts to
quickly generate complex visualizations of attribute data
over a geospatial domain. We employ a shape grammar spec-
ified by a script-like language to author the visualizations.
The shape grammar evolves a set of shapes [WWSR03,
MWH∗06] to represent GIS data. The shapes have geomet-
ric and numeric attributes. Production rules specify how
a starting design (a set of shapes and attributes from the
GIS database) can be evolved into a complex model com-
plete with interaction possibilities. Our objective is to al-
low computer scientists, and more importantly, domain sci-
entists with limited computer science background, to create
and customize complex GIS visualizations. The main con-
tributions of this paper are:

• This is the first paper to apply the concepts of procedural
modeling to glyph based visualization of GIS data using
shape grammars.

• Our method generates visualizations much faster than ex-
isting methods that rely on low-level programming.

• We demonstrate the effectiveness of our shape grammar
with real-world examples.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

2. Related Work and Preliminaries

2.1. Related Work in Geo-spatial Visualization

There is a large volume of work in visualization related to
the presentation of geo-spatial data. Much of this work pro-
poses new techniques for two and three-dimensional visu-
alizations. Examples of two-dimensional visualizations in-
clude extended “focus+context” [FS04] and distorted two-
dimensional maps [KNPS03]. Three-dimensional visualiza-
tion of geo-spatial data has recently attracted much attention
in research [DMK05, WKD∗05]. Wood [Woo05] presents
a case for using multi-scale 3D visualizations (levels-of-
detail) for the display of multi-scale geographic data. The
GeoTime Information Visualization system [KW04] displays
temporal data over a geographic dataset to give the user
a combined 3D view with time as one axis. Tominksi et.
al. [TSWS05] describe a method to represent multivariate
time-dependent data at proper geo-spatial coordinates. Their
method relies on using the height as an axis for 3D poly-
topes, where each face describes the variations in one partic-
ular variable.

Data visualization and interaction has been a richly mined
area of research (see [CMS99] for an extensive survey).
However, there has been less effort in providing the back-
bone tools for modeling such visualizations and specify-
ing modes of user interaction. One example is Glyph-
Maker [RAEM94], which includes an interactive editor to
model glyphs. Another interesting approach to glyph mod-
eling is the use of implicit surfaces [RDL98, DRC∗99]
or superquadrics [SHB∗99]. In these approaches, multi-
dimensional abstract data are mapped to the parameters of
the mathematical surface description. Mackinlay [Mac86]
describes a system to create 2D visualization objects such
as pie charts and bar graphs.

There exist commercial and research solutions for mod-
eling GIS visualizations. Commercial products include the
3D Analyst extension to ESRI’s ArcGIS, ArchiCAD GDL
and the Creator Suite from Multigen Paradigm. These tools
provide a fully functional scripting environment that allows
manipulation of GIS data. However, they do not support ad-
vanced real-time visualization options like our system, and
do not handle large datasets (> 4 GB) robustly. In addi-
tion, there has been a parallel development of visualization
toolkits for geo-spatial data in academia. Most related ex-
amples include DEVise [LRB∗97], GeoVista Studio [TG02]
and GeoViz, InfoVis Toolkit [Fek04], Improvise [Wea04],
and Prefuse [HCL05].

InfoVis Toolkit and DEVise are excellent solutions for In-
formation Visualization. However, they lack features to in-
tegrate geo-spatial data into their framework. GUI oriented
tools [TG02, Wea04] for geo-spatial data visualization of-
ten perform a strict set of tasks very efficiently. However,
if complete control over the modeling process is required,
the GUI has to be complemented by low-level APIs and li-

braries [HCL05, TG02] such as Java or C++. This approach
usually results in a time consuming modeling phase.

In addition, three-dimensional city model generation is
an active research topic [PM01, KG03, HC05, MWH∗06,
LWW08]. Such tools provide an architectural solution for
modeling cities. However, the main difference between these
approaches and our method is that the above approaches
strive for authentic city modeling in 3D, while our goal is to
visualize abstract GIS attribute data over the same geospa-
tial domain. We do not have a priori knowledge of the 3D
geometry like buildings or landmarks, but work from the 2D
footprint data or point data to place glyphs at the appropriate
locations over the geospatial terrain.

2.2. Related Work in Procedural Modeling

Many procedural techniques were developed in the context
of modeling plants and architecture. For plant modeling,
Prusinkiewicz and Lindenmayer showed that impressive re-
sults can be achieved by using L-systems [PL91, PJM94].
In architecture, shape grammars [Sti75, Sti80] were suc-
cessfully used for the construction and analysis of architec-
tural design [DF81,Dua02]. Shape grammars and generative
modeling can also be used to model architecture for com-
puter graphics [WWSR03, MWH∗06]. While we use many
ideas of existing grammars in this paper, we augment our
grammar with extra capabilities needed in the context of
geo-spatial visualization.

2.3. Shape Grammars

Here we review the basic concepts of shape grammers, draw-
ing much of the discussion from CGA Shape [MWH∗06] and
L-Systems [PL91]:

Shape: A shape grammar works by constructing a con-
figuration of shapes, each consisting of a symbol (string),
geometry, and numeric attributes. Shapes are identified by
their symbols which are either terminals or non-terminals.
The most important geometric attributes are the position P,
three orthogonal vectors X , Y , and Z, describing a local co-
ordinate system, and a size vector S. These attributes define
an oriented bounding box in space called the scope (see fig-
ure 1).

Production process: A configuration is a finite set of
basic shapes. The production process starts with an initial
configuration A, called the axiom, and proceeds as follows:
(1) Select an active shape containing a non-terminal B, (2)
choose a production rule with B on the left hand side to
compute a new set of active shapes BNEW (the successor
for B), (3) add the active shapes BNEW to the configura-
tion and mark the shape B as inactive. Finally, return to step
(1). When the configuration contains no more active non-
terminals, the production process terminates.

Rule priorities: Each of the rules is assigned a priority to
determine the rule selection order in step (1). Priorities are

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

P

X

Y

Z

sx
sy

sz

Figure 1: Left: The scope of a shape. Right: A three-

dimensional glyph composed of three shape primitives.

specified by the user with the optional “PRIORITY” key-
word. If this keyword is not specified for a rule, the rule in-
herits the priority level of a preceding rule that has a well-
defined priority. The first rule in the file is assigned a default
priority value 0. Any user defined priority value overrides
this default priority value. Rules belonging to the same pri-
ority level are processed before any rule from subsequent
priority levels is applied. This guarantees that the derivation
proceeds from low detail to high detail. Rules within a prior-
ity group are processed in the order in which they are listed.

Notation: Production rules are defined in the following
form:

PRIORITY number

id: predecessor : cond ; successor

where id is a unique identifier, predecessor is a non-terminal
identifying a shape that is to be replaced with successor,
cond is a guard (logical expression) that must be true in or-
der for the rule to be applied, and number is the rule priority
as defined by the “PRIORITY” keyword (optional). For ex-
ample, the rule

1: well(depth) : depth > 60 ; cylinder(9*depth/10) top(depth/10)

replaces the shape well with two shapes cylinder and top, if
the parameter depth is greater than 60.

The condition (logical expression) acts as a switch for pro-
cessing rules that begin with the same non-terminal and have
the same priority level. Rules that begin with the same non-
terminal and have the same priority are processed in the se-
quence that they occur in the file, and the first matching rule
is applied for generation of next level of shapes. The “de-

fault” keyword is used to specify the action to be taken if all
other specified conditions are not satisfied. For example, the
second of the following rules

1: well(depth) : depth > 60 ; cylinder(9*depth/10) top(depth/10)

2: well(depth) : de f ault ; cube(9*depth/10)

creates a cube without a top, for the wells whose depth value
is not greater than 60.

3. Overview

Figure 2 shows an overview of our system. We store the data
to be visualized in a GIS database. A user creates a visual-

GIS

Database

Grammar

Engine

3D Information

Visualization

Rule & UI

Editor

UI

Editor

Figure 2: The GIS Procedural Modeling System.

ization using a rule editor and a user interface editor. The
rule editor allows the specification of rules that define the
modeling of geometry, appearance, and interaction. They are
the focus of the paper and will be explained in the follow-
ing sections. In contrast, the user interface editor directly
defines the overall visualization method, for example, the
number of views for overview and detail. Possible views are
2D orthographic, three-dimensional oblique, or three dimen-
sional perspective. After the user has finished modeling, the
grammar engine parses the rules and interfaces with the GIS
database to create a visualization. The user can then navigate
through the visualized data and apply interaction techniques
such as focus + context.

Geo-spatial information is typically processed by GIS,
and stored in layers. Each layer represents a particular ge-
ographic feature type, such as roads, city locations or land
use boundaries. The data within each layer contains a set
of records, each with spatial (point, poly-line or polygon)
and abstract information attributes (multi-dimensional, ge-
ometric, or scalar attributes). Additionally, some layers are
stored as regularly sampled raster grids, for example, the wa-
ter depths used by the well glyphs in figure 8.

4. A Shape Grammar for Visualization Authoring

Our GIS shape grammar models many different aspects of
a 2D or 3D visualization, including initialization, shape at-
tributes, spatial placement of glyphs, glyph separation, rep-
resentation instancing, and interaction.

4.1. High Level Grammar Definition

At the most abstract level, our grammar produces a visu-
alization of a scene. A scene is composed of one or more
independent datasets called layers, which often correspond
directly to the data layers in the underlying GIS database.
The grammar engine processes the scene layer-by-layer in
sequence. Actual geometry and appearance definition occurs
via rules that are attached to layers as child elements. Our
grammar supports three types of rule definitions: (1) Ge-
ometric placement rules (GPR), (2) Visual descriptor rules
(VDR) and (3) General rules (GR). The rules themselves are
composed of atomic commands, similar to the shape gram-
mar approach by Müller et al. [MWH∗06].

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

The geometric placement rules consist of built-in com-
mands to perform instantiation of geometry, geometric trans-
formations and glyph separation. The visual descriptor rules
define the look-and-feel of glyphs and other visualization el-
ements. They consist of built-in commands as well as user
defined attribute maps. Examples include commands that
specify the texture and color attributes of glyph geometry.
“General rules” do not specify the geometry or visual ap-
pearance directly. They serve as useful extensions to the
scripting engine itself. They can be built-in rules, user de-
fined commands or hooks for user interaction.

A formal description of our grammar is given below. We
also include the typical commands available in our imple-
mentation. A detailed description of these commands fol-
lows the formal definition of the grammar in section 4.2.
While the grammar specification is quite compact, we have
found it sufficient to produce a variety of useful visualiza-
tions. This basic set of rules described below could also be
extended to provide additional functionality.

Formal Shape Grammar Description:

1: axiom ; scene

2: scene ; [layer] ∗

3: layer ; rule∗

4: rule ; [GPR | VDR | GR]∗

5: GPR ; T(f loatVal, f loatVal, f loatVal) |
S(f loatVal, f loatVal, f loatVal) |
R(f loatVal, f loatVal, f loatVal) |
I(shape id | f ilename) |

6: V DR ; Color(RGB(r, g, b, a) | texture f ilename)

7: GR ; Repeat(min_index, max_index, rule id) |
Repeat(count, rule id) |
OnLe f tClick(action id)

8: f loatVal ; symbol | number

9: symbol ; ReadSymbolTableValue(symbol)

10: number ; f loating point number |
HeightFieldIntersect(f loatVal, f loatVal, ob jId) |
Separate(ob jId, axis, units)

4.2. Grammar Usage

A typical visualization authoring session involves the fol-
lowing steps: (a) The user specifies the data to be im-
ported into the visualization by linking specific non-terminal
symbols to database tables. (b) The user writes grammar
rules that create and position data glyphs according to their
geospatial location. (c) The grammar engine processes the
rules and generates the visualization.

The grammar may include rules to place shapes above a
terrain layer or resolve collisions between shapes. Custom
attribute maps can be used to define the visual appearance of
the glyphs created in the previous step. Other rules specify
interaction hooks in the visualization.

4.2.1. Initialization

Scene: The scene is the top-most logical component of our
modeling hierarchy. It is denoted by the “axiom” keyword in
the rule specification file. The non-terminal symbol that fol-
lows the keyword “axiom” is treated as the first non-terminal
to be processed. Rule derivation begins from this point on-
ward until suitable terminal symbols are generated. For ex-
ample, the statement “axiom: S” specifies that the grammar
derivation will begin with the symbol S.

Layers: GIS visualizations are often constructed as a set
of layers. Our grammar uses the special keyword “layer” to
denote the non-terminals that are to be treated as layers. This
provides a conceptual link between the database layers and
the visualization of those layers specified in the grammar.

Tables: Our system reads data from a PostGIS database.
It is necessary to make a mapping between the non-terminals
used in the grammar specification and their logical coun-
terparts in the database. This is achieved with the help of
the keyword “table”. This keyword is followed by the table
name in the database. Upon encountering this table name as
a non-terminal, the system proceeds to derive the child rules
for every record in the table. For example, the non-terminal
“well” can be hooked to the well table in the database with
the statement “table well”. The grammar engine processes
the non-terminal “well” by extracting the entire well table
from the database. It then instantiates a temporary “well”
symbol for each row of the table and searches the rule list
(in order of priority) for a rule with well as the left hand
side and a conditional compatible with the well data. If such
a rule exists, the rule is applied. Otherwise, the system dis-
cards the temporary well.

4.2.2. Shape Attributes

Attribute types: The Shape Grammar processes shapes with
associated attributes, which can be of two types: (1) Geo-
metric attributes such as position P, local coordinate axes
X ,Y,Z, size vector S, RGB color vector C, opacity, tex-
ture, and texture projection. The geometric attributes deter-
mine the visual representation of the shape. (2) Auxiliary
attributes that are provided by the GIS database or generated
during derivation. During the derivation of the grammar, at-
tributes can be specified or changed by rules of the form:

A ; attribute(expression)

where attribute is the attribute to be set and expession is
a valid mathematical expression of the correct type. Non-
terminals corresponding to database tables inherit all at-
tributes in the database as auxiliary attributes.

Attribute Maps: The goal of our grammar is a visualiza-
tion of attribute data associated with a geospatial location.
The attribute data may not be inherently geospatial in nature.
For example, it may be a set of string literal values to catego-
rize the table records into different groups. A mechanism to
convert this “raw” information into visual characteristics is

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

(x, y, ?)(x, y, ?)

(x, y, ?)

(x, y, ?)

(x, y, z)

(x, y, z)

(x, y, z)

Figure 3: HeightFieldIntersect example: The 2D wells are

moved to the points where they lie on the terrain by calcu-

lating the intersection between the terrain and the well posi-

tion.

therefore needed. Attribute maps convert attribute data from
their original type to another data type amenable to visual-
ization. For example, the attribute map ColorByWellType in
the well hydrological data example (section 5.1) transforms
the well category to a color. It can be used anywhere a color
would be used in the grammar, as in:

1: wellAppearance ; Color(ColorByWellType(well.category))

where ColorByWellType maps the discrete well group types
(IRRIGATION, MUNICIPAL, etc.) to a set of colors. For
discrete data, the attribute map is specified as a table in the
input file. Numerical attributes can be converted to colors
using the “Gradient” command, which maps a numerical
range to a range of colors.

Mathematical expressions: Along with attribute maps,
shape grammar rules may use mathematical expressions
(+,-,*,/) as arguments. For example, the following rule scales
the Y-coordinate of a well glyph by one fifth of the pumpage:

1: wellAttributes ; S(1, well.pumpageCapacity/5, 1)

4.2.3. Geometric Placement Rules (GPR)

Scope rules: Similar to L-systems we use scope rules to
transform the scope of a shape. T (tx, ty, tz) translates the
scope position, Rx(angle), Ry(angle) and Rz(angle) rotate
the coordinate system, and S(sx,sy,sz) scales the scope. We
use ‘[’ and ‘]’ to push and pop the current scope on a stack.
Any non-terminal symbol will be created with the current
scope. Similarly, the command I(ob jId) adds an instance of
a geometric primitive with identifier ob jId within the current
scope. Typical objects include cubes, spheres and cylinders,
but any geometric model can be used. The example below
illustrates the design of a simple glyph, similar to the one
depicted in figure 1 right:

1: A ; [T(0,0,0) S(1,1,1) I("cube")]
[T(0,1,0) S(0.75,0.25,0.75) I("cube")]
[T(0,2,0) S(0.75,0.75,0.75) I("sphere")]

Intersection Queries: The CGA Shape grammar de-
scribes rules for translation, rotation, and scaling of its

Figure 4: Glyph Separation example. The garage (shown in

blue) is moved along the X-axis so that it does not overlap

with the house (shown in orange).

symbols. We extend this concept by introducing the rule
HeightFieldIntersect that provides georeferencing for geom-
etry placement. The HeightFieldIntersect command is a
generic intersection command for calculating intersections
between a 2D map point (specified by the x and y coordi-
nates) and a 2.5D or 3D reference shape such as a height
field or an isosurface, as shown in figure 3. The syntax for
HeightFieldIntersect is

HeightFieldIntersect(x, y, ob jID)

where x and y are the x and y coordinates of the intersection,
and ob jID is the id (a string) of the of the shape with which
we wish to intersect. For example, given the well locations in
2D, and the underlying terrain layer denoted by the identifier
“Phoenix_terrain”. The rule to place a well on this terrain
is defined as:

1: well ; [T(well.x, well.y, HeightFieldIntersect(well.x, well.y,
(′′Phoenix_terrain′′)) wellAppearance]

Glyph Separation: We employ explicit glyph separation
rules to handle overlapping shapes. Collisions are detected
by comparing the bounding box of an incoming shape with
shapes in the current derivation. The Separate command de-
termines a vector to resolve collisions between the current
scope and the scopes of other shapes in the derivation. It has
syntax:

Separate(B, direction, offset)

where B is the shape we are comparing against, direction is
the direction in which to resolve the collision, and offset is
the desired separation distance. For example, the rule

1: garage ; T(Separate(house, (1,0,0), 10))

will move the symbol garage along the X-axis such that
it does not occlude the house geometry (see figure 4) and
lies 10 units away from its bounding box. Note that this
does not cause a cascade of collision detection checks since
each collision check must be explicitly mentioned in a rule.
While this method does not account for all possible colli-
sions, it provides a useful, fast and predictable way to re-
solve many overlaps. A more comprehensive collision de-
tection scheme remains an area for future work; however,
automatic layout with full collision resolution is known to
be NP-complete [ECMS97].

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

4.2.4. Visual Descriptor Rules (VDR)

Color and texture: The “Color” command changes
the color associated with a shape. Color is also
used to apply a texture to a shape. For example,
Color(RGB(1,0,0)) sets the color of the current scope
to red, and Color(texture “image. jpg′′) assigns the file
“image. jpg” as a texture to the current scope. Colors can
also be specified in other ways. Key words exist in the gram-
mar for common colors such as WHIT E and BLACK, and
colors can be indexed through attribute maps, as described
in section 4.2.2. In the future we would like to add other vi-
sual attributes to our system, such as glows for highlighting
glyphs, animated textures, and various NPR shading styles.

At this point, we have enough rules to give a slightly larger
example. The following rules create cylindrical glyphs for
elements of the well table from the database:

1: well ; [T(well.x, well.y, HeightFieldIntersect(well.x, well.y,
(“Phoenix_terrain”)) wellAppearance]

2: wellAppearance ; Color(ColorByWellType(
well.wellType)) wellAttributes

3: wellAttributes ; S(10, well.pumpageCapacity, 10)
I(“cylinder.ob j”)

The glyphs are placed above the terrain (rule 1), colored
by their type (rule 2), and scaled according to pumpage ca-
pacity (rule 3). Figure 5 shows the result of applying these
three rules.

Figure 5: The wells shown as cylinders scaled according to

pumpage.

4.2.5. General Rules

Repeat command: The Repeat command applies a deriva-
tion multiple times (similar to a “for” loop). The built-in
variable “!index” defines the iteration number either as a
range or as an absolute value (by convention the prefix “!”
identifies internal variables):

A ; Repeat(min_index, max_index, B)

A ; Repeat(repeat_count, B)

2002

2006

Figure 6: Repeat command example showing a stacked

glyph at the well location.

where A and B are non-terminals. The Repeat command is
useful to model time varying attributes of a geo-spatial loca-
tion. For example, the variation in the annual pumpage for a
well from 2002 to 2006, might be modeled using the rule:

1: pumpageValues ; Repeat(“2002”, “2006”,
pumpagePerMonth)

2: pumpagePerMonth ; [T(well.x, well.y * 2.5 * !index,
well.z) pumpageAppearance]

3: pumpageAppearance ; Color(
ColorFromPumpage(well.monthly_pumpage[!index]))
pumpageAttributes

4: pumpageAttributes ; S(1,1,1) I(“sphere.obj”)

The rules above generate a “stack” of spheres at the well
location (see figure 6) that show the annual pumpage values
as colors.

Interaction Commands: The interaction commands de-
fine user interactivity with the generated model. They allow
the grammar to set up hooks for processing user-interface
events like mouse button clicks, key presses, etc. The deriva-
tion of the specified non-terminal defines the system’s re-
sponse to the interaction, and the derivation is deferred until
the event occurs. For example, the rule

1: well ; OnLe f tClick(DisplayMetadata(well))

calls the user defined routine DisplayMetadata that displays
information about the well, once the user has clicked on it.

5. Visualization Examples

We chose three instances of real-world GIS problems from
related research projects to test our system. For each we
structure the description in three parts. First, we give a brief
explanation of the problem domain. Second, we explain the
visualization concepts employed for our solution. Third, we
show how the solution can be modeled with our grammar
rules.

Each of the examples demonstrates the ability of our
framework to work with different kinds of GIS data. The
first example processes 2D point data on a terrain (well lo-
cations), the second works with area features (parcels and
lots), and the third example demonstrates visualization of
time-varying data over a geospatial domain.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

(a) (b) (c) (d)

Figure 7: Step-by-step derivation of the glyphs as produced by the rules in Figure 11. (a) Create stem on well site based on well

depth (rule 11). (b) Add cylinders to indicate pumpage (rule 12). (c,d) Add disks to indicate intersections with alluvial layers

(rules 13-16).

Figure 8: (Left) Overview of the wells. (Right) A close-up 3D view of the well glyphs. The glyphs display the well depth as

height above the terrain, pumpage as the volume of a cylinder, and alluvial layers intersected by the well as disks above the

pumpage cylinder.

5.1. Example 1: Hydrological Data

Problem Statement: The first example stems from an un-
derground water management project in the greater Phoenix
area. There are three distinct alluvial layers in which under-
ground water is stored. Water is pumped via wells of dif-
ferent bore depth and pumpage capacity. Water management
is typically concerned with maintaining and monitoring the
water quality and levels in the three layers.

Uncontrolled pumping from localized regions in the
aquifer can lead to land subsidence and have an adverse ef-
fect on the water quality, and structural stability of physi-
cal landmarks on the surface. Hence pumpage must be con-
trolled carefully. The goal of our visualization is to provide
water managers with a tool to analyze both local and global
water supplies and the effect of pumping over time.

Visualization Solution: The challenge in this context is
to visualize the wells and their attributes together with the
alluvial layers and the terrain. A water manager needs to vi-

sually cluster the well data and detect negative impacts of
pumpage to the water surface, both in terms of water depth
and the gradient of the water surface at a well location. We
construct three-dimensional glyphs to better visualize the in-
volved surfaces, the well depth and the spatial relationships.
The data used in this example consists of a layer of well data
that includes (1) the well locations, (2) pumping capacity per
well, (3) well types, and (4) the alluvial layers intersected by
each of the wells. The alluvial layers themselves are avail-
able as height fields. The surrounding terrain is displayed as
a height field with ground texture.

The fairly high number of wells leads to a cluttered vi-
sualization. Therefore, we employ selection strategies to
represent only wells of interest as detailed glyphs while
other wells are modeled as simple cylinders. In the exam-
ple, we model wells with pumpage values lower than 1000,
or greater than 40,000 gallons per day as detailed glyphs.
The glyphs show the pumpage, bore depth and alluvial lay-
ers from which the wells pump in an easily vieiwable form.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

Figure 9: Left: House glyphs visualization overview. Right: A closeup view that shows the houses in a neighborhood.

Figure 7 shows the step-by-step derivation of the detailed
well glyphs for this visualization. Figure 8 give screen shots
of the complete visualization.

Grammar Description: Figure 11 shows the grammar
rules used by our system to to create the well visualiza-
tion example, along with descriptions of the rules. Much of
the power of our system lies in its ability to blend database
queries with grammatical derivations in arbitrary ways. This
makes our technique more flexible than methods that only
provide a few fixed mappings between database tables and
the visual and geometric attributes of a visualization.

5.2. Example 2: Home Browsing

Problem Statement: This example is inspired by the
HomeFinder [WS99] application and quality-of-life in-
dices [BS81,Rog99]. The HomeFinder allowed novice users
to make database queries based on data that could be rele-
vant to purchasing a house, but provided only a simple vi-
sual representation of the query results. In this example, we
attempt to give a richer visualization of real estate data than
was provided by HomeFinder, incorporating quality-of-life
indices as well as assessor’s data for individual house lots.
The main problem in visualizing such data lies in the fact
that the metadata comes from disparate sources and needs to
be combined in a meaningful fashion to enable the user to
explore the data visually. We are not just looking for overall
data trends. Rather, we want a user to be able to see the data
and geographic context for the individual households within
a neighborhood to help assess the suitability of a particular
house for a potential buyer.

Visualization Solution: The challenge of this visualiza-
tion is conveying attribute data, while placing them in a
three-dimensional geo-spatial context. The proposed solu-
tion gives a good estimation of certain attributes from an
overview, while allowing details to be seen in a view from
near ground level (see figure 9). Thus it is possible to cou-
ple inherently three-dimensional aspects, such as building

sizes, street width, and view of the mountains together with
attribute data. The data used in this example is a mix of cen-
sus data, assessor’s data, and output of an agent-based urban
simulation.

Grammar Description: Starting with a parcel, our detail
view recursively generates glyphs for each contained lot. We
map the following variables per lot: annual income, number
of cars in the household, area of pool (if present), the im-
proved fixed cash value of the lot and change in the improved
fixed cash value over the previous year.

5.3. Example 3: Traffic Data for City of Tempe, AZ

Problem Statement: Traffic forecasting and accident anal-
ysis are two important processes in city development. Tra-
ditionally, cities publish annual accident reports, and these
data are taken into account when planning new roads. Con-
struction projects also contribute to this decision making
process. Traditional means of interpreting such data involve
deriving correlations between different data sources. Al-
though tools exist to overlay the data in map views, pro-
viding extra information like traffic flow, presence of traffic
lights etc. can be quite cumbersome. Our modeling frame-
work can build ‘scenarios’ based on actual measured and
simulated data.

Visualization Solution: Our model consists of two parts,
(a) the static geometry and (b) the dynamic metadata which
varies over time. We base our glyphs on the space-time path
as described by Tominski et. al. [TSWS05] (Figure 10). The
spheres at every intersection denote the accidents per month.

The second step in the visualization involves calculating
the intersections given some geographical constraint (the so-
called map focus+context [FS04]). For instance, we are in-
terested in locating all the intersections within the city of
Tempe. At every intersection, we also place a “cross” sym-
bol that shows the traffic congestion at that intersection vi-
sually. The symbol is scaled proportional to the congestion,

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

Figure 10: An example of integrating static and dynamic data for traffic analysis. Data is visualized at the intersections within

a given geospatial extent (in this case, city of Tempe, AZ).

and it is colored with one of the three color values (Red, Yel-
low or Green) depending on the traffic congestion. Because
of space constraints, we have not included the grammar rules
for this example, but figure 10 shows screen shots of the vi-
sualization.

6. Discussion

Implementation: Our grammar engine is implemented in
C++. We collected GIS data as shape files containing the
geometry and associated metadata (as columns) from vari-
ous projects using ArcGIS software. The GIS data are stored
in a PostgreSQL database server and we use the PostGIS
interface for communication. We use the OpenSceneGraph
library as our rendering engine.

We have chosen to write a stand-alone prototype of our
system, but an existing scripting language like Python or Vi-
sual BASIC could also be used as an underlying layer for our
grammar framework. These scripting languages do not sup-
ply geospatial commands by default, and would therefore
need to be extended with an implementation of our frame-
work that supplies the special functionality of scope con-
trol, glyph generation and remote querying to a geo-spatial
database.

Derivation Times: Table 1 shows the derivation time and
polygon count for each of our examples. The timings were
averaged over 15 runs of each example. While not real-time,
these derivation times are fast enough to allow for iterative
refinement of the grammar rules during visualization author-
ing.

Scripting vs. GUI interfaces: We believe that our model-
ing framework is a good fit for geo-spatial data exploration.
While our system requires grammar specifications, this level
of computer knowledge is required from most practitioners

Example Polygon Model generation
count time (secs)

Wells 2,024,342 8.4
Home Browsing 15,785,645 98.5

Roads 146,850 56

Table 1: Derivation times for the examples. The second col-

umn shows the polygons generated in the modeling process,

and the third column shows the CPU time (in seconds) taken

by the engine to generate the scene. The timings are an av-

erage of 15 runs of each example.

in geographic information systems (scripting is part of all
major GIS systems and is required even for introductory GIS
courses). Once a user becomes familiar with the scripting
language, complex visualizations can be quickly created for
a wide variety of projects. At the same time, some parts of
the visualization authoring, in particular glyph design, could
be aided by a GUI rule editor similar to the one described
in [LWW08].

7. Conclusion

This paper proposes a new method for procedural modeling
geo-spatial visualizations. We employ shape grammars that
can produce detailed visual models using similar concepts
from the CGA Shape grammar of Müller et. al. [MWH∗06].
However, our system solves a different problem than the cre-
ation of visually plausible city model. Instead, we model the
visualization of abstract metadata over a geospatial domain.

In general, a procedural modeling system has to be
adapted to the problem at hand. Therefore, we adopted some
of the basic ideas from previous work, such as the turtle
style commands, but also added commands to access geo-

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

Rule Description
layer terrain Define the layers in the visualization
layer waterSurface (terrain, waterSurface, well).
layer well
axiom: S Define the axiom of the grammar.
table well Specifies “well” as a table in the GIS database. The

non-terminal “well” initiates a database query.
PRIORITY 1 // Create Visualization Layers

1: S ; [terrain][waterSurface][well] Derivation of the scene layers from the axiom.
2: terrain ; I(′′terrain.ob j′′) Load the terrain object.
3: waterSurface ; waterSurfaces Load the water surface objects.
4: well : (well.pumpage < 1000 OR well.pumpage > 40000) ; Rules 4 and 5 are processed for every record of the

OnLe f tClick(metaData) detailedGlyph “well” table from the database. Rule 4 creates detailed
5: well : default ; OnLe f tClick(metaData) overviewGlyph glyphs for wells with pumpage between 1000 and

40000. Rule 5 creates simple glyphs for other wells.
PRIORITY 2 // Load the water surface objects

6: waterSurfaces ; [waterSurf1] [waterSurf2] [waterSurf3]
7: waterSurf1 ; I(′′water_sur f ace1.ob j′′) Load the individual water surfaces.
8: waterSurf2 ; I(′′water_sur f ace2.ob j′′)

9: waterSurf3 ; I(′′water_sur f ace3.ob j′′)

PRIORITY 3 // Create Overview Glyph
10: overviewGlyph ; T(well.x, well.y, HeightFieldIntersect places each well on

HeightFieldIntersect(well.x, well.y, ′′terrain′′)) the correct z-value on the terrain.
Color(RGB(ColorByWellType(well.category))) Color the well according to its type.
S(50.0, 50.0, well.pumpage) I(′′cylinder.ob j′′) Create a cylinder at the well location

scaled by 50 units in x and y

and by the annual pumpage value in z.
PRIORITY 4 // Begin Detailed Glyph

11: detailedGlyph ; T(well.x, well.y, Begin derivation of the detailed glyph.
HeightFieldIntersect(well.x, well.y, ′′terrain′′)) Translate the glyph to the well location.
Color(RGB(ColorByWellType(well.category))) Apply color based on the well type.
S(50, 50, 10.0 * well.depthInMeters,) Scale the well cylinder in z in proportion
I(′′cylinder.ob j′′) level1 to its depth below the surface.

PRIORITY 5 // Detailed Glyph: Add Cylinder Based On Pumpage Value Rule 12 places another cylinder on top.
12: level1 ; T(0, 0, 1.0) Move (the scope) to the top of the well cylinder.

Color(RGB(127, 127, 127))

S(60.0, 60.0, well.pumpage) I(′′cylinder.ob j′′) level2 Create a cylinder scaled proportional to
level3 level4 the pumpage value

PRIORITY 6 // Detailed Glyph: Add Cylinders for Water Surface Intersections.
13: level2 :HeightFieldIntersect(well.x, well.y, ′′waterSur f 1′′) != NULL ; Rules 13-15 create a stack of scaled

RGB(28,50,69) topCylinder cylinders based on what water surface the
14: level3 :HeightFieldIntersect(well.x, well.y, ′′waterSur f 2′′) != NULL ; well intersects. The rules are executed serially,

RGB(65,117,162) topCylinder and the successor symbols are derived if
15: level4 :HeightFieldIntersect(well.x, well.y, ′′waterSur f 3′′) != NULL ; the condition is true.

RGB(103,187,255) topCylinder.

PRIORITY 7 Add a Scaled Cylinder on top
16: topCylinder ; T(0.0, 0.0, 1.0) S(0.8, 0.8, 1.0) I(′′cylinder.ob j′′)

PRIORITY 8 // Display Metadata on Click
17: metaData ; DisplayMetaDataForOb ject(well) Rule processed whenever the user clicks on a well.

Figure 11: Rules for modeling glyphs for visualization of hydrological data for the Phoenix Metropolitan Area.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

spatial information, perform intersection queries, resolve
glyph collision, and map abstract attributes to geometric en-
tities. These new modeling commands and their application
are the main contribution of this paper. We incorporated con-
cepts from visualization and demonstrated that our modeling
framework is capable of integrating several existing informa-
tion visualization concepts, including information stacking,
focus and context, level-of-detail, and temporal animation
of attribute data. The result is a method that provides visual-
ization designers with a tool set to define and extend visual
representations of abstract attributes over a geo-spatial do-
main.

Our framework is flexible enough to be implemented on
top of an existing scripting language like Python or Visual-
BASIC. This will allow domain scientists who are familiar
with the existing languages to incorporate functionality pro-
vided by our toolkit into their existing applications seam-
lessly.

In the future, we would like to further test the effective-
ness of our shape grammars with participation from domain
scientists. We are also interested in expanding our solution
to other GIS related problems such as the dynamic place-
ment of labels on maps [BDY06, AHS05] and clustering al-
gorithms for geo-spatial visualizations [Ray99].

References

[AHS05] ALI K., HARTMANN K., STROTHOTTE T.: La-
bel layout for interactive 3D illustrations. Journal of the

WSCG 13 (January 2005).

[BDY06] BEEN K., DAICHES E., YAP C.: Dynamic map
labeling. IEEE Transactions on Visualization and Com-

puter Graphics 12, 5 (2006), 773–780.

[BS81] BOYER R., SAVAGEAU D.: Places Rated Al-

manac: Your Guide to Finding the Best Places to live in

America. Rand McNally, Chicago, 1981.

[CMS99] CARD S., MACKINLAY J. D., SCHNEIDER-
MANN B.: Readings in Information Visualization: Us-

ing Vision To Think. Morgan Kaufmann Series in Inter-
active Technologies. Morgan Kauffmann Publishers, Inc.,
San Francisco, CA, 1999.

[DF81] DOWNING F., FLEMMING U.: The bungalows of
buffalo. Environment and Planning B 8 (1981), 269–293.

[DMK05] DYKES J., MACEACHREN A. M., KRAAK

M.-J.: Exploring Geovisualization. International Carto-
graphic Association. Elsevier Science, February 2005.

[DRC∗99] DAVID E., RANDALL R., CHRISTOPHER S.,
PRADYUT P., JAMES K., D. R.: Procedural shape gen-
eration for multi-dimensional data visualization. In Data

Visualization (Berlin, 1999), Springer-Verlag, pp. 3–12.

[Dua02] DUARTE J.: Malagueira Grammar – towards

a tool for customizing Alvaro Siza’s mass houses at

table lot
Axiom: parcel

PRIORITY 1: // Create Lots

1: parcel ; [lot]

PRIORITY 2: // Move To Lot Location Above Terrain

2: lot ; T(lot.centroid.x, lot.centroid.y,
HeightFieldIntersect(lot.centroid.x , lot.centroid.y, ′′terrain′′))

lotAppearance

PRIORITY 3: // Place Lot Boundary

3: lotAppearance ; Color(RGB(0.42, 0.21, 0.05))
S(0.75, 0.75, 1.0) I(lot.boundary)

massModel

4: massModel: lot.puc == ‘SFR’ ; houseModel
[cars] [pool] [cashValue] [priceFlag]

5: massModel: lot.puc == ‘APT’ ; aptModel

6: houseModel: lot.income > 120000.0 ; I(′′house_big.ob j′′)

7: houseModel: de f ault ; I(′′house_small.ob j′′)

8: aptModel: ; I(′′apt_model.ob j′′)

PRIORITY 4: // Cars

9: cars: lot.delta_x > lot.delta_y ; T(6.0, -5.0, 0.0) carPlacement

10: cars: de f ault ; T(2.5, -10.0, 0.0) carPlacement

11: carPlacement ; [Repeat(1,numberO fCars, carModel)]

12: carModel ; T(Separate(lot, (1,0,0)))

I(CAR[RAND(1,5)])

PRIORITY 5: // Pool

13: pool:lot.pool == true ; S(2, lot.poolArea, 2)

T(Separate(lot,(1,1,0)))

Color(RGB(0.219, 0.863, 0.921))

I(′′cylinder.ob j′′)

PRIORITY 6: // Cash Value Glyphs

14: cashValue ; T(lot.deltax * 0.25, lot.deltay * 0.25, 0.0)

[Repeat(1, getCountFromFCV (lot. f cv), cashValueGlyph)]

15: cashValueGlyph ; S(scale_values[!index] * 1.5) T(0,0,-2)

Color(RGB(0.145, 0.337, 0.0901)) I(′′cone.ob j′′)

PRIORITY 7: // Change in FCV over previous year

16: priceFlag ; T(-lot.deltax*0.25, lot.deltay*0.25, 0)

I(′′ f lag_base.ob j′′) flag

17: flag ; (changeFactor = (lot. f cv-lot.prev_ f cv)/lot.prev_ f cv)
T(0.0, getHeightFromRange(-1,1, changeFactor) , 0.0)

Color(RGB(Gradient(RED, GREEN, changeFactor)))

I(′′ f lag.ob j′′)

Figure 12: Grammar rules for the Home Browser example.

Malagueira. PhD thesis, MIT School of Architecture and
Planning, 2002.

[ECMS97] EDMONDSON S., CHRISTENSEN J., MARKS

J., SHIEBER S.: A general cartographic labeling algo-
rithm. Cartographica 33, 4 (1997), 13–23.

[Fek04] FEKETE J.-D.: The infovis toolkit. infovis 00

(2004), 167–174.

[FS04] FUCHS G., SCHUMANN H.: Visualizing abstract

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

P. Karnick & S. Jeschke & D. Cline & A. Razdan & E. Wentz & P.Wonka / A Shape Grammar for Developing Glyph-based Visualizations

data on maps. In Eighth International Conference on In-

formation Visualization (July 2004), pp. 139 – 144.

[Gah05] GAHEGAN M.: Beyond Tools: Visual Support for

the Entire Process of GIScience. Elsevier Science, on
behalf of International Cartographic Association, 2005,
ch. 4, pp. 83 – 99.

[HC05] HAIST J., COORS V.: The W3DS-interface of
Cityserver3D. In Next Generation 3D City Models.

Workshop Papers : Participant’s Edition (2005), Kolbe
G., (Ed.), European Spatial Data Research (EuroSDR),
pp. 63–67.

[HCL05] HEER J., CARD S. K., LANDAY J. A.: Prefuse:
a toolkit for interactive information visualization. In
CHI ’05: Proceedings of the SIGCHI conference on Hu-

man factors in computing systems (New York, NY, USA,
2005), ACM Press, pp. 421–430.

[KG03] KOLBE T. H., GRÖGER G.: Towards unified 3D
city models. In Proceedings of the ISPRS Comm. IV Joint

Workshop on Challenges in Geospatial Analysis, Integra-

tion and Visualization II (Stuttgart, September 2003).

[KNPS03] KEIM D. A., NORTH S. C., PANSE C.,
SCHNEIDEWIND J.: Visualizing geographic information:
Visualpoints vs Cartodraw. Information Visualization 2,
1 (2003), 58–67.

[KW04] KAPLER T., WRIGHT W.: Geotime information
visualization. In Proc. of the IEEE Symposium on In-

formation Visualization (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 25–32.

[LRB∗97] LIVNY M., RAMAKRISHNAN R., BEYER K.,
CHEN G., DONJERKOVIC D., LAWANDE S., MYLLY-
MAKI J., WENGER K.: Devise: integrated querying and
visual exploration of large datasets. In Proc. of the 1997

ACM SIGMOD (1997), ACM Press, pp. 301–312.

[LWW08] LIPP M., WONKA P., WIMMER M.: Interac-
tive visual editing of grammars for procedural architec-
ture. ACM Transactions on Graphics 27, 3 (2008).

[Mac86] MACKINLAY J.: Automating the design of
graphical presentations of relational information. ACM

Trans. Graph. 5, 2 (1986), 110–141.

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., UL-
MER A., GOOL L. V.: Procedural modeling of buildings.
ACM Trans. Graph. 25, 3 (2006), 614–623.

[PJM94] PRUSINKIEWICZ P., JAMES M., MĚCH R.: Syn-
thetic topiary. In Proceedings of ACM SIGGRAPH 94

(July 1994), Glassner A., (Ed.), ACM Press, pp. 351–358.

[PL91] PRUSINKIEWICZ P., LINDENMAYER A.: The Al-

gorithmic Beauty of Plants. Springer Verlag, 1991.

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural mod-
eling of cities. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and in-

teractive techniques (New York, NY, USA, 2001), ACM
Press, pp. 301–308.

[RAEM94] RIBARSKY W., AYERS E., EBLE J.,
MUKHERJEA S.: Glyphmaker: Creating customized
visualizations of complex data. Computer 27, 7 (1994),
57–64.

[Ray99] RAYSON J. K.: Aggregate towers: Scale sensitive
visualization and decluttering of geospatial data. In Proc.

of the 1999 IEEE Symposium on Information Visualiza-

tion (1999), IEEE Computer Society, p. 92.

[RDL98] RANDALL R., DAVID E., L. S. J.: The shape of
shakesphere: Visualizing text using implicit surfaces. In
IEEE Symposium on Information Visualization (October
1998), IEEE Computer Society Press, pp. 121–129.

[Rog99] ROGERSON R. J.: Quality of life and city com-
petitiveness. Urban Studies 36, 5-6 (1999), 969–985.

[SHB∗99] SHAW C. D., HALL J. A., BLAHUT C.,
EBERT D. S., ROBERTS D. A.: Using shape to visualize
multivariate data. In Eighth ACM International Confer-

ence on Information and Knowledge Management (New
York, NY, USA, 1999), ACM Press, pp. 17–20.

[Sti75] STINY G.: Pictorial and Formal Aspects of Shape

and Shape Grammars. Birkhauser Verlag, Basel, 1975.

[Sti80] STINY G.: Introduction to shape and shape gram-
mars. Environment and Planning B 7 (1980), 343–361.

[TG02] TAKATSUKA M., GAHEGAN M.: Geovista stu-
dio: A codeless visual programming environment for geo-
scientific data analysis and visualization. Comput. Geosci.

28, 10 (2002), 1131–1144.

[TSWS05] TOMINSKI C., SCHULZE-WOLLGAST P.,
SCHUMANN H.: 3D information visualization for time
dependent data on maps. In Proc. of 9th International

Conf. on Information Visualization (2005), pp. 175– 181.

[Wea04] WEAVER C.: Building highly-coordinated visu-
alizations in Improvise. infovis 00 (2004), 159–166.

[WKD∗05] WOOD J., KIRSCHENBAUER S., DÖLLNER

J., LOPES A., BODUM L.: Using 3D in Visualization.
Elsevier Science, 2005, ch. 14, pp. 295 – 312.

[Woo05] WOOD J.: Multim im parvo - Many Things in

a Small Place. Elsevier Science, 2005, ch. 15, pp. 313 –
324.

[WS99] WILLIAMSON C., SHNEIDERMAN B.: The dy-
namic homefinder: evaluating dynamic queries in a real-
estate information exploration system. 125–139.

[WWSR03] WONKA P., WIMMER M., SILLION F., RIB-
ARSKY W.: Instant architecture. ACM Transactions on

Graphics 22, 3 (2003), 669–677.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

