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Figure 1: This figure shows the three steps of our pipeline. The input water map is based on a stretch of the Benue River in Nigeria. Left:
Starting from topographical water and park maps, the user designs a tensor field. Middle: The tensor field and further editing operations are
used to generate a road network. Right: Three-dimensional geometry is created.

Abstract

This paper addresses the problem of interactively modeling large
street networks. We introduce an intuitive and flexible modeling
framework in which a user can create a street network from scratch
or modify an existing street network. This is achieved through
designing an underlying tensor field and editing the graph repre-
senting the street network. The framework is intuitive because it
uses tensor fields to guide the generation of a street network. The
framework is flexible because it allows the user to combine var-
ious global and local modeling operations such as brush strokes,
smoothing, constraints, noise and rotation fields. Our results will
show street networks and three-dimensional urban geometry of high
visual quality.
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1 Introduction

This paper presents a solution to efficiently model the street net-
works of large urban areas. The creation of compelling models is a
crucial task in the entertainment industry, various training applica-
tions, and urban planning. However, modeling the details of large
three-dimensional urban environments is very time consuming and
can require several man years worth of labor. A powerful solu-
tion to large-scale urban modeling is the use of procedural tech-
niques [Parish and Müller 2001; Wonka et al. 2003; Müller et al.
2006].

Parish and Müller [2001] are the first to note that the street network
is the key to creating a large urban model, and they present a so-
lution to model street networks based on L-systems [Prusinkiewicz
and Lindenmayer 1991]. Starting from a single street segment they
procedurally add more segments to grow a complete street network,
similar to growing a tree [Prusinkiewicz et al. 2003]. While this
algorithm creates a high quality solution, there remains a signifi-
cant challenge: the method does not allow extensive user-control of
the outcome to be easily integrated into a production environment.
While the user can use a traditional modeling tool to move the ver-
tices in the procedurally generated graph, the graph often requires
a significant amount of editing in order to match user expectations.
When this happens, the user will need to regenerate the complete
environment but the results are not guaranteed to be more desirable.

To address this limitation of a purely procedural approach, we pro-
vide an alternative to street modeling that supports the integration
of a wide variety of user inputs. The key idea of this paper is to use
tensor fields to guide the generation of street networks.

An important aspect of street patterns is the existence of two dom-
inant directions due to the need for efficient use of space. Inter-
estingly, tensor fields give rise to two sets of hyperstreamlines (de-
fined in Section 4): one follows the major eigenvector field, and
the other the minor eigenvector field. These observations have in-
spired our approach in which interactive tensor field design tech-
niques are used to guide the road network generation. This concept



is illustrated in Figures 1 and 3. The user can interactively edit a
street network by either modifying the underlying tensor field or by
changing the graph representing the street network. This allows for
efficient modeling because we can combine global and local mod-
eling operations, constraints, and procedural methods.

Major Contributions of this paper are:

• Insight: We realize the connection between tensor fields and
street graphs.

• Pattern Analysis: We analyze street patterns and derive suit-
able modeling operations on tensor fields and graphs.

• Modeling Pipeline: We arrange these modeling operations
into a consistent framework (pipeline) that allows us to pro-
duce high quality results.

• Technical Novelties: We effectively integrate existing tech-
niques for graph and tensor field editing into our framework.
In addition, we make several new technical contributions to
tensor field design and graph editing that include a novel brush
interface, the use of rotation fields to modify tensor fields,
hierarchical segmentation and editing of tensor fields, tensor
field computation from boundaries, the ability to handle ten-
sor field discontinuities, an improved hyperstreamline tracing
algorithm, and a hybrid algorithm to modify graphs using ten-
sor fields.

Paper Structure: After reviewing related work in Section 2, we
provide a system overview in Section 3 and briefly review relevant
background on tensor fields in Section 4. The two major parts of
our system are tensor field generation (Section 5) and street graph
generation (Section 6) We show results in Section 7 and discuss our
system and possible future work in Section 8.

2 Related Work

In this paper we focus on the modeling of street networks which
we augment with the generation of three-dimensional street geom-
etry. To obtain a complete urban environment our system can be
complemented with shape grammars [Wonka et al. 2003; Müller
et al. 2006] for architecture. In the following, we review literature
describing road construction and graph modeling algorithms.

Road Construction: Information about the geometry of road con-
struction can be found in literature from civil engineering. We rec-
ommend the text [AASHTO 2004] as a comprehensive overview.
Other useful resources are the Highway Capacity Manual [Board
2000] and the textbook by Mannering et al. [2005]. Street graphs
present a fascinating modeling challenge, because they exhibit a
mixture of fairly regular and organic patterns. Some more high level
ideas are presented in other books related to urban design [Punter
1999; Alexander et al. 1977; Hillier 1996; Hillier 1998; Gingroz
et al. 2004]. However, the most informative resources are internet
based map services, as we try to match street patterns and do not
attempt to simulate their formation.

Graph Generation: The most successful algorithm for street mod-
eling to date is presented by Parish and Müller [2001], who extend
L-systems to grow street segments like branches in a tree until they
intersect an existing street segment. L-systems have been very suc-
cessfully applied to plant modeling [Prusinkiewicz and Linden-
mayer 1991; Prusinkiewicz et al. 1994; Měch and Prusinkiewicz
1996; Prusinkiewicz et al. 2001] and provide an inspiration for
many graph layout problems.

We have also been inspired by approaches to model ice ray lattice
design [Stiny 1977], mortar in brick layouts [Legakis et al. 2001],
diffusion limited aggregation [Witten and Sander 1981], and cracks
in Batik renderings [Wyvill et al. 2004]. However, the similarities

of their appearances to street layouts are rather remote. A very in-
teresting class of layout algorithms uses Voronoi Diagrams [Berg
et al. 2000] of (randomly) distributed points. This idea is extended
to generate textures [Worley 1996], mosaics [Hausner 2001], frac-
ture patterns [Shirriff 1993; Mould 2005], and even some street
patterns [Sun et al. 2002; Glass et al. 2006]. Jigsaw image mo-
saics [Kim and Pellacini 2002] are another interesting extension
to layout arbitrary shapes. Another powerful graph generation al-
gorithm is proposed in the context of modeling leaf venation pat-
terns [Runions et al. 2005]. Recently, an interesting extension of
graph layout appeared in the work of image-based maze construc-
tion [Xu and Kaplan 2007], in which a directional maze is con-
structed by computing two perpendicular families of streamlines
according to a vector field derived from region boundaries and user
specified curves. While some of these algorithms can match one
specific street pattern that looks like mud cracks, we propose a sys-
tem that allows a wider range of more frequent street layouts. Ad-
ditionally, we focus on user control and editing operations.

3 Pipeline Overview

In this section, we give an overview of our modeling pipeline. The
input to our system includes four maps loaded as images: 1) a bi-
nary valued water map W , 2) a binary valued park and forest map
F , 3) a height map H, and 4) a population density map P. Each of
these is a discrete function of f : [−X ,X ]× [−Y,Y ] → [0,1] defined
on a grid (512×512 in our implementation). Our system employs
a three-stage pipeline (Figure 2).
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Figure 2: The modeling pipeline.

Stage One allows the user to produce a tensor field using a range of
design operations, such as combining individual basis fields, com-
puting tensor fields from boundaries, using a brush stroke interface,
and rotating the field with noise. These tools allow the user to it-
eratively refine the design (Section 5). During editing, the user can
manipulatea tensor field T and three rotation fields R1, R2, and R3
which we use to rotate the eigenvector directions. The computa-
tional domain is a regular 2D grid D with the values of the afore-
mentioned field stored at the vertices. Bilinear interpolation is used
to obtain values inside the cells of D. These data structures are also
the input to the next stage.

Stage Two is the street graph generation step. Streets are computed
as hyperstreamlines (Section 4) of the tensor field. In Section 6 we
explain how to generate the street network, edit it, and modify exist-
ing street networks using a combination of graph-based and tensor
field editing. Street networks are modeled using a hierarchy: major
roads and minor roads. Major roads are typically major business
roads and local highways, and minor roads are usually residential
and back roads. A street network is stored as a graph G = (V,E)
where V is a set of nodes and E is a set of edges. Nodes with three
or more incident edges are crossings. Road attributes, such as road
width, road type, pavement markings, and the type of lanes, are
stored at nodes and edges.

Stage Three is a geometry generation module that creates three-
dimensional street and building geometry to obtain a complete city.
This is not the focus of our work; details can be found in [PROCE-
DURAL 2008].

To give an intuitive feeling for our system, we describe an example
editing scenario (see Figure 3). First the user loads a water map (1)
and places some tensor field design elements [Zhang et al. 2007]
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Figure 3: An example sequence of modeling steps in our system.

(2) that give rise to a major street network (3). Then the user refines
the initial major road layout by placing a new tensor field design
element inducing a radial structure in the tensor field (4) as well
as the street graph (5). Using our segmentation algorithm, the user
performs additional local tensor field modifications (6) and generate
a minor road network (7). The user uses a rotation noise field to
create irregular structures near the top (8) and produces the final
result (9). The visualization of tensor fields shown in this paper is
based on [van Wijk 2002; Zhang et al. 2007].

4 Tensor Field Background
In this paper, a tensor t refers to a 2× 2 symmetric and traceless

matrix, which is of the form R
(

cos 2θ sin2θ
sin2θ −cos2θ

)

where R ≥ 0

and θ ∈ [0,2π). The major eigenvectors of t are {λ
(

cosθ
sinθ

)

| λ 6=

0}, and the minor eigenvectors are {λ
(

cos(θ + π
2 )

sin(θ + π
2 )

)

| λ 6= 0}. The

major and minor eigenvectors are perpendicular to each other in this
setting.

A tensor field T is a continuous function that associates every point
p = (x,y) ∈ R

2 with a tensor T (p). p is said to be a degenerate
point if T (p) = 0, otherwise, it is regular. More theoretical details
can be found in [Delmarcelle and Hesselink 1994].

Another important and relevant concept is the hyperstreamline,
which describes curves that are tangent to an eigenvector field
everywhere along their paths. A hyperstreamline is either major
or minor depending on the type of the underlying eigenvector field.
Note that the major and minor eigenvectors of a tensor field are not
related to major and minor roads in a street network. For exam-
ple, the tensor field corresponding to the major street network has
its own major and minor hyperstreamlines. Hyperstreamlines have
been used previously to visualize tensor fields [Wilson and Brannon

2005], generate pen-and-ink sketches of smooth surfaces [Hertz-
mann and Zorin 2000; Zhang et al. 2007], and remesh 3D geom-
etry [Alliez et al. 2003; Marinov and Kobbelt 2004; Zhang et al.
2007].

5 Tensor Field Generation

In this section, we describe how to generate a tensor field in the
domain using our system. The approach is to edit tensor fields
by specifying constraints such as regular and radial patterns, brush
strokes, topography information, and rotation fields. While we bor-
row some vector and tensor field design techniques such as the use
of basis fields and field smoothing from previous work [Zhang et al.
2006; Zhang et al. 2007; Chen et al. 2007], we contribute the appli-
cation of the idea to street network modeling and introduce a novel
brush interface that facilitates the specification of user constraints,
the use of rotation fields to relax the orthogonality in a tensor field
network, the combination of noise and tensor field design, hierar-
chical segmentation and editing, automatic incorporation of water
and height maps in the generation of a tensor field, and the intro-
duction of discontinuities.

5.1 Generation of Basis Fields

The tensor field is generated based on user constraints (desirable
patterns) and topography information (water and park boundaries,
terrain height, etc). Near the city center, the user may wish to create
a typical North-South and East-West pattern. In contrast, near the
coastline, it is often natural to design the road network to follow
the coastline. To provide sufficient flexibility in addressing these
different and often competing needs, we seek a tensor field design
framework that allows both global and local control.

We allow the user to specify desired street network patterns (e.g.,
regular, radial, etc) at needed locations. Each of the specified con-
straints is converted into a basis tensor field defined over the whole
domain. These fields are then blended using decaying radial basis
functions, which allows desired patterns to be maintained at speci-
fied locations. To respect features in the topography maps, we also
generate basis tensor fields that respect the boundaries of features
such as the boundaries of rivers and lakes. Such basis tensor fields
can then be combined with user-specified basis fields, which will
respect both user constraints and natural boundaries. Next, we pro-
vide examples on how to compute the basis tensor fields based on
the input.

Grid: An important building block for most cities is the grid pat-
tern. Parcels are generated by two orthogonal sets of parallel roads.
A grid pattern can be defined by a regular element indicating the
direction of the major eigenvector field. See Figure 4 for a tensor
field guiding streets in a regular grid pattern. Given the direction

(ux,uy) defined at a point p0 we can compute l =
√

u2
x +u2

y and

θ = arctan(
uy
ux

) and define the following basis field (the constant
direction field) [Zhang et al. 2007]:

T (p) = l
(

cos2θ sin2θ
sin2θ −cos2θ

)

(1)

Radial: Radial patterns appear in different contexts. For example,
radial patterns occur at the minor level to access residential homes
(see Figure 5 right for a map section from Scottsdale, Arizona).
Other examples are roads around important monuments, such as the
Arc de Thriomphe in Paris. However, in these contexts the radial
patterns are more noisy. To create a radial pattern at p0 = (x0,y0)
we can use a center design element whose major hyperstreamlines
are circles and minor hyperstreamlines emanate from the center



Figure 4: Left: A tensor field encoding a regular grid. Middle:
The resulting street network. Right: A regular pattern found in
Brooklyn, New York.

point. The basis field of a center element (radial pattern) has the
following form [Zhang et al. 2007]:

T (p) =

(

y2 − x2 −2xy
−2xy −(y2 − x2)

)

(2)

where x = xp − x0 and y = yp − y0.

Figure 5: A procedurally generated radial pattern (middle) and its
tensor representation (left). The map shown in the right is a radial
pattern found in Scottsdale, Arizona.

Boundary Field: There are many examples of roads that are built
at the boundaries of natural or man-made structures. Examples are
roads next to the shoreline, such as California Highway One (see
Figure 6). Other examples are roads at the boundaries of parks and
roads surrounding population centers.

For example, we can extract boundary field from a water map.
Since the water map we use is pixel-based, we can extract the
boundary [Shapiro and Stockman 2001] of water in the map which
can be either open (oceans, or rivers) or closed (lakes). From the
boundary curves, we obtain a polyline approximation L, i.e., a curve
consisting of a number of connected line segments.

To obtain a smooth tensor field that respects the boundary curve, we
proceed as follows after obtaining the boundary polyline. For a line
segment AB ∈ L, we assign a regular element at point A determined
by Equation 1 whose major eigenvector is Ev =

−→
AB. The tensor field

is then the combination of all of these regular elements (Section
5.2). Automatically constructing design elements from the bound-
aries provides the user more freedom in creating desirable patterns
near the boundaries without losing the efficiency that comes with
design elements. Figure 6 illustrates a street network (right) that
was generated based on the coastline.

Heightfield: The natural elevation is an important constraint for
most road construction. We observe that roads are often built by
taking into account the gradient of the height field. To derive a
tensor field from a heightfield H(x,y), we compute the gradient
∇H =

(

∂H/∂x, ∂H/∂y
)

. We then use the tensor field T (x,y) =

R
(

cos2θ sin2θ
sin2θ −cos2θ

)

whose minor eigenvector field matches the

gradient of the heightfield everywhere, i.e. θ = arctan(
∂H/∂y
∂H/∂x )+ π

2

and R =
√

(∂H/∂x)2 +(∂H/∂y)2.

Figure 6: Left: A map showing California Highway One. Right:
A road network from a tensor field derived from the map boundary.
Note a major road follows the coastline.

5.2 Combination and Editing of Basis Fields

To obtain and modify a tensor field, we provide the following func-
tionalities.

Combination of Basis Fields: The system allows the user to create
and modify a tensor field by using design elements. A design ele-
ment corresponds to a user-specified tensor field pattern, such as a
grid or radial pattern, at a given location. Our implementation fol-
lows closely the tensor field design system of Zhang et al. [2007], in
which every user specification is used to create a global basis tensor
field. These basis fields are then summed using radial-basis func-
tions (See Equation 3) such that the resulting tensor field satisfies
the user specifications.

T (p) = ∑
i

e−d‖p−pi‖
2
Ti(p) (3)

where d is a decay constant, p is a point in the computational do-
main, Ti is the basis tensor field corresponding to a design element,
and pi is the position of the design element. The user can also
delete an existing design element or modify its location, orienta-
tion, and isotropic and anisotropic scales. Note that there are other
ways of creating a directional field from user constraints, such as
relaxation [Turk 2001; Wei and Levoy 2001; Fisher et al. 2007] and
propagation [Praun et al. 2000]. We employ the idea of basis fields
due to its simplicity and intuitiveness.

Tensor Field Smoothing: The user can reduce the complexity (i.e.
the number of degenerate points) in the tensor field by performing
component-wise Laplacian smoothing [Alliez et al. 2003; Marinov
and Kobbelt 2004; Zhang et al. 2007]. Such an operation can be
performed either globally or locally. In the latter case, the tensor
values on the boundary of a local region serve as the constraints in
relaxation.

Brush Interface: We also use the idea of a brush-based interface,
in which the user produces tensor values by moving the mouse to
form a curve or loop. Then a region is found to have a pre-defined
distance to the curve [Sethian 1996]. Finally, the tensor values in-
side this region are computed by treating the user-specified curve as
the constraint. The brush-based interface therefore allows a tensor
field to be created locally instead of globally. More importantly, if
desired, the tensor field can become discontinuous along the bound-
ary of the region. An example operation is illustrated in Figure 7.

To implement the brush interface, we first extract the cell strip
{S1, ...Sn} (Si ∈ D) that contains the polyline representing the brush
curve. We then assign tensor values to the vertices of the cells in the
strip according to the orientations of the brush stroke. For example,
if a line segment AB is inside a cell Si, we assign the tensor whose
major eigenvector is Ev =

−→
AB to the four vertices of Si. If a vertex is



Figure 7: This figure shows the use of the brush stroke interface to
orient streets.

shared by more than one cell in the strip, the average of the tensor
values is used. A similar approach has been used to create periodic
orbits in vector field design [Chen et al. 2007].

To extrapolate tensor values to other vertices in the region, we solve
the following discrete Laplacian equations where the known tensor
values serve as the boundary conditions:

T (vi) = ∑
j∈Ji

ωi jT (v j) (4)

in which T (v) represents the tensor values at vertex v, Ji consists of
the indexes of vertices that are adjacent to vertex vi, and ωi j = 1

Ni
where Ni is the number of vertices adjacent to vi. Equation 4 is a
sparse linear system, which we solve by using a conjugate gradient
solver [Press et al. 1992].

Discontinuities: To handle discontinuities across two neighboring
regions A and B, our system provides two options. In the first ap-
proach, which we refer to as the symmetric case, the two regions
have equal priority. Therefore, roads from the first region A will
be clipped inside the second region minus the intersection region
B \ A, and vice versa. In the second case, which is asymmetric,
the end points of the roads from A inside the region of intersection
A

⋂

B are used as seed points to generate road in the second region
B.

5.3 Modifying Tensor Fields Using Rotation Fields

In real street networks we observe various forms of irregularities
that seem to have stemmed from slight distortions of regular or
smooth patterns. Additionally, given a symmetric tensor field T ,
the major and minor hyperstreamlines always intersect at a right an-
gle except at the degenerate points where they are not well-defined.
While orthogonal intersections are dominant and preferred for con-
struction, we also need to take into account non-orthogonal inter-
sections. To model these phenomena we make use of three differ-
ent scalar fields R1, R2 and R3 that model rotations of the minor
and major eigenvectors: 1) the first rotation field is used to rotate
both major and the minor eigenvectors with R1 degrees in opposite
directions, i.e. the tensor value at (x,y) is altered such that the ma-
jor and minor eigenvectors are rotated by an angle of R1(x,y) and
−R1(x,y), respectively, where R1 ∈ [− π

2 , π
2 ]. 2) R2 rotates the ma-

jor eigenvector only, and 3) R3 rotates the minor eigenvector. While
in theory only two scalar fields are necessary, we have found that
the use of three scalar fields provide additional intuition.

The modeling of rotation fields is treated as a height field design
problem. We provide the user with two options to design such a
height field. While we can also load a rotation field as image, we
do not use this option in our results.

Morse Function Design: We borrow the idea from the fair
Morse function design approach of Ni et al. [2004]. The user
specifies the value of the rotation field at desired locations,
and a Laplacian system similar to Equation 4 is solved. No-
tice in this case only one variable is being solved, which is
the rotation field R. In the images at right, we compare two
portions of street networks without using rotation field (left)
and with a rotation field where R2 ∈ [0,20◦] (right). Note
that after including the rotation field into the computation,
we obtain a street net-
work whose intersections
do not form right angles.
We are aware of the work
on asymmetric tensor field
analysis [Zheng and Pang
2005] which can be used to
model non-orthogonal intersections in the street networks as well.

Noise: We use Perlin Noise [Perlin 1985] to generate a scalar field
in the range of [− π

2 , π
2 ]. We then use the obtained scalar field to

rotate the tensor field and produce more organic-like street patterns
(Figure 8).

Figure 8: This figure shows a regular major road grid (left) and a
radial major road pattern (right) over slightly curved minor roads.

6 Street Graph Generation

In this section, we describe how to generate a street network from
a tensor field. We also describe how our system allows an existing
street network to be modified directly as a graph or through local
tensor field design.

6.1 Major Street Graph Generation from Tensor Fields

Our hyperstreamline placement algorithm is based on the work of
[Jobard and Lefer 1997] for evenly spaced streamline placement.
Given a second-order symmetric tensor field T (x,y), we can pro-
duce two families of hyperstreamlines corresponding to the major
and minor eigenvector fields, respectively. There are two difficul-
ties unique to our application that cannot be handled properly by
the original framework of Jobard and Lefer [1997]. First, tracing
major and minor hyperstreamlines independently often leads to a
disconnected street network. (shown in Figure 9 (left)). This is es-
pecially the case when a minor hyperstreamline does not intersect
with any major hyperstreamlines. Second, important points such as
those on the narrow passages are not reached by any hyperstream-
line, causing undesirable street patterns. This often occurs on small
protrusions near the the coastlines. We address these difficulties
by introducing modified tracing and seeding algorithms described
next.

Interleaving Tracing Scheme: To handle the first problem, we in-
terleave the tracing of major and minor hyperstreamlines as follows.
Starting from an initial seed, we trace a hyperstreamline along the



major eigenvector field until it stops. We then compute a seed point
on the obtained hyperstreamline at dsep, a user specified distance
for the control of hyperstreamline density, away from the previ-
ous seed. Next, we start from the obtained seed and trace a hyper-
streamline following the minor eigenvector field until it stops. Sim-
ilarly, we compute a seed on this hyperstreamline with dsep away
from the previous seed, which will be used to start the next iteration.
The tracing algorithm stops when no more valid seed points are
available. Figure 9 shows the difference between original method
and our strategy.

Figure 9: This figure compares a street network in which major
and minor hyperstreamlines are traced independently (left) and one
using our approach (right). Notice that with our approach the street
graph has fewer dangling edges.

Single Hyperstreamline Tracing: An adaptive Runge-Kutta
scheme [Cash and Karp 1990] is used to compute a hyperstream-
line, which has been modified to handle tensor fields. Given a posi-
tion of the current end point, we extract the direction in which the
hyperstreamline grows by finding the major eigenvector value Ev at
the end point. Let Vpre be the previous direction we use to compute
the current point, to remove the sign ambiguity in eigenvector di-
rections, we select the direction satisfying Ev ·Vpre ≤ 0. The next
integration point is then found using the numerical scheme. A hy-
perstreamline stops growing on the following stopping criteria: 1)
it hits the boundary of the domain, 2) it runs into a degenerate point,
3) it returns to its origin which indicates a loop, 4) it exceeds a user-
defined maximum length, or 5) it is too close to an existing hyper-
streamline by violating dsep. Additionally, we improve connectivity
by continuing the tracing for a distance dlookahead to search an in-
tersection with other hyperstreamline even when stopping criteria
4 or 5 is met. We also allow the tracing to cross relatively narrow
water regions to form bridges depending on the required length of
the bridge and the angle of the intersection with the coastline.

Seeding Scheme: The initial seed points for the tracing process can
be either specified by the user or generated procedurally. The seed
points are placed in a priority queue. The priority ωps of a seed ps

can be computed using ωps = e−db + e−ds + e−dp , where db is the
distance from ps to the closest water boundaries, ds is its distance to
the closest degenerate points of the field and dp is its distance to the
closest population centers. Additionally, we extract locations where
narrow passages exist and place seeds there with higher priorities
than seeds placed in elsewhere. The user can also assign a weight
for a seed explicitly to force the tracing to start from a specific loca-
tion. Next, we use an iterative process in which a hyperstreamline
is generated based on the top element in the queue. During tracing
of a hyperstreamline new seeds are added to the queue.

Generating Major Street Graph: The two families of hyper-
streamlines can be used to generate a graph G = (V,E). This is
done by finding the intersection points between any pair of ma-
jor and minor hyperstreamlines. V is the collection of intersection
points, and E is the set of segments between two consecutive inter-
section points along a major or minor hyperstreamline. The graph

G can be turned into a polygonal mesh by identifying the polygons
in the graph. This is highly desirable when the user wishes to add
buildings or other structures in between roads.

Figure 10: This figure shows a density map (left) (white represents
high population density value while black indicates lower density)
and a generated density transition on the right.

Transitions in Density: At city borders the road density decreases.
Transitions in density are a phenomenon of the street graph and
not the underlying tensor field. In our system, we use road density
maps (or population density maps) to control dsep in the road trac-
ing algorithm described above. Figure 10 provides an illustrative
example demonstrating how our system imitates the transition of
density.

Figure 11: This figure shows a minor road network (right) gener-
ated based on the major road network (left)

6.2 Minor Street Graph Generation from Tensor Fields

Once the major street graph GM has been constructed, it can be
used to generate the minor street graph Gm. The process of gener-
ating Gm is similar to that of GM with the following key difference.
The edges in GM and the boundaries of topographical features di-
vide the domain into regions, inside each of which the user creates
a continuous tensor field (see Figure 3 (6)). The tensor field can be
discontinuous across region boundaries, i.e., major roads. This im-
plies the tensor field used for minor road tracing is not necessarily
the same as we use for major road tracing above. Figure 11 shows
the minor road network generated based on the major road network.
Note that minor roads do not necessarily follow the same directions
as major roads. We point out that the idea of flow tiles proposed by
Chenney [2004] for modeling a vector field can also be adopted to
achieve the wealth of minor road patterns.

6.3 Street Graph Editing

Once a street network has been generated, it can be further modified
using the following graph editing operations that we provide.



1. Road Segment Manipulation: The system enables the user
to create and remove segments in the graph that was generated
from the tensor field.

2. Vertex Manipulation: the user can move vertices in the street
graph (by using drag and drop operations).

3. Seed Point Creation: the user can insert new streets by
adding seed points at specified locations.

4. Street Displacement: the user can move a street by retracing
a hyperstreamline from a nearby location.

5. Layered Editing: A seemingly random street may cut across
an otherwise regular street network. The street can have a ran-
dom beginning and end. See Figure 12 for an example. Dur-
ing implementation, we allow the user to indicate a random
street by hand drawing it on top of the current street network.
Our tool then converts the sketched road into a polyline di-
vided by the underlying regular grid, which is used to search
the intersections of the road with existing streets. The street
network is updated accordingly.

Figure 12: Left: This map shows an example from Chicago, where
a single street is laying over an otherwise regular north-south grid
pattern. Right: A similar pattern is created using our system.

6. Graph Noise: There are many examples where streets stop
and later restart or connected slightly irregularly. Figure 13
shows some examples from Manhattan in New York City. The
main idea is to model these patterns by deleting complete or
partial street segments. We make use of stochastic sampling
using Halton sequences [Pharr and Humphreys 2004] to cre-
ate these patterns.

Figure 13: This figure shows example maps from Manhattan, New
York City. Left: Occasionally cells are merged together (1) or par-
tially split by dead ends (2). Right: Slight irregularities can be seen
in a regular grid (3).

In addition, we provide the functionality that a segment in the
street graph can be rotated as well. There are some instances

where road networks share some similarities with fracture pat-
terns. One example are major roads in rural Missouri (see
Figure 14 left). In this case local topography dominates the
road layout. We have some possibility to match these patterns
with a tensor field and added noise. Figure 14 (right) shows
a map generated using rotation on the graph (i.e. rotating the
street segments). The rotation field is generated using Perlin
noise discussed in Section 5.3.

Figure 14: This figure shows crack patterns in Missouri (left) and
a procedurally generated patterns using our system (right).

Figure 15: This figure shows that a park can be inserted into an ex-
isting street network (left). Notice that the roads in the park region
have a sparser density (right).

6.4 Local Street Graph Editing using Tensor Fields

Our system can generate a street network by allowing the user
to modify an existing street network such as those obtained from
Google Maps. In this case, the input is a street graph G = (V,E).

Our system allows the user to specify regions inside which the ex-
isting street network is erased and replaced with one that is created
from a locally defined tensor field. Such an approach lends the
power of tensor field design to graph editing. In our system, the
user can explicitly specifies a region to modify or uses the brush
interface that we discussed in Section 5 to obtain a region.

The portions of the original street network inside these regions will
be erased, and resulting dangling edges in the remainder of the
graph will be removed.

The original street network (outside the regions) and the user gener-
ated network (inside the regions) are connected by tracing boundary
street segment forward until they hit the other network. Figure 15
illustrates this approach.

7 Results

To demonstrate the capabilities of our approach we show a number
of street graphs generated using our system. Figure 16 shows a sec-



Figure 16: A generated street graph for downtown Taipei.

tion of downtown Taipei which we have modeled. In Figure 17, a
section of the Willamette River in Portland, OR is modeled. A road
network for Manhattan is shown in Figure 18. Note that our goal
is to generate maps inspired by real world maps, but not to exactly
replicate the existing cities. In our experiments, a city with reason-
able complexity can be modeled within five minutes, such as the
fictional city in Figure 1, and the cities in Figures 16 and 17 took
about five minutes for the main layout, but required an additional
thirty to sixty minutes to fine tune the details and to experiment with
different designs. The final images of three-dimensional geometry
were created using RenderMan with ambient occlusion. See Fig-
ure 19 for four frames of a fly through shown in the accompanying
video.

8 Discussion

In this paper we have presented a solution to the interactive mod-
eling of street graphs. The main ideas of this paper are to (1) use
tensor field design to guide the generation of a graph and (2) to
integrate procedural modeling with interactive editing. These two
concepts show promises to generate street networks, and we plan
to extend this strategy to other graphics modeling problems. In the
following, we discuss strengths and limitations of our approach and
our contributions to computer graphics research.

Strengths: The inherent strengths of tensor fields include the possi-
bility to model street patterns, which usually contain two preferred
directions that are often mutually perpendicular. Furthermore, ten-
sor field design allows the user to quickly generate an initial street
layout which can be further modified at either the tensor field level
or the graph level. This flexibility is unmatched by editing tools that
only operate on the graph level, especially when creating the typ-
ical street patterns such as the regular East-West and North-South
patterns.

Limitations: Currently, our system only assumes a single-level
spatial resolution, which makes it difficult to modify the tensor field
at significantly different scales. We plan to enhance our system by
adding multi-scale editing capabilities.

Figure 17: This figure shows a generated street graph for down-
town Portland, OR, USA. Note that the high ways (the orange
roads) are hand drawn on top of the designed street network.

Figure 18: A street graph for Manhattan, NY, USA generated using
our tool.

Comparison to Related Work in Engineering: An interesting
question is to compare our street modeling tool to street modeling in
real urban environments. The most important distinguishing char-
acteristic is scale. We are mainly concerned with efficient large-
scale modeling of urban environments with high visual quality. In
contrast, road construction in civil engineering is concerned with
smaller project but pays significantly more attention to construc-
tion details. Examples of important factors are noise regulations,
the turning paths of larger vehicles, ownership of land, legal reg-
ulations, and geological characteristics of the soil. Civil engineer-
ing software has some tools for intersection generation that would
be interesting for our design system. However, the generation of
three-dimensional geometric intersection details is a very complex
subject that is beyond the scope of our research project.

Application: The main benefactors of this research are applica-
tions that require efficient content creation. Important examples are
the entertainment industry with a strong demand to create content
for computer games and movies. In recent years, modeling has
evolved to be the most significant bottleneck in production. As a
solution, procedural methods can be successful to drastically de-
crease modeling times. However, it has been our experience, that



Figure 19: Frames from a fly over of the virtual city shown in Fig-
ure 1.

most companies are reluctant to adopt procedural methods if they
do not have significant control to fine-tune the outcome. There-
fore, the proposed modeling framework is an attempt to integrate
procedural methods with high- and low-level user input to give the
modelers the freedom they seek in designing their environments.

Future Work: This paper makes an important contribution to
graph modeling problems in general. Even though several graph
layouts appear to be fairly random, closer inspection will reveal a
distinct pattern of two preferred directions. We believe that our
methodology to use tensor fields to guide the generation of graphs
can be very useful for related design problems, such as the model-
ing of cracks, fracture patterns, leaf venation patterns, bark, and ice
crystals. We want to explore some of these potential connections as
our future work. Furthermore, the two preferred directions of the
street network induced by underlying tensor fields can be relaxed by
resorting to latest work on N-way rotational symmetry fields [Pala-
cios and Zhang 2007; Ray et al. to appear]. We are also interested to
extend our work to include image-based editing techniques similar
to [Aliaga et al. 2008].
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