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Abstract We propose a new image
registration scheme for remote sens-
ing images. This scheme includes
three steps in sequence. First, a seg-
mentation process is performed on
the input image pair. Then the bound-
aries of the segmented regions in two
images are extracted and matched.
These matched regions are called
confidence regions. Finally, a non-
linear optimization is performed in
the matched regions only to obtain
a global set of transform parameters.
Experiments show that this scheme
is more robust and converges faster

than registration of the original
image pair. We also develop a new
curve-matching algorithm based on
curvature scale space to facilitate the
second step.

Keywords Image registration ·
Curve matching · Curvature scale
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1 Introduction

Image registration is a fundamental problem in image
processing and often serves as an important preprocess-
ing procedure for many applications such as image fu-
sion, change detection, super resolution, and 3D recon-
struction. While we can draw from a large number of
solutions [5, 46], most existing methods are specifically
tailored to a particular application. For example, video-
tracking focuses on non-rigid transformations with small
displacements and medical image registration can take ad-
vantages of the uniform background and absence of occlu-
sion. In this paper, we work with remote sensing image
pairs that have been geometrically and photometrically
rectified to some extent and differ by a global similar-
ity transform. The output of the computation is the set of
global parameters of the transform.

In the scope of remote sensed image registration exist-
ing methods fall into two categories: area-based methods
and feature-based methods [46]. Area-based methods [21,
45] directly use the whole image or some predefined win-

dows without attempting to find salient features. First,
a function is defined, such as correlation or mutual in-
formation, to evaluate the similarity between the image
pairs under a given transformation. The second step is
an optimization procedure to find the parameter set that
maximizes the function. The drawback of this approach is
twofold: searching for a global optimum is computation-
ally expensive and the search space is not smooth due to
non-overlapping areas and occlusion in the input images.
Therefore, the search process will probably stop at a local
optimum instead of a global optimum. In contrast, feature-
based methods determine the transformation by matching
salient features extracted from the original image pairs.
The difficulty of these algorithms is to find corresponding
features robustly. If features are matched incorrectly, they
become outliers. As features only draw from a smaller
local region, the algorithms might create a large number
of such outliers and the elimination of outliers is very time
consuming and unstable.

We propose a new registration scheme that is a combi-
nation of these two approaches: The first step is to segment
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the input images and to extract closed boundary curves.
The second step is to match the extracted curves by an im-
proved curvature scale-space algorithm. In the third step,
we try to register the two images using only the regions
enclosed by the matched boundaries with an area-based
method. This registration framework compares favorably
to using feature-based registration or area-based registra-
tion alone. Because we use curves as geometric features,
our feature-based matching algorithm is more robust than
relying on point features. Additionally, the curve-based
feature-matching algorithm identifies potentially matched
regions. This helps the area-based optimization algorithm
in the following ways: a) curve matching gives multi-
ple initial guesses to start a local optimization algorithm.
b) The search space is smoother compared to the search
space induced by the original image pair and therefore
there are less chances of getting stuck in a local optimum.
c) The computational overhead is greatly reduced. We will
demonstrate these advantages through experiments on se-
lected data sets.

The paper is organized as follows: Sect. 3 gives give an
overview of the registration scheme. Section 4 details the
curve extraction and curve matching steps of the frame-
work. Section 5 explains the area-based registration step.
Section 6 gives the results of our implementation on se-
lected test data sets. Section 7 provides concluding re-
marks and outlines ideas for future work.

2 Related work

2.1 Image registration

Image registration techniques can be categorized accord-
ing to their application area [6, 17, 24]. The most promi-
nent areas are medical imaging, remote sensing, and com-
puter vision applications such as video registration. For
medical images, the objects under registration often go
through non-rigid deformation, therefore non-rigid regis-
tration methods [27] such as diffusion-based methods [35]
and level set methods [40] are very popular. In [31] the
state of the art of video registration is demonstrated. In
remote sensing image registration, the methods described
in [25, 28] are representative. In this area both feature-
based methods and area-based methods are useful. In the
methods described in [11, 14, 40] features invariant to a se-
lected transform are first extracted and matched. Remote
sensing images often contain many distinctive details that
are relatively easy to detect (point features, line fea-
tures, region features). Wavelet decomposition and multi-
resolution [26] techniques are often involved to make the
procedure more effective and efficient. Methods based on
template matching [13] can help with images that are not
radiometrically rectified. Methods using mutual informa-
tion [10, 12, 39, 42] are also introduced to deal with multi-
modal image registration.

2.2 Curve matching

We use a curve (shape) matching algorithm based on the
curvature scale space descriptor (CSSD) [23, 29] to facil-
itate the registration process. CSSD is a shape representa-
tion and description technique aimed to effectively capture
important shape features based on either boundary infor-
mation or the interior content information of the target
shapes. Other shape description methods include shape
signature, such as the chain code [34] and moments [4],
the Fourier descriptor [9], the medial axis transform [33],
and the shape matrix [16]. Researchers have found that
shape description and matching techniques are very use-
ful for remote sensing image registration. Thus differ-
ent shape description methods have been adopted to aid
registration, such as the improved chain code [11], mo-
ments [15] and the shape matrix [3]. It has been gener-
ally recognized that CSSD is a good shape description
method because it can provide a multi-scale representa-
tion for the shape and the extracted features have good
perceptual significance. However, the CSSD matching al-
gorithm is very complex and sensitive to noise and par-
tial occlusion. It also includes several ad-hoc parame-
ters to adjust for different inputs, which makes it not
robust. In this article, we suggest a new matching al-
gorithm, which is more robust and has no ad-hoc pa-
rameters to alleviate these shortcomings. Furthermore,
we are the first to use curvature scale space for image
registration.

3 Overview

The new registration scheme consists of three building
blocks, as shown in Fig. 1. The details of these building
blocks will be discussed in subsequent sections. In this
overview section we will mainly focus on the input and
output of each block, and how they cooperate to make the
whole scheme work:

Segmentation. The first building block is segmentation.
Segmentation requires a gray scale image as input and
computes a set of non-intersecting closed regions. The
boundaries of these regions are closed curves. These
closed curves are the output of this building block. Ideally,
the segmentation finds some salient regions that corres-
pond to meaningful physical objects in the remote sensing
images, such as lakes, forests, or regions separated by road
networks or rivers. The requirement for the segmentation
algorithm is that it be able to pick up several of these out-
lines. Currently, we use a modified watershed transform
for the segmentation algorithm.

Curve matching. The input of the curve matching algo-
rithm is a set of curves extracted from image 1 and
another set of curves extracted from image 2. The as-
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Fig. 1. Overview of our registration algorithm consisting of three
major parts. The first part is a segmentation algorithm that extracts
closed curves from the two input images. The second part is a curve
matching algorithm that computes a set of matched curve pairs.
The third part is an area-based registration algorithm that computes
the final result by iterative optimization of a similarity metric in
selected confidence regions

sumption of the curve matching algorithm is that the
same physical objects will have very similar outlines if
they appear in both input images. The curve-matching
step tries to match outlines that correspond to the same
physical objects. The algorithm computes the similar-
ity between each possible pair of curves. A valid pair
consists of one curve stemming from image 1 and an-
other curves stemming from image 2. The output of the
curve matching is a set of N curve pairs with the high-
est similarity. The number N is decided by the user or
some similarity criterion. We call the regions inside the
matched curves potentially matched or confidence re-
gions. Along with each matched pair, a gross estimation of
the transform is also included in the output. The algorithm
we use is an improvement of the curvature scale-space
algorithm.

Area-based registration. The input to the area-based regis-
tration step is: a) the two original input images, b) the
potentially matched regions, including c) the estimates
of the transform parameters. The output of the registra-
tion step is the optimal set of transform parameters ob-
tained by a non-linear optimization process. The opti-
mization process consists of an algorithm to search for
a local optimum near a given point in the search space.
This algorithm is invoked several times using the ini-
tial guesses obtained by the curve-matching step. How
many local optimizations are performed can be decided
by a user-defined number M. Alternatively, all initial
guesses can be used. The registration algorithm conducts
the optimization only in the confidence regions to improve
performance.

4 Feature matching

4.1 Segmentation and curve extraction

The segmentation step plays a significant role in the re-
sulting registration. Currently, we work with existing seg-
mentation methods. We employ a modified watershed
transform [32]. As observed by other researchers in this
field, current segmentation methods have certain weak-
nesses: a) almost all segmentation algorithms have param-
eters that need to be adjusted for different input images.
b) Segmentation is sensitive to noise, shadows, occlu-
sion, etc. The second problem is hard to address in gen-
eral. However, since we are dealing with aerial images
that are already rectified and differ only by a similar-
ity transform this problem is partially alleviated. While
our implementation shows that using current segmenta-
tion methods allows for strong registration results, we
need a curve-matching algorithm that is able to over-
come some of the shortcomings of the segmentation.
Therefore, our curve-matching scheme is designed in such
a way, that it tolerates noise and partial deterioration
of curves. Additionally, the complete registration frame-
work will still be functional if some curves are matched
incorrectly. The segmentation algorithm gives a decom-
position of the image into labeled regions. We extract
boundary curves in the form of lists of two-dimensional
points [4] and pass these point lists to the curve-matching
algorithm.

4.2 Curve matching

The core idea behind the matching algorithm is that two
curves representing the same physical object will differ
only by a similarity transform, which includes uniform
scaling, rotation and translation. Therefore, we need to
use a description of a curve that is invariant to the simi-
larity transform. Further, we need a robust algorithm that
compensates for noise in the segmentation process. Our
algorithm uses the curvature scale space descriptor to rep-
resent and match boundary curves. This representation is
invariant to the similarity transform and provides the ba-
sis for a robust matching algorithm. We will first explain
the curvature scale space descriptor. Then we will give the
details of our new matching algorithm to estimate the sim-
ilarity between two curves and finally describe how this
curve-matching algorithm can be used to match two sets
of curves.

The curvature scale space image (CSSI) [23] is a bi-
nary two-dimensional image that records the position of
inflection points of the curve convoluted by different-sized
Gaussian filters. A planar curve r is given as a polyline
defined by a set of discrete points. This curve can be repre-
sented by the parametric vector equation with parameter u,
where x and y describe the coordinate values:

r(u) = (x(u), y(u)). (1)
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From the original curve, a set of curves is created by
low-pass Gaussian filtering with a different kernel size pa-
rameter σ :

Γσ = {(X(u, σ), Y(u, σ))|u ∈ [0, 1]}, (2)

where (X(u, σ) = x(u) ∗ g(u, σ) and Y(u, σ) = y(u) ∗
g(u, σ). Convolution is denoted by ∗ and

g(u, σ) = 1

σ
√

2π
e

−u2

2σ2 . (3)

Each curve in the set will create one row of the scale
space image by the following method: the parameter u is
discretized and for each value of u the curvature k can be
estimated by the following equation:

k(u) = ẋ(u) ÿ(u)− ẏ(u)ẍ(u)

(ẋ(u)2 + ẏ(u)2)
3
2

. (4)

If the curve with a smoothing parameter has a zero
crossing in curvature at location u we set CSSI(σ, u) = 1
and CSSI(σ, u) = 0 otherwise. A zero crossing in curva-
ture is an indicator of a significant feature in the curve.
This indicator is invariant to affine transformations. See
Fig. 2, left, for an example of a curve and its curvature
scale space image.

Given two curves the respective CSSIs are great rep-
resentations for curve matching. The conventional CSSI
matching algorithm [29] first tries to align the CSSIs to
compensate for the difference in orientation. Such an
alignment can be done by computing the appropriate cir-
cular horizontal shift of the image. The original algorithm
is based on an analysis of the highest and second high-
est contour maximum. However, this algorithm has some
problems [8, 44] that we try to overcome.

– The algorithm relies on the extraction of contour max-
ima. In practice, the CSSI will often be non-continuous
and have several close-by maxima. As a result the
maximum extraction is unstable, time consuming, and
requires the specification of ad-hoc parameters. In con-

Fig. 2. Left: a closed curve depicting the outline of a fish. Inflec-
tion points are shown in red. Right: the scale space image of the
curve to the left. Each row of the scale space image corresponds
to a curve of scale σ that is parameterized by u ∈ [0, 1]. The black
entries record the inflection point for one scale determined by the
smoothing parameter of the Gaussian filter σ

trast, the idea of our algorithm is to avoid the detection
of contour maxima to improve stability.

– To increase stability of maximum extraction, the ori-
ginal algorithm used small increments for the support
of the Gaussian filter σ . This results in CSSIs with
a large number of rows. Our algorithm works with in-
crements that are one order of magnitude larger so that
we only need to compare relatively small CSSIs.

– To compute the circular shift parameter between two
curves would require an exhaustive search that is
overly time consuming for most applications. The ori-
ginal algorithm proposes an acceleration that only
examines four distinct shift parameters. For curves that
have partial deterioration this acceleration algorithm is
very likely to fail. Our algorithm makes use of dynamic
programming, so that we can find the global optimum
of our similarity metric.

We propose a new CSS matching algorithm that has
two new features: first, the whole CSSI is compared line
by line in contrast to the conventional algorithm; second,
dynamic programming is used to guarantee a global opti-
mum.

First, we define a cost metric for comparing a line i in
CSSI image 1 with a line j in CSSI image 2. As shown
in Fig. 3, left, each line of the CSSI is a binary string with
values of either 0 or 1. We warp this line into a circle and
consider the position where values take 0 as empty and
1 as occupied by a small ball with unit mass. Then the
centroid of all these small balls is calculated. We can es-
timate four parameters (two of them are shown in Fig. 4):

Fig. 3. CSSI (scale space curvature image). Each line is a binary
string

Fig. 4. Comparing two lines of a CSS image
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the angle α spanned by the connecting line and a reference
horizontal line, the distance d between the centroid and
the center of the circle, the mass m computed by the num-
ber of 1s in the line, and the standard deviation std. The
main reason we chose these features is that they are a good
description of the distribution of the inflection points and
are invariant to circular rotation (circular shift). Addition-
ally, higher order moments could be used, but that was not
stable in our experiments. We use three features to estab-
lish a cost metric c that compares a line i in CSSI 1 with
line j in CSSI 2. We use only three of the features in this
formula. The use of the angle feature and the parameter
values for λi will be explained later in the dynamic pro-
gramming step.

c(i, j) = λ1|mi −mj |+λ2|di −dj |+λ3|stdi − stdj |. (5)

Using this metric c to compare two single lines i and j ,
a dynamic programming [41] process is used to find the
total cost TC between two curves’ CSSIs. The difficulty
arises from the fact that we cannot simply compare all
pairs of lines with the same index i . The intrinsic prop-
erties of CSSI images suggest that we have to consider
non-linear scaling along the scale axis of the CSSIs in the
total cost TC [1]. Dynamic programming [2] is a perfect
match for this task, as it allows comparison of lines across
different scales. The first step of dynamic programming is
to build a cost table. Each row of the table corresponds to
a line of CSSI 1 and each column corresponds to a line of
CSSI 2. A cell in the cost table contains the cost c(i, j) de-
scribed above (see Fig. 7). The second step is to build an
aggregated cost table as follows: ac(1, 1) = c(1, 1) and

ac(i, j) = c(i, j)

+min

⎧
⎨

⎩

ac(i −1, j)+λ4||αi−1 −αj |− |αi −αj ||
ac(i, j −1)+λ4||αi −αj−1|− |αi −αj ||
ac(i −1, j −1)+λ4||αi−1 −αj−1|− |αi −αj ||

.

Fig. 5. Overview of dynamic programming for comparing two
curves

The aggregate cost function of every cell is composed
of two parts: 1) the distance of the matching two rows
(scales) of CSSIs that intersect at this cell and 2) an angle-
dependent cost related to the absolute difference between
the angle at this cell and the previous cell. The second part
of the cost function means that we do not restrict the com-
parison to finding one global horizontal shift, but we allow
small variations between neighboring cells. However, we
penalize large differences in angle to only allow minor
differences. The angle-dependent cost will then be mul-
tiplied by a weight factor λ4. The total cost of matching
the two curves can then be found in the bottom right cell
TC = ag(imax, jmax). Because we do not use contour max-
imum detection as the original algorithm our technique
is stable even with large increments of the Gaussian fil-
ter support σ . Therefore, the table size is fairly small and
we did not optimize the search process for the global opti-
mum. We obtained table sizes of 10×10 up to 20×20 in
our results. The table size is implicitly determined by the
complexity of the curve. Through experiments we found
λ1 = 0, λ2 = 1, and λ3 = 0.3, and λ4 = 1 to provide the
best results. Alternatively, we experimented with a version
that had higher weight λ4 at lower resolution. The idea
is that higher resolutions are more likely to be subject to
noise and we want to decrease the effect of noise in the
overall similarity metric. While this idea resulted in minor
changes in curve matching, it did not influence the out-
come of the registration for any image pair. Even though
the CSSI matching algorithm compares complete curves,

Fig. 6. The results of the curve matching algorithm on the Kimia
shape database. Top row: a curve matching result for the standard
CSS algorithm. Second row: our results. Each row contains the
same image pair with nine shapes per image. The label assign-
ment is computed by the curve matching algorithms. Note that both
algorithms misclassify two shapes
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it can also match curves with partial correspondence [30].
This is shown in Fig. 6.

The output of the dynamic programming algorithm is
a similarity between two curves. Using this algorithm as
a building block, our next task is to find the best matches
between two sets of curves. Suppose m and n curves are
extracted from two images, respectively, then the costs of
each possible match is evaluated. These costs form a ma-
trix. If l = min(m, n), then we want to find l curve pairs
that will minimize the overall cost. We further restrict the
matching to allow each curve to appear only in one curve
pair. This is an example of an assignment problem. We
solve this problem with the Hungarian method [19].

4.3 Complexity analysis

The complexity of the original curve matching algorithm
and our new algorithm is similar. Suppose the input curves
have M discrete points and the Gaussian filter has N lev-
els. The size of the CSSI will be M ∗ N. In the original
algorithm, the whole CSSI has to be scanned once to find
all the contour maxima. This step is O(MN). The contour
maxima will be stored as a feature list. We assume the fea-
ture list will have the size log(M). Then a circular shift
will be performed to align the highest maxima in the two
CSSIs. For each feature in the first list, the second list will
be scanned to find the nearest feature. Then a circular shift
will be performed to align the highest maxima in the first
CSSI to the second highest maxima and repeat the fol-
lowing operations. Overall, the complexity of the original
curve-matching algorithm will be O(MN+ log(M)3). In
our algorithm, the CSSI will also be scanned once to de-
cide the shift angle and distance for each row. Then the
dynamic programming will have a constant complexity
of N ∗ N. The overall complexity will be O(MN+ N2).
Since N is usually much smaller than M, the complexity
is comparable. Our results in Sect. 6 also show comparable
running speeds of the implementation.

5 Area-based registration

We adopt a general parametric registration framework that
is illustrated in Fig. 7. We have two input images: one is
selected as the reference image and the other one is the
moving image. We estimate initial transform parameters
for each matched curve pair and then run the local opti-
mization process. The best result is returned as the global
optimal set of parameter.

5.1 Local optimization

We use an iterative optimization process to find the best
local transform parameters. At each step of the optimiza-
tion, the moving image is transformed by the current trans-
form parameters and resampled on the reference image’s

Fig. 7. Overview of the complete registration framework

grid. We implemented two different resampling schemes:
nearest neighbor interpolation and bilinear interpolation
(bilinear interpolation is used in the results section). After
the two images are aligned we compute the set of pixel lo-
cations Ω that are inside confidence regions in both input
images. A similarity value can then be computed using ei-
ther a mean square metric, a mutual information metric, or
normalized cross correlation. The mean square metric,

MS(R, M) = 1

N

∑

i∈Ω

(Ri − Mi)
2 (6)

calculates the L2 norm of the intensity differences. The
mutual information metric,

MI(R, M) =
∫

R

∫

M

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (7)

compares the probability density function of the separate
and joint distribution for each intensity pair. The normal-
ized cross-correlation

NC(R, M) =
∑

i∈Ω(Ri Mi)
√∑

i∈Ω(R2
i )

∑
i∈Ω(M2

i )

(8)

is another similarity metric that is similar to the mean
square metric, but it is insensitive to scaling the inten-
sity of one or both images with a multiplicative factor.
We use a gradient descent method for the optimization
process, because we already have an initial estimate. Our
implementation follows the description in the book Intro-
duction to Optimization [43], pp. 115–122. More compli-
cated global search strategies exist, such as genetic al-
gorithms [7], simulated annealing [18] and stochastic gra-
dient algorithms [20]. These strategies are used in case
the initial guess is far from the global optimum. In con-
trast, our registration scheme computes a good initial es-
timate through geometric curve matching and smoothes
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the search space through the use of confidence regions
to make a local search sufficient. Given a matched curve
pair, we can estimate an initial guess for the transform as
follows: 1) The translation parameter is estimated by the
difference between the centroids of the two regions. 2) The
scaling parameter can be estimated by the difference be-
tween the areas of the matched regions. 3) The rotation
parameter is estimated by the circular horizontal shift be-
tween the two matched curve’s CSSI.

6 Results

In this section we evaluate the curve matching algorithm
and the complete image registration framework on se-
lected test cases.

To evaluate the curve matching algorithm we use
eight test cases. The first two are selected curves from
the Kimia shape database [38]. The other six are sets of
curves extracted from aerial images. We compare our
curve matching algorithm to three other algorithms: the

Fig. 8. Results of the curve-matching algorithm for real aerial im-
ages. First row: the original image pair. Second row: the result of
our curve matching algorithm. The extracted curves are shown for
both images. The computed pairing is indicated by the numbers
next to the curves. Third row: result of the original curve matching
algorithm

original CSS algorithm [29], the original Fourier descrip-
tor methods [9], and a recent improved Fourier descriptor
method [22]. The results are shown in Table 1. We can see
that our method outperforms all other methods in terms
of matching performance with all methods having similar
running times. As we will show below we can improve the
performance even more by increasing the sampling reso-
lutions of the curves. It is important to note that neither
of the Fourier descriptor methods can improve the per-
formance with more expensive settings. To give a visual

Table 1. This table compares our improved CSSI-based curve
matching algorithm with three other published algorithms. FD1 is
the original Fourier descriptor method and FD2 is a recent improve-
ment of Fourier descriptors. OCSS denotes the original scale space
algorithm and NCSS is our new method described in this paper

Correct matches Time in s
FD1 FD2 OCSS NCSS FD1 FD2 OCSS NCSS

test1 719 9/9 7/9 7/9 1.4 1.5 1.8 1.7
test2 5/8 4/8 5/8 5/8 2.0 2.0 2.5 1.7
test3 6/6 6/6 4/6 6/6 1.2 1.3 2.2 1.5
test4 919 9/9 6/9 9/9 1.1 1.1 2.1 1.1
test5 9/9 4/9 9/9 7/9 1.3 1.4 2.2 1.9
test6 4/7 7/7 5/7 7/7 1.4 1.8 2.1 2.0
test7 4/6 6/6 4/6 6/6 1.1 1.1 1.9 1.4
test8 7/9 7/9 7/9 7/9 1.4 1.2 2.4 1.4
total 80% 84% 74% 87% 11 11.4 17.2 12.7

Fig. 9. See Fig. 8
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impression of our test cases and results, we show three ex-
amples: curves from the Kima shape database used in test1
(see Fig. 6) and curves extracted from aerial images used
in test3 (see Fig. 8) and test4 (see Fig. 9).

We conducted other tests and varied the two most im-
portant parameters of the curve matching algorithm: the
sampling resolution and the number of features used. We
evaluated the influence of the sampling resolution sr along
the arc-length of a curve by comparing the settings 64,
128, 256, and 512 (setting 128 is used for all other tests
in this paper). We also changed the number of features
that we used to describe a line in the CSSI. The main
method uses three features: angle, first moment, and sec-
ond moment. This setting corresponds to the columns
where F = 3. We compare this setting to F = 4 where we
add the mass (zeroth moment) and F = 2 where we drop
the second moment. The features are described in Sect. 4.
The results of the comparison are given in Table 2. Please
note that our method can improve the matching perform-

Fig. 10. Visualization of the search space spanned by the rotation and scaling parameters. Left: search space spanned by confidence
regions. Right: search space of the original image. Note that the confidence regions result in a smoother search space

Fig. 11. Visualization of the search space spanned by the translation parameters. Left: search space spanned by confidence regions. Right:
search space of the original image. Note that the confidence regions result in a smoother search space

ance with a higher sampling resolution of 256 and that the
algorithm performs best with three features.

To evaluate the complete registration framework, we
compare our registration scheme to four other methods:
Sift–probably the most popular feature based method [36],
UCSB [37] – registration with fit assessment, a differ-
ent variation of feature-based matching, Area MS [6] –
an area-based method using the mean squares as metric,
and Area MI [12, 42] – an area-based method using mu-
tual information. We also show results for two settings
of our new algorithm. The main method MM uses mean
squares as a matching function and NC uses normalized
cross correlation. We also tested the mutual information
metric, but this version of our algorithm sometimes does
not have enough sample points inside the confidence re-
gions to work well. We created a test suite of 11 image
pairs. Figures 8, 9, and 12 show image pairs 1, 2, and 3
respectively. The image pairs 4, 5, 6, and 7 are shown
in Fig. 13. The image pairs 8,9,10,and 11 are shown in
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Table 2. Comparison of various parameter settings for the curve matching algorithm. Combinations of four different sampling resolutions
64, 128, 256, and 512, with different combinations of used features, are compared. F = 2 only uses distance and angle, F = 3 uses the
second moment as additional feature, and F = 4 additionally uses mass. Note that the more expensive resolution 256 clearly outperforms
fourier descriptors (see Table 1)

Correct matches Time in s
F = 3 F = 2 F = 4 F = 3 F = 2 F = 4

64 128 256 512 128 128 64 128 256 512 128 128

test1 7/9 7/9 7/9 7/9 7/9 7/9 1.2 1.7 4.7 11.1 1.6 1.7
test2 2/8 5/8 5/8 5/8 4/8 5/8 1.1 1.7 4.9 9.6 1.7 1.7
test3 6/6 6/6 6/6 6/6 6/6 6/6 1.3 1.5 4.4 8.5 1.6 1.9
test4 7/9 9/9 9/9 6/9 9/9 7/9 1.1 1.1 3.7 5.7 1.1 1.1
test5 5/9 7/9 9/9 9/9 7/9 6/9 1.5 1.9 5.2 9.3 1.9 2.3
test6 4/7 7/7 7/7 7/7 4/7 7/7 1.6 2 6.1 10.5 2.1 2.6
test7 2/6 6/6 6/6 6/6 3/6 6/6 1.3 1.4 4.5 6.7 1.3 1.4
test8 4/9 7/9 9/9 9/9 7/9 7/9 0.9 1.4 3.9 6.1 1.4 1.4
total 59% 87% 93% 88% 74% 83% 10.0 12.7 37.4 67.5 12.7 14.1

Fig. 12. First row: input images. Second row: left, result of an area-
based method; right, result of our method. To show the visual result
for the registration, the second input image is laid on the first one
through the transform that we obtained from the corresponding al-
gorithm. Then the intensity difference is calculated pixel by pixel.
If the difference is equal to zero, the corresponding pixel in the re-
sult image is set to 125, which is gray. If the difference is 255, it
is set to 255. If the difference is −255, it is set to 0. Other values
can be interpolated linearly. If the two images are perfectly regis-
tered, then the overlapping part result image should be uniformly
gray

Fig. 13. Several image pairs from our test suite not shown in other
figures

Fig. 14. The most important evaluation is a visual compar-
ison of the matching result. Typically, all of the methods
provide either excellent results, or results that are totally
off, which makes visual matching easy (see Fig. 12 for
an example). In the tests we recorded if a method was
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Fig. 14. Several image pairs from our test suite not shown in other
figures

able to find the right transformation and how much time
the computation took. The results are given in Table 3.
Please note that we cannot report meaningful times for
the UCSB method, because it was used over a web in-
terface. The results show that feature-based methods are
much stronger than area-based ones. However, we can see
that the feature based methods are not able to cope with
blurred images, while our new algorithm is still success-
ful. The downside of our approach is that it does not work
well with gradient images, such as the one selected in our
test case.

Compared to the area-based methods, we have a much
stronger initial estimate to start a local search. Addi-
tionally, the restriction to confidence regions results in
a much smoother search space. We visualize the search
space of the image pair in Fig. 8 in Figs. 10 and 11.
Since high dimension space is hard to illustrate, we only
show the space spanned by two parameters at one time;
in Fig. 10 the space spanned by the rotation parameter
and scaling parameter for fixed translation and in Fig. 11

Table 3. Comparison of multiple registration techniques. Two
feature-based methods (Sift, UCSB), two area based methods
(AREA MS, AREA MI) are compared with two versions of our
new algorithm (MM, NC). The algorithms are described in the text.
We report results on 11 image pairs by describing whether the reg-
istration was successful (y or n) and by reporting the computation
time in seconds

Correct y/n / Time in s
Sift UCSB A-MS A-MI MM NC

test1 y 39 y 5 n 19 n 13 y 24 y 53
test2 y 31 y 5 y 200 y 76 y 57 y 77
test3 y 42 y 5 n 99 n 39 y 61 y 92
test4 y 35 y 5 n 52 n 23 y 6 y 41
test5 y 24 y 5 y 337 n 50 y 65 y 153
test6 y 19 y 5 n 431 n 37 y 44 y 110
test7 y 27 y 5 n 212 n 52 y 305 y 129
test8 n 22 n 5 n 122 n 70 y 17 y 80
test9 n 25 n 5 n 220 y 50 y 77 y 64
test10 n 33 n 5 n 230 n 31 y 32 y 26
test11 n 32 y 5 n 118 n 51 n 60 n 245

the space spanned by the translation parameter in X and Y
directions.

7 Conclusions and future work

In this paper, the problem of remote sensing image reg-
istration was attacked. This paper makes two contribu-
tions to the state of the art in image registration. First,
we introduced a new hybrid image registration scheme
that combines the advantages of both area-based methods
and feature-based methods. We extracted curves from the
two input images through image segmentation and per-
formed feature-based image registration: we compared
and matched these curves to obtain several initial pa-
rameters for an area-based registration method. Then we
used existing area-based methods in confidence regions
to obtain a final result. This scheme allows us to com-
bine feature-based and area-based registration in a ro-
bust and efficient manner. The second contribution of this
paper is a new curve-matching algorithm based on cur-
vature scale space to facilitate the registration scheme.
We improved the matching algorithm of two scale space
images and thereby the robustness and accuracy of the
algorithm.

Currently our curve-matching algorithm works on the
assumption that the same physical object will have the
same shape contour in two input images. This is true for
input images obtained from the same sensor and the same
spectrum. However, in multi-spectral images the same
physical object may have different shape contours in dif-
ferent spectral images. Our future work will focus on how
to extend our registration scheme to multi-spectral image
registration.
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