
Appearance-Preserving View-Dependent Visualization 
Justin Jang          William Ribarsky          Christopher Shaw          Peter Wonka 

GVU Center, Georgia Institute of Technology 

 

Abstract 
In this paper a new quadric-based view-dependent simplification 
scheme is presented. The scheme provides a method to connect 
mesh simplification controlled by a quadric error metric with a 
level-of-detail hierarchy that is accessed continuously and 
efficiently based on current view parameters. A variety of 
methods for determining the screen-space metric for the view 
calculation are implemented and evaluated, including an 
appearance-preserving method that has both geometry- and 
texture-preserving aspects. Results are presented and compared 
for a variety of models. 

CR Categories: I.3.5 [Computer Graphics]: Computational Geo-
metry and Object Modeling – Surface and object representations 

Keywords: view-dependent, level of detail, mesh simplification, 
appearance-preserving, multiresolution models. 
 
1  Introduction 
We are entering an era where 3D models from diverse sources are 
achieving unprecedented scale and detail. These include urban 
models that may contain extended streetscapes or large collections 
of detailed buildings. Some of these models are reconstructed 
from range data and imagery [Neumann et al. 2003; Früh and 
Zakhor 2001] while others are constructed using advanced CAD 
or procedural methods [Wonka et al. 2003]. In addition there are 
highly complex single models of varying sizes that must be dealt 
with using view-dependent techniques [Levoy et al. 2000]. Many 
of the models in these two categories are textured or have other 
strong appearance attributes. 

There have concurrently been developments in level-of-detail 
(LOD) management and visualization methods. Many of these 
methods have been applied to compact but highly detailed models 
[Hoppe 1997; Garland and Heckbert 1997] while others have been 
applied to extended large scale models, such as terrain, where out-
of-core management is necessary [Davis et al. 1998; Lindstrom 
2003; Faust et al. 2000]. Ultimately, multiresolution methods of 
sufficient flexibility are needed to provide good quality 
visualizations at minimal cost for all these different types of 
models. In addition, optimal interactive visualization is in general 
obtained when local resolutions within and among models are 
chosen dynamically based on the current viewpoint. Also, 
multiresolution models, when properly organized, can provide 
efficient, incremental access to data that may reside out-of-core or 
in networked archives. 

This paper presents the following new results that are useful in 

attacking these diverse models. 
• A new, view-dependent method is provided based on the 

quadric-error approach that has general appearance-preserving 
attributes. 

• A multiresolution hierarchy is developed that efficiently 
encodes a succession of quadric-based simplifications 
permitting traversal from original highly detailed models to 
final, constrained models. 

• It is shown how geometry and/or texture-preserving metrics 
can be used to produce view-dependent simplifications. A 
variety of metrics are developed and evaluated. 

• The quality of this view-dependent method is evaluated for a 
range of architectural and non-architectural models. 

Because it is based on the quadric error approach [Garland and 
Heckbert 1997], our view-dependent method provides flexible, 
good quality shape-preserving simplification that applies to both 
topological and non-topological geometry. Our view-dependent 
mesh collapse or expansion is also monotonic. The methods 
presented here can fit into a general program attacking both 
structured (e.g., buildings) and natural models in a scalable 
geospatial framework [Faust et al. 2000; Ribarsky 2003]. In 
addition, the quadric approach handles boundary preservation in a 
general way. This permits the transition to simple textured objects 
that have been used successfully in interactively navigable large 
scale collections of buildings in urban environments [Davis et al. 
1999; Jepson et al. 1996]. 
 
2  Related Work 
A lot of work has been done on geometric model simplification, 
and effective methods have been developed that apply to models 
with consistent meshes. In this section we will concentrate on 
work most relevant to the research described here. Some methods 
enact a series of topology-preserving edge collapses to produce a 
desired level of simplification, such as the progressive mesh (PM) 
[Hoppe 1996]. Other methods do not require topological 
consistency nor preserve topology. These include vertex 
clustering methods [Rossignac and Borrel 1993] and methods that 
either remove vertices [Schroeder et al. 1992] or combine vertices 
at new locations (not necessarily along edges) [Garland and 
Heckbert 1997; El-Sana and Varshney 1999]. There are also 
methods based on regular meshes [Lindstrom et al. 1996; 
Lindstrom 2003; Faust et al. 2000], which are usually obtained by 
resampling. These have the advantage of a compact 
representation, a simplification hierarchy that is straightforward to 
set up, and extension to efficient out-of-core management of large 
scale data [Faust et al. 2000; Lindstrom 2003]. However, these 
methods may not represent certain irregular surface features (say, 
a mountain ridge) as efficiently as irregular methods. Most of the 
regular methods have been applied to terrain height fields. 

Garland and Heckbert [1997] present the quadric-based 
approach to polygonal simplification, which creates simpler 
approximations of the input mesh by performing a sequence of 
vertex pair merges. Garland and Heckbert [1998] and Hoppe 
[1999] have extended this approach to account for appearance 
attributes, including vertex colors, vertex normals, and texture 
coordinates. While these approaches yield nice results, it is not 



clear how the appearance attribute error relates to the geometric 
error in this metric, or how to bound appearance error in the 
rendered image. Erikson and Manocha [1999] extend the quadric 
approach to support the joining of unconnected pieces of the mesh 
beyond just the initial threshold pairs. Their approach produces 
high quality drastic simplifications of potentially non-manifold 
models of arbitrary topology and fits well under a hierarchical 
level of details (HLOD) approach [Erikson and Manocha 1998]. 
The HLOD approach works best for scene graphs where there 
exist many logically or actually separated objects, as opposed to 
expansive contiguous meshes. 

The above methods can produce good models at a target LOD. 
In addition some of the methods above and others can produce 
either simplified or more complex models dynamically based on 
changing viewing parameters [Hoppe 1997; Lindstrom et al. 
1996; Lindstrom 2003; Pajarola 2001; Faust et al. 2000; El-Sana 
and Varshney 1999; Xia et al. 1997]. The latter capability is of 
significant importance for free navigation among highly detailed 
or large scale models where one may zoom in for a close-up look 
or back away for an overview. With these methods, views of large 
scale models, such as terrain, can be reduced by a factor of a 
hundred or more in polygon count without noticeable reduction in 
image quality [Lindstrom et al. 1996]. 

The view-dependent methods differ in the details of their 
approaches. Most of them use a merge hierarchy of some sort that 
is traversed at run-time to produce the current view, such as the 
merge tree [Xia et al. 1997] or the view-dependence tree (VDT) 
[El-Sana and Varshney 1999]. Like the VDT, the view-dependent 
progressive mesh (VDPM) [Hoppe 1997] imposes dependencies 
(restrictions to preserve mesh consistency) on the run-time 
simplification; however, they are looser and generally allow more 
optimally adaptive view-dependent simplifications. Luebke and 
Erikson [1997] describe a framework for view-dependent 
simplification of arbitrary polygonal environments based on a 
vertex clustering-based tight-octree hierarchy. Their vertex 
clustering tree (VCT) algorithm uses the screen-space projection 
of vertex deviation bounding spheres as the view-dependent 
simplification metric. This can be a very conservative bound due 
to the mismatch between the box-shaped clustering cells as well 
as lack of consideration for appearance attributes. 

Cohen et. al. [1998] present an algorithm for appearance-
preserving simplification. The approach involves a representation 
conversion whereby normal maps replace normals and texture 
maps are used for colors. This allows the algorithm to use a 
texture-deviation metric alone to guarantee appearance quality. 
The approach is able to generate low-polygon-count 
approximations of the original model while still preserving 
appearance, but it operates as a static simplification algorithm. 
While it is theoretically capable of generating single path 
simplification sequences as in a PM, it cannot be directly applied 
to an adaptive view-dependent simplification. Sander et al. [2001] 
present an approach for texture mapping progressive meshes that 
seeks to minimize texture stretch. The approach is mainly 
concerned with creating stretch minimizing texture atlases such 
that the entire PM simplification sequence can use the same map. 
Like Cohen et al. [1998], our approach is concerned with 
bounding the texture deviation, whatever the parameterization. 
 
3  Hierarchical Mesh Structure 
As with most view-dependent simplification approaches, our 
approach consists of two phases: an offline pre-processing phase 
and a run-time view-dependent meshing phase. The pre-
processing phase generates a hierarchy that encodes all possible 

selectively refined meshes attainable during the subsequent run-
time simplification phase. Similar to the VDT approach, we 
generate a vertex hierarchy of vertex-pair collapses from the 
bottom-up. However, instead of using the cubic-spline distance 
metric, we use an area-weighted quadric error metric with 
boundary preservation quadrics [Garland and Heckbert 1997] to 
determine the simplification sequence. During this pre-processing 
phase, we also calculate texture coordinates and incremental 
bounds on the texture deviation. These bounds are used during 
run-time to select the appropriate LOD approximation within a 
user-specified screen-space error bound. (See Section 4 for a 
description of geometry and texture deviations.) 

Lindstrom has developed a view-dependent quadric-based 
approach [Lindstrom 2003] that uses a regular resampling of the 
original surface tessellation. A significant difference between this 
approach and ours is that we retain the original tessellation. In 
addition we consider view-dependent error metrics that depend 
more generally on appearance attributes (geometry, texture, etc.) 
whereas Lindstrom only considers geometry. Garland and 
Heckbert [1998] have considered color and texture in a quadric 
approach, but without view-dependence. Although Lindstrom 
finds that resampling has little effect on the quality of the 
simplification for the models he considers, it is still possible that 
for certain models important details may either be lost or require 
excessively detailed resampling to retain them. In addition, the 
resampling grid must be chosen for each model, which introduces 
an additional complication to the modeling process. Our approach 
has neither of these potential drawbacks. Ultimately it may be that 
the two approaches can be combined to take advantage of both the 
powerful out-of-core capabilities of Lindstrom's method and the 
precision detail-handling of our approach. 

We thus make the following contributions. Our view-
dependent method uses a quadric-based structure that produces 
better visual quality than El-Sana and Varshney’s method [1999] 
and is built on the original surface rather than the resampled 
surface, as in Lindstrom’s method [2003]. It also depends on 
appearance attributes rather than geometric attributes alone (as in 
Lindstrom). In addition, as we show in Section 6, the structure is 
fast to build and traverse, as opposed to Hoppe's algorithm [1997; 
1999], which takes very long to preprocess. 

 
3.1  Quadric-Based Tree 
We have chosen the quadric approach because it quickly produces 
good quality simplifications of polygonal models by contracting 
arbitrary vertex pairs, not just edges. This procedure can produce 
better quality approximations than those restricted to edge 
collapses and is more general (in particular, it is useful for non-
manifold models encountered in urban, architectural, or other 
reality-based visualization). The quadric error metric (QEM) 
measures surface deviation and curvature by concisely encoding 
any number of plane equations of faces in the local neighborhood 
of a simplified point and its predecessors [Garland and Heckbert 
1997]. A quadric matrix (or simply, quadric) Q is the sum of any 
number of fundamental error quadrics Kp= ppT, where p = [a b c 
d]T represents the plane defined by ax + by + cz + d = 0, where a2 
+ b2 + c2 = 1. The quadric error ∆(v) = ∆([vx vy vz 1]T) = vT Q v, is 
the sum of squared distances from a point (vx,vy,vz) to all the 
planes encoded in Q. 

The basic quadric approach can be extended to preserve 
boundaries [Garland and Heckbert 1997]. For every edge on the 
boundary, we can construct a plane parallel to that edge and 
perpendicular to the face. We can compute the quadric for this 
plane (called a border quadric) and add it to the quadric of the 



face. For higher boundary preservation, the border quadric is 
multiplied by a weighting factor (we use a default of 1000) before 
being added in. We use these border quadrics to constrain the 
simplification process so it produces a particular lowest 
approximation. This is especially useful for simplifying 
collections of, say, buildings and other objects in an urban 
environment. Here, one needs to both move in for close-ups and 
navigate to an overview in the visualization [Davis et al. 1999; 
Jepson et al. 1996]. To support the overviews, the simplification 
should converge consistently to a collection of simple textured 
objects (such as a polygon for an extended façade or a box for a 
building or group of buildings). 

Constructing the Tree. Our approach builds a binary tree of 
vertices from the bottom up via a sequence of vertex merges. We 
begin with all the vertices of the original mesh M0, which will be 
the leaves of the eventual tree. We use the vertex-pair collapse 
sequence {vcol0, …, vcolk} of the quadric simplification 
algorithm to determine the order of vertex merges and the 
positions of the merged vertices. For vcoli, when merging two 
vertices Va and Vb ∈ Mi, we create a new vertex Vc ∈ Mi+1 to be 
the parent of Va and Vb in the tree. Pointers to the faces removed 
by this merge are stored as the subfaces of Vc and each subface 
retains a residence index, the index of Vc. This information will be 
used during run-time to update the mesh. The algorithm proceeds 
until there is one vertex, the root of the tree. Note that we could 
also stop when the last face is decimated, when the error of the 
most recent vertex merge has passed some threshold, or when 
reaching the above reference polygon. The result would then be a 
forest of binary trees [Hoppe 1997; Luebke and Erikson 1997]. 
 

V10 V11

V5

V8 V9

V4

V2

V1

V14 V15

V7V6

V3

Simplification Pass:
split: V7; merge: V10, V11

V10 V11

V5

V8 V9

V4

V2

V1

V14 V15

V7V6

V3

 
Figure 1: The vertex front is circled. Green nodes are active-
interior, blue nodes are active-boundary, and orange nodes are 
inactive. Here, vertex V7 is split and V10 and V11 are merged. 

V10
V11

V14
V15

V8 V9

V6

V4

V10
V11

V7

V6

V4

V5

V14
V15

V6

(a)

(b) (c)

Simp Pass

 
Figure 2: The pink, purple, and dark gray triangles are subfaces of 
V7, V5, and V4, respectively in Figure 1. (a) Full mesh. (b) Tree 
on left of Figure 1. (c) Tree on right. 
 
3.2  Mesh Updates 
The run-time meshing algorithm resembles the VDPM and is also 
similar to the VCT and VDT approaches. It maintains a linked list 

of active boundary vertices and a list of active triangles. A vertex 
may be active or inactive, and the active vertices may be on the 
boundary or interior. (See Figure 1.) The boundary vertices are all 
the leaf nodes of the sub-tree of all active vertices. These 
boundary vertices (referred to as a front in the tree) comprise all 
the vertices of the current selectively refined mesh, the list of 
active triangles. A simplification pass (Figure 2) consists of the 
traversal of the vertex front during which view-dependent 
simplification criteria are applied to decide whether to collapse, 
keep, or split a vertex node. A collapse removes a pair of vertices 
and adds their parent vertex to the active vertex list while a split 
replaces a vertex with its two child vertices. Depending on the 
mesh update information stored at the node, a split/collapse may 
also result in the introduction/removal of t triangles from the 
active triangle list. For the VDPM t is always 2, while our 
approach permits zero or more, allowing it to support arbitrary 
meshes as in the VCT. Unlike the VCT, it is able to exploit the 
binary tree structure to perform less work during this update. In 
contrast to the VDPM and the VDT, it neither stores, updates, nor 
enforces dependencies. 

Dependencies. Both the VDPM and the VDT enforce 
dependencies on the view-dependent simplification of the mesh to 
preserve some aspect of mesh validity or coherence including 
foldover-prevention and local adjacency information. However, 
this requires the algorithm to perform a few additional 
comparisons for every refinement evaluation as well as update the 
dependencies after every vertex split or merge occurs. In addition, 
to perform a desired vertex split, it may be necessary to split 
neighboring vertices and their neighbors therein (that is, to 
recursively evaluate a chain of dependencies) just to respect the 
dependencies. Because a long and expensive recursion might 
result, El-Sana and Varshney [1999] ignore the need to 
recursively activate secondary display vertices and instead opt for 
a lazy approach, waiting for vertices to split during later frames. 
For their VDT, they report that this is reasonable for slowly 
changing view-parameters. However, with our quadric-based tree, 
even slow navigation can result in a simplified mesh that is very 
visually inadequate for a long time, or it may never activate some 
visually critical nodes. Figure 3 demonstrates this phenomenon. In 
3a, the sphere was approached from the right and zoomed in. In 
3b, the entire sphere was brought into view all at once, allowing 
the supporting vertices to be present, followed by zooming in to 
the same view. The tessellation inside the viewing frustum of 3a is 
inadequate. (It should resemble that of 3b.) In Figure 3b, there is 
not much simplification outside the view frustum. The 
dependencies in 3b are overly restrictive due to a chain of 
dependencies. 
 

 
Figure 3: Effect of dependencies on two different navigation paths 

 
This phenomenon is more severe with our quadric-based tree 

than with the VDT, which is based on a spline-distance metric. 



The spline-distance metric is an indication of deviation across the 
surface.  With this metric, a vertex pair collapse on the surface is 
highly likely to increase the error of the potential subsequent 
collapse between the newly picked vertex and its neighbors. The 
quadric metric is an indication of deviation orthogonal to the 
surface, so a vertex pair collapse does not necessarily increase the 
quadric error of the new vertex with respect to its neighbors, 
particularly in flat or common curvature regions. Thus, a tree built 
with the quadric metric is much more likely to result in chains of 
dependencies as it is more likely to nest neighbors as ancestors or 
descendents of each other as opposed to across the tree 
horizontally as cousins. 

Note that the VDPM imposes less restrictive dependencies. 
Even though this would reduce the chance of inadequate 
refinement when taking the lazy approach (as in [El-Sana and 
Varshney 1999]), their algorithm opts for correctness and 
evaluates chains of dependencies anyway. 

In our approach, no run-time dependencies are enforced. The 
VDPM requires manifold surfaces, which is too narrow for our 
case, and the VDT is too restrictive in terms of the run-time 
simplifications it will permit. Instead, we allow the view-
dependent simplification criteria alone to determine the mesh 
from all those encoded in the tree structure. Not enforcing 
supplementary dependencies allows for maximally adaptive 
simplification and also speeds up computation of the active vertex 
front. Ignoring dependencies means that there may be a chance for 
mesh inconsistencies, such as foldovers, during run-time 
simplification. However, these hardly ever occur in practice, 
although they are somewhat more likely for artificial meshes 
(such as meshes for flat or nearly flat walls). For textured 
surfaces, our screen-space appearance metric bounds texture 
deviation. So any visual artifacts due to foldovers on texture-
mapped surfaces with no additional surface-dependent visual 
ornamentation, e.g. specular highlights, have negligible visible 
impact (when the texturing is applied to both sides of the 
polygons). In practice we have found that not only do foldovers 
occur infrequently, but also that visual artifacts due to foldovers 
are not noticeable. This is consistent with our approach to focus 
on preserving appearance attributes rather than on mesh 
consistency. This is reasonable since the mesh itself often has no 
fundamental value (as in models acquired from laser range data or 
even in some constructed models) and sometimes is not even 
consistent, as in non-topological models. 

 
4  View-Dependent Metrics 
We now describe the details of the deviation metrics that are used 
to select a particular LOD during run-time.  We first define how 
the metrics are computed during the pre-processing phase and 
then describe how to apply them at run-time. 
 
4.1  Deviation Metrics 
We consider several deviation metrics that encompass either 
geometric or texture error measures, as shown in Figure 4. In 
Section 6, we will evaluate and compare these metrics, using them 
on different models. 

For the merge of vertices Va and Vb ∈ Mi to vertex Vc ∈ Mi+1, 
we define measures for the geometric deviation incurred. In 
Figure 4, each of these deviations is indicated by red dotted lines. 
These include the collapse distance deviation vectors GCDV : Gab = 
Vb – Va, Gac = Vc - Va (Figure 4A), and the incremental surface 
distance deviation vectors GISV: Gc = Vc - Hi(Vc), Ga = Hi+1(Va) - 
Va, Gb = Hi+1(Vb) - Vb (Figure 4B) where Hj(X) is the 3D point on 
mesh Mj closest to point X. The quadric error vector GQV = 

∆(Vc)  ̂ n  (Figure 4C), simplistically computed by scaling the 
surface normal  ̂ n  (which is the direction of highest deviation 
from the surface) by the quadric error at VC [Lindstrom 2003], 
provides a better alternative. In practice, this measure uses the 
quadric error to scale a careful characterization of the actual 
normals involved, which is derived from the same quadric 
matrices. Alternatively, a simpler but less precise formulation is to 
use the quadric error as the radius of a bounding sphere, which 
results in a conservative bound. Notably, GCDV and GISV measure 
incremental errors, which are in general non-monotonic, while the 
quadric metrics measure errors from the original mesh, which are 
monotonic. In principle, the quadric metric should be the most 
accurate measure of geometric deviation. 

Figure 4: Several metrics for view-dependent simplification 
 
Geometric deviation gives an incomplete measure of the 

actual appearance deviation. We must also track texture deviation, 
which is the measure of how far a point Vi on a surface Mi has 
deviated from the point Vj on another surface Mj that has the same 
texture coordinate as Vi. Using notation from Cohen et al. [1998], 
we can map between 3D object space and 2D texture space. The 
function, Fj(X): Mj →  P, maps point, X, on the surface, Mj, to 
point, x, in the 2D texture domain, P.1 The inverse function, F-

1
i(x): P →  Mi, maps point x in the texture domain P to a point X 

on surface Mi. We now define a one-way incremental texture 
deviation vector GT1V = Vc - Pc, where Pc = F-1

i(Fi+1(Vc)),and a set 
of two-way incremental texture deviation vectors GT2V: (GT1V, Va 
– Pa, Vb – Pb), where Pa = F-1

i+1(Fi(Va)) and Pb = F-1
i+1(Fi(Vb)). 

(Figure 4D and Figure 4E illustrate GT1V and GT2V, respectively.) 
The length of GT1V or the max length of the vectors in GT2V can 
also be used as the radius of a bounding sphere. Since this radius 

                                                 
1 Capital letters (e.g., X) refer to points in 3D, while lower case 
letters (e.g., x) refer to points in the texture domain. 

Collapse Distance
Deviation (CDV)

possible surface Mi+1

current surface Mi

original surface M0

deviation vectors

Va Vb

Vc 
Two-Way Incremental Surface

Distance Deviation (ISV) 

Va Vb 

Vc 

Quadric Error Deviation (QV)

Va Vb

Vc

Va Vb 

Vc 

Pc

One-Way Incremental 
Texture Deviation (T1V)

Va Vb 

Vc

Pa

Two-Way Incremental 
Texture Deviation (T2V)

Pb 
Pc

Total Texture Deviation

(A) (B) 

(C) (D) 

(E) (F) 

Va Vb

Vc



is non-monotonic (as is the case with all the other incremental 
metrics), we calculate the bounding sphere radius r(Vc) = ||G|| + 
max(r(Va), r(Vb)), where G is the deviation vector of choice, be it 
geometric deviation or texture deviation. The difference between 
one-way and two-way deviations is that the former calculates only 
the deviation from Mi due to Vc, while the latter calculates this 
deviation plus the deviation from Mi+1 due to Va and Vb. The two-
way incremental deviation will thus provide a better bound. 

Texture coordinates for Vc are calculated by using the texture 
coordinate of the point closest to Vc in mesh Mi. That is, Fi+1(X) = 
Fi(Hi(X)). Note that the mapping is potentially not one-to-one.  
Furthermore, for the two-way bounds, we seek the texture 
coordinate for Vc that results in the smallest r. Therefore, the 
approach examines only the local neighborhood Ni,Vc of  Vc and 
looks for the texture coordinate from the closest points to the 
faces in NVc that minimizes the max two-way texture deviation. 

Figure 4F describes the total texture deviation between the 
merged surface and the original surface. In this case deviations 
from all affected texture coordinates must be included [Cohen et 
al. 1998]. This total deviation is too complex to consider for 
interactive view-dependent simplification, hence we devise 
approximate metrics to bound it. 

Screen-Space Deviation. To determine the maximum screen-
space deviation, we select one of the above deviation metrics and 
project the deviation bounding sphere to screen space. 

As with most approaches, e.g. [Hoppe 1997; Pajarola 2001; 
Lindstrom 2003], we opt for an approximate but more efficient 
evaluation instead of precise evaluation.  We calculate the 
projected radius, p, of the sphere centered at v with radius r as 
follows. 

γ = 2 * h / φ 
p = γ * r / (v - e)    •

r 
e  

where h is the vertical size in pixels of the viewport, φ is the 
(vertical) field of view angle, γ is an approximation of the pixels 
per view angle subtended, and     

r 
e  is the view direction vector, 

which is calculated once per view.  A vertex is refined if its p is 
less than a pixel threshold τ. 

This approximation overestimates the projection sizes near the 
view center and overestimates those further away. Furthermore, 
the neighborhood of V on an adaptively simplified mesh may be 
different than the neighborhood of V for which the bounds were 
originally calculated during the build phase. 

 Hoppe [1997] estimates the Hausdorf distance between Nv,i+1, 
the local neighborhood of v after edge collapse i, and Nv,0, the 
corresponding local neighborhood on the original mesh, M0, by 
analyzing the residual error vectors from a dense set of points on 
M0. The distance bound obtained is used as the radius µ of the 
bounding sphere, which is used to bound error during view-
dependent refinement. In addition, this approach can project a 
vector scaled in the direction of the normal that biases the 
refinement for preserving geometry on or near the silhouette. This 
approach yields nice results, but requires significant computation, 
especially if it were to be extended to account for texture 
deviation. Although the tree is built off-line, it is still desirable to 
have an efficient build phase, especially for applications such as 
urban modeling where data generation to visualization turn-
around time is important. 

 
4.2  Frustum and Backface Culling 

Each node of the vertex tree stores a frustum culling bounding 
sphere radius that bounds all descendant vertices. Our 

implementation compares the sphere with the six planes of the 
view frustum. Nodes with frustum-culling bounding spheres that 
intersect the frustum are candidates for refinement. Alternatively, 
one can opt for a faster but more conservative evaluation of view 
frustum visibility as in the frustum cone of Pajarola [2001]. 

For closed manifold models of objects, faces on the back side 
with respect to the viewpoint are not visible as long as the 
viewpoint is never located inside the model. Therefore, it makes 
sense to allow these faces to simplify as much as possible. Like 
Hoppe [1997] and Pajarola [2001], we bound the spread of 
normals of the adjacent faces of a vertex v and the descendants of 
v with a cone represented as the vertex normal,  ̂ n v, and a cone 
angle, αv. Α vertex is considered unnecessary for supporting a 
front face if  ̂ n v • (v - e) / ||v - e|| > sin αv holds. The situation is 
more complicated, of course, for open or non-manifold models, as 
are sometimes encountered in urban visualization. 

 
5  Implementation 
We have developed several structures, based on the VDPM 
[Hoppe 1997] and the VCT approach [Luebke and Erikson 1997], 
to make the run-time traversal of the above trees efficient. Our 
approach extends the VDPM to general meshes without requiring 
the use of dependencies, while being able to update the mesh 
more efficiently than the VCT due to the binary structure of the 
tree. ListNode is a doubly linked list structure used to string 
together faces in the active triangle list and vertices in the active 
vertex list. An index is used to locate the respective face or vertex 
being linked. Face consists of references to the three original and 
the three current vertices of a triangle. The residence_index refers 
to the index of the vertex node in which the face becomes a 
subface. Vertex consists of a 3D point location, a 2D texture 
coordinate, refinement information, binary tree id and depth, 
adjacent face and subface lists, and pointers to the parent and two 
child nodes. RefineInfo depends on the selective refinement 
approach used. It includes a bounding sphere radius for frustum 
culling as well as information that defines a deviation space to be 
projected into screen space in order to make a refinement decision 
on the node. Below is a listing of the structural organization. 

struct ListNode { 
     long index;  // unique identifier 
     ListNode *next; 
     ListNode *prev; 
}; 
struct Face { 
     ListNode active;  // list stringing active faces 
     Vertex *vertices[3]; // the original vertices 
     Vertex *proxies[3]; // the current vertices 
     long residence_index; // index of the vertex where this 

// face is a subface 
}; 
struct Vertex { 
     ListNode active; // list stringing active boundary vertices 
     NodeStatus status;  // inactive, active, or active boundary 
     3-Vector pos;  // point location 
     3-Vector normal;  // normal vector 
     2-Vector texture_pos; // texture coordinate 
     RefineInfo refine_info; // selective refinement info 
     FaceNode *faces;  // head of linked list of pointers to Face 
     FaceNode *subfaces; // faces collapsed in this node 
     BitVector tree_id;  // binary tree id; root is 1, child nodes 

// are id*2 and id*2+1 
     int depth;  // depth in the binary tree 
     Vertex *parent;  // parent node to collapse into 
     Vertex *vt, *vu;  // child nodes to refine to 
}; 



Iterative Updates. We need efficient per-vertex handling for 
merges and splits that are made at run-time in the view-dependent 
simplification. On a merge, the approach is to deactivate the 
subfaces, move all other adjacent faces to the parent node, and 
update the corner references of the faces. The approach on a split 
is to activate the subfaces, distribute the adjacent triangles (and 
the subfaces) to the appropriate child node, and update the corner 
references. Our algorithm differs from the VCT in two ways: we 
maintain adjacent triangle lists for each vertex in the active mesh 
and we leverage the binary tree structure to minimize calls to the 
routine that finds the lowest active ancestor of a node. This is 
desirable since this routine is the most computationally expensive 
part of the inner loop of these routines. The pseudocode for the 
collapse of v (the merge of its two child nodes) and the split of v 
into its two child nodes is as follows. 

collapseVertex(Vertex *v) 
     for each subface s of v 
          removeAdjacency(s->proxies[3], s); 
          deactivateFace(s); 
     for each face f of v->vt 
          if f->residence_index = v->active.index then 
               removeAdjacency(v->vt, f); 
     for each face f of v->vu 
          if f->residence_index = v->active.index then 
               removeAdjacency(v->vu, f); 
     linkLists(v->vt->faces, v->vu->faces, v->faces); 
     activateVertex(v); 
     deactivateVertex(v->vt); 
     deactivateVertex(v->vu); 

splitVertex(Vertex *v) 
     for each subface s of v 
          activateFace(s); 
          lowestActiveAncestor(s->proxies[3], s); 
          for each corner c of {1, 2, 3} 
               addAdjacency(s->proxies[c], s); 
     for each face f of v 
          if childIsLeft(f, v) then 
               addAdjacency(v->vt, f); 
          else 
               addAdjacency(v->vu, f); 
     for each face f of v->vt 
          for each corner c of {1, 2, 3} 
               if f->proxies[c] = v then 
                    f->proxies[c] := vt; 
     for each face f of v->vu 
          for each corner c of {1, 2, 3} 
               if f->proxies[c] = v then 
                    f->proxies[c] := vu; 
     clearList(v->faces); 
     activateVertex(v->vt); 
     activateVertex(v->vu); 
     deactivateVertex(v); 

In the pseudocode, activate… and deactivate… add/remove faces or 
vertices to/from the active lists; addAdjacency(v, s) and 
removeAdjacency(v, s) add/remove face s to/from the adjacent face 
list of vertex v; linkLists(a, b, c) concatenates lists a and b and 
moves the resulting list to c. In addition, lowestActiveAncestor(v, s) 
replaces the proxy of vertex v of face s with the lowest active 
ancestor of vertex v in the tree; childIsLeft(f, v) uses the depth of 
vertex v and the tree_id of the corresponding proxy of face f to 
determine whether the face belongs in the adjacent faces list of the 
left or right child of v; clearList(a) clears linked list a. Note that we 
always store vt and vu, the child nodes of the residence node of 
the face, in corner indices 1 and 2, thus s->proxies[3] refers to the 
other vertex involved. The implementation of clearList() is trivial 

(set list to NULL) since the nodes of the adjacent face list of v are 
moved into the child node lists, thus emptying the list of v.  

 
6  Results and Discussion 
We test our approach and evaluate the various metrics using a 
variety of models of different types (Figs. 5-8). The sphere, wall, 
and wave models are procedurally generated and include texture 
coordinates. The wall [Wonka et al. 2003] is comprised of 1800 
separate components with arbitrarily connectivity. The wave is a 
height-field of sine waves that continuously vary in frequency. 
The bunny, the Buddha, and the building façade are models 
constructed from scanned data. The building façade [Früh and 
Zakhor 2001] includes texture information scanned concurrently 
with the geometry, and thus possesses an inherently correct 
parameterization. 

 

model verts tris 
initial 
pairs load init T1V ISV T2V

tree 
height

sphere 10k 20k 30k 0.17 0.19 0.36 0.44 0.84 54 
wave 103k 205k 308k 1.64 2.22 4.64 5.22 8.16 26 
bunny 36k 69k 104k 0.49 0.77 1.48 1.70 1.77 22 
buddha 150k 300k 450k 2.12 6.05 7.31 8.06 8.49 26 
façade 49k 97k 146k 1.03 0.95 2.05 2.36 3.86 36 
wall 3.6k 7.2k 36k 0.14 3.67 0.25 0.28 0.52 31 
Table 1. Model and build information.  All timings are in seconds. 
 

Table 1 gives basic information, including size, initial 
candidate simplification pairs, and tree height, for these various 
models and shows their respective tree construction times in 
seconds. (These timings are from our prototype implementation 
running on a 2.4GHz Pentium4 Win2k PC with 512MB of 
RDRAM and a NVIDIA Quadro4 900XGL graphics card.) Our 
build times are comparable with qslim [Garland and Heckbert 
1997] since the quadric simplification approach is the foundation 
of our tree build algorithm. On top of the basic algorithm, we 
perform additional computation associated with the view-
dependent structure, including linking the tree, computing texture 
coordinates, and computing run-time refinement information such 
as the error bounds. The two-way texture bounds (T2V) followed 
by the two-way geometric bounds (ISV are the most 
computationally expensive error bounds to compute, so those 
build times are listed separately. The total build times are 
significantly faster than for some other methods [Hoppe 1997]. 

For a fly through of the wave model, we achieve average 
frame rates of 20fps, where 54 percent of each frame is devoted to 
the simplification pass and the rest to rendering. We achieve 
simplification throughputs of over 60k triangles per second (tps) 
for collapses and over 50k tps for splits. Because we have 
concentrated on the new view-dependent structure and error 
metric implementation in this paper, our implementation is un-
optimized for rendering. It traverses a linked-list for every 
refinement pass and traverses a linked-list to render every frame.  
We have not implemented optimizations, such as vertex arrays (as 
in [El-Sana and Bachmat 2002]) and display lists (as in 
[Lindstrom 2003]), or mesh update optimizations, such as 
prioritized traversal [El-Sana and Bachmat 2002], triangle-budget 
simplification [Luebke and Erikson 1997], asynchronous 
simplification [Luebke and Erikson 1997], etc. We anticipate that 
significant improvement in performance would result in 
incorporating any of the above, which is straightforward for most. 



 

  
Figure 5: View-dependent simplification of bunny and wave 
models. Triangle counts are  36k of 69k and 43k of 205k. 

 

  
Figure 7: Wall model with (left) and without texture 

 
Figure 5 shows the view-dependent simplification in action. 

For the bunny model, notice the high fall-off in mesh tessellation 
density outside the view frustum (blue outline). The wave model 
(right) exhibits more simplification in areas of lower frequency 
content (towards the lower right of the image) and less 
simplification in areas of higher frequency content (towards the 
upper left). Here we use GT2V.  The GISV, GQV, and GT1V metrics 
behave similarly. 

Figure 6 shows the facade model simplified using each metric 
at one pixel screen-space deviation for 1024 x 768 pixel views. 
The blue box shows the viewport. The first pair (6A, 6B) is at full 
resolution; each subsequent pair is for a different metric. In each 
pair, the right-hand image shows the mesh explicitly. Note that the 
geometry-only metric GCDV (6E, 6F) preserves appearance, but 
does not allow much simplification. Also note that the geometry-
only metric GISV (6I, 6J) allows significant simplification, but fails 
to bound texture deviation. As shown in (6C, 6D), GT1V bounds 
texture deviation at the vertices of the active mesh, but not in 
between. GT2V (6G, 6H) not only bounds texture deviation at the 
vertices, but it also bounds deviation across the faces. The quadric 
sphere metric GQV (6K, 6L) gives nice adaptive simplification, 
refining more in areas of high geometric detail, but guarantees no 
bounds on texture deviation. Furthermore, there is less of a fall-off 
in tesselation for portions of the model further from the viewpoint 
than with other approaches. 

Figure 7 demonstrates that our scheme can preserve 
appearance even on piecemeal meshes such as the wall model. 
This an architectural model generated with a procedural technique 
where mesh topology is not enforced. Notice how the mesh falls 
apart outside the view frustum, yet inside is virtually 
indistinguishable from the original. As it moves inside the 
frustum, the outside mesh also reforms consistently. Finally, 
Figure 8 shows the Buddha model simplified with the texture 

deviation metric GT2V, despite it not being given (nor does it 
compute) a texture parameterization. The GT2V metric gracefully 
falls back to GISV. 

 
7  Conclusions and Future Work 
We have presented a quadric-based approach for appearance-
preserving, view-dependent visualization of triangulated models. 
We have described a method for quickly generating a 
visualization-ready hierarchy from an input model. This hierarchy 
can be efficiently traversed for view-dependent rendering. In 
addition the data structure accommodates different error metrics. 
We have characterized the relative merits of several metrics in 
determining the appropriate mesh for preserving appearance. We 
have presented results for several models that show the visual 

quality of our approach and the merits 
of the different error metrics.  

For future work, normal maps and 
vertex color information can be added 
to the formalism to efficiently 
improve the appearance-preserving 
character of non-texture mapped 
models. A formulation for boundary 
preservation using reference planes 
can be built on our approach to permit 
consistent transition to simple textured 
objects appropriate for overviews of 
collections of objects. In addition a 
more general approach could be 
developed for urban models based on 
architectural semantics [Wonka et al. 
2003] that would support interactive 
3D planning. Finally large collections 
of models could be placed in a 
scalable structure for interactive 
visualization that ranges over all 
scales. Our approach has the 
flexibility to support all these avenues. 
 

8  Acknowledgements 
We acknowledge the Stanford Computer Graphics Lab for the use 
of the bunny and Buddha models. This work is supported by the 
Department of Defense's MURI program, administered by the 
Army Research Office; it is also supported by a grant from the 
NSF Large Scientific and Software Data Visualization program. 
 
References 
COHEN, J., OLANO, M., AND MANOCHA, D. 1998. Appearance-Preserving 

Simplification of Polygonal Models. In Proceedings of ACM 
SIGGRAPH 98, 115-122. 

DAVIS, D., JIANG, T.F., RIBARSKY, W., FAUST, N. 1998. Intent, 
Perception, and Out-of-Core Visualization Applied to Terrain. In 
Proceedings of IEEE Visualization 98, 455-458. 

DAVIS, D., RIBARSKY, W., JIANG, T. Y., FAUST, N., AND HO, S. 1999. 
Real-Time Visualization of Scalably Large Collections of 
Heterogeneous Objects. Report GIT-GVU-99-14, Proceedings of 
IEEE Visualization 99, 437-440. 

EL-SANA, J. AND VARSHNEY, A. 1999. Generalized View-Dependent 
Simplification. In Computer Graphics Forum (Proceedings of 
Eurographics 99), 18, 3, 83-94. 

EL-SANA, J. AND BACHMAT, E. 2002. Optimized View-Dependent 
Rendering for Large Polygonal Datasets. In Proceedings of IEEE 
Visualization 2002, 77-84. 

 

 
Figure 8: Buddha model 
simplified with GT2V 



ERIKSON, C. AND MANOCHA, D. 1998. Simplfication Culling of Static and 
Dynamic Scene Graphs. UNC Chapel Hill Computer Science 
Technical Report TR98-009. 

ERIKSON, C. AND MANOCHA, D. 1999. GAPS: General and Automatic 
Polygonal Simplification. 1999 Symposium on Interactive 3D 
Graphics, 79-88. 

FAUST, N., RIBARSKY, W., JIANG, T. Y., AND WASILEWSKI, T. 2000. Real-
Time Global Data Model for the Digital Earth. International 
Conference On Discrete Global Grids. An earlier version is in Rep. 
GIT-GVU-97-07. 

FRÜH, C. AND ZAKHOR, A. 2001. 3D Model Generation for Cities Using 
Aerial Photographs and Ground Level Laser Scans. In Proceedings of 
IEEE Computer Vision and Pattern Recognition Conference, 31-38. 

GARLAND, M. AND HECKBERT, P. 1997. Surface Simplification Using 
Quadric Error Metrics. In Proceedings of ACM SIGGRAPH 97, 209-
216. 

GARLAND, M. AND HECKBERT, P. 1998. Simplifying Surfaces with Color 
and Texture using Quadric Error Metrics. In Proceedings of IEEE 
Visualization 98, 263-269. 

HOPPE, H. 1996. Progressive Meshes. In Proceedings of ACM SIGGRAPH 
96, 99-108. 

HOPPE, H. 1997. View-Dependent Refinement of Progressive Meshes. In 
Proceedings of ACM SIGGRAPH 97. 189-198. 

HOPPE, H. 1999. New Quadric Metric for Simplifying Meshes with 
Appearance Attributes. In Proceedings of IEEE Visualization 99, 59-
66. 

JEPSON, W., LIGGETT, R., AND FRIEDMAN, S. 1996. Virtual Modeling of 
Urban Environments. Presence, 5, 1, 72-86. 

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., 
PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J., 
SHADE, J., AND FULK, D. 2000. The Digital Michelangelo Project: 3D 
Scanning of Large Statues. In Proceedings of ACM SIGGRAPH 2000, 
131-141. 

LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L. F., FAUST, N., 
AND TURNER, G. A. 1996. Real-Time, Continuous Level of Detail 
Rendering of Height Fields. In Proceedings of ACM SIGGRAPH 96, 
109-118. 

LINDSTROM, P. 2003. Out-of-Core Construction and Visualization of 
Multiresolution Surfaces. In Proceedings of ACM SIGGRAPH 2003 
Symposium on Interactive 3D Graphics, 93-102, 239. 

LUEBKE, D. AND ERIKSON, C. 1997. View-Dependent Simplification of 
Arbitrary Polygonal Environments. In Proceedings of ACM 
SIGGRAPH 97, 199-208. 

NEUMANN, U., YOU, S., HU, J., JIANG, B., AND LEE, J. 2003. Augmented 
Virtual Environments (AVE): for Visualization of Dynamic Imagery. 
IEEE Virtual Reality 2003, 61-67. 

PAJAROLA, R. 2001. FastMesh: Efficient View-dependent Meshing. In 
Proceedings of Pacific Graphics 2001, 22-30. 

RIBARSKY, W. 2003. Virtual Geographic Information Systems. To be 
published. The Visualization Handbook, Charles Hansen and 
Christopher Johnson, ed., Academic Press, New York. 

ROSSIGNAC, J. AND BORREL, P. 1993. Multi-resolution 3D 
Approximations for Rendering Complex Scenes. Geometric Modeling 
in Computer Graphics, 455-465. 

SANDER, P., SNYDER, J., GORTLER, S., HOPPE, H. 2001. Texture Mapping 
Progressive Meshes. In Proceedings of ACM SIGGRAPH 2001, 409-
416. 

SCHROEDER, W., ZARGE, J., AND LORENSEN, W. E. 1992. Decimation of 
Triangle Meshes. In Computer Graphics (Proceedings of ACM 
SIGGRAPH 92), 65-70. 

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W. 2003. Instant 
Architecture. In Proceedings of ACM SIGGRAPH 2003, 669-677. 

XIA, J. C., EL-SANA, J., VARSHNEY, A. 1997. Adaptive Real-Time Level-
of-Detail-Based Rendering for Polygonal Models. IEEE Transactions 
on Visualization and Computer Graphics, 3, 2, 171-183. 

 

Figure 6: Façade model comparing different metrics at a resolution of 1 pixel (except for 6A, which is full resolution).  Triangle counts 
are (AB) FULL = 48117, (CD) T1V = 3989, (EF) CDV = 42841, (GH) T2V = 29245, (IJ) ISV = 13825, (KL) QV = 27386. 

A B C D

E F G H

I J K L

A B C D

E F G H

I J K L


