
Visibility Preprocessing for Urban Scenes using Line Space Subdivision

Jiřı́ Bittner
Center for Applied Cybernetics

Czech Technical University in Prague
bittner@fel.cvut.cz

Peter Wonka
Institute of Computer Graphics

Vienna University of Technology
wonka@cg.tuwien.ac.at

Michael Wimmer
Institute of Computer Graphics

Vienna University of Technology
wimmer@cg.tuwien.ac.at

Abstract

We present an algorithm for visibility preprocessing of
urban environments. The algorithm uses a subdivision of
line space to analytically calculate a conservative poten-
tially visible set for a given region in the scene. We present
a detailed evaluation of our method including a comparison
to another recently published visibility preprocessing algo-
rithm. To the best of our knowledge the proposed method is
the first algorithm that scales to large scenes and efficiently
handles large view cells.

1. Introduction

Applications in urban simulation, such as architectural
walkthroughs, driving simulation, or visual impact analy-
sis, have to cope with large amounts of data. A popular
approach to reduce the amount of geometry to be rendered
is to precompute visibility in order to render only objects
that can be seen. The view space is usually broken down
into a number of view cells, and for each view cell, a po-
tentially visible set (PVS) is precalculated [23, 12, 31, 16].
This concept is depicted in Figure 1.

Calculating visibility for a 3D spatial region is a complex
problem. Previous methods (Schaufler et al. [23] and Du-
rand et al. [12]) rely on several simplifications to cope with
the computational complexity of 3D visibility. While these
algorithms can handle a large variety of scenes, they only
consider a subset of possible occluder interactions (also
called occluder fusion) and require comparatively high cal-
culation times.

It is useful to develop visibility algorithms building on
simplifications that match the demands of specific types of
scenes. Wonka et al. observed that urban environments can

be seen as 2.5D scenes [31]. Although they propose an al-
gorithm that handles all types of occluder fusion and treats
occlusion systematically, it does not scale very well to large
scenes and large view cells.

In this paper, we propose a visibility algorithm for 2.5D
environments which significantly improves the scalabil-
ity of previous methods. The algorithm exhibits output-
sensitive behavior and therefore it is especially useful for
large scenes and large view cells, both of which cannot be
easily handled by previous techniques1. Additionally, we
will demonstrate on a test model of Vienna that the visibil-
ity solution provided by our algorithm finds a tighter PVS
than the method proposed by Wonka et al. [31], while re-
quiring less calculation time.

The main idea of the algorithm presented in this paper is
to combine an exact solution to 2D visibility in line space
with a conservative solution in primary space for the re-
maining “half” dimension. The only simplification used
in our algorithm is based on conservatively approximating
edge-edge-edge (EEE) event surfaces (ruled quadrics [27])
by planes. The key observation is that while EEE event sur-
faces do occur for typical view cells in an urban scene, they
rarely result in a change of visibility classification.

2. Related work

A lot of research has been devoted to visibility problems
due to their importance in computer graphics, computer vi-
sion, and robotics. An excellent interdisciplinary survey
was recently published by Durand [10]. We first review rel-
evant visibility algorithms for 3D scenes, then we survey
related 2.5D and 2D visibility methods.

1After submitting this paper for review, Koltun et al. [17] published a
method that also efficiently handles large view cells.

(a) (b) (c)

Figure 1. (a) Selected view cell in the scene representing the city of Vienna and the corresponding
PVS. The dark regions were culled by hierarchical visibility tests. (b) A closeup of the view cell and
its PVS. (c) Snapshot of an observer’s view from a viewpoint in the view cell.

Exact regional visibility for 3D scenes is a very demand-
ing task. It was addressed by Plantinga and Dyer [20], who
used the aspect graph—the graph of all qualitatively differ-
ent views of an object (aspects). Durand et al. [11] intro-
duced the visibility skeleton that captures all critical visual
events. Teller [27], Drettakis and Fiume [9], and Stewart
and Ghali [25] dealt with the 3D regional visibility problem
in the context of computation of shadow boundaries. All
currently published exact methods are not directly applica-
ble to large scenes due to their computational complexity
and robustness problems.

Visibility culling techniques have been introduced to
speedup rendering of large scenes where only a fraction
of the scene is actually visible [5]. Generally, we can
distinguish between offline methods that preprocess vis-
ibility, and online methods that perform most visibility
culling in real time. General techniques for image-space
online visibility culling are the hierarchical z-buffer in-
troduced by Greene et al. [13] and hierarchical occlusion
maps described by Zhang et al. [32]. Object-space methods
for online occlusion culling were proposed by Coorg and
Teller [8], Manocha et al. [15] and Bittner et al. [2]. On-
line techniques require recomputation of visibility for each
change of the viewpoint and do not provide global visi-
bility information. On the contrary, the offline techniques
typically precompute a superset of visible objects for each
viewpoint of a given view cell.

Airey et al. [1] applied visibility preprocessing to ar-
chitectural models. Visibility in indoor scenes was further
studied by Teller and Séquin [28]. Both methods partition
the scene into cells and portals. For each cell they iden-
tify objects visible through sequences of portals. These
objects form a PVS for each cell. An online variant of

the cell-portal visibility algorithm was published by Lue-
bke and Georges [18]. These methods are restricted to in-
door scenes with a particular structure. Recently, several
techniques for visibility preprocessing were introduced that
are suited to urban environments. Cohen-Or et al. [6] use
ray-shooting to sample occlusion due to a single convex oc-
cluder. Schaufler et al. [23] use blocker extensions to handle
occluder fusion—occlusion due to multiple occluders. Du-
rand et al. [12] propose extended occluder projections and
an occlusion sweep to handle occluder fusion. Wonka et
al. [31] use cull maps for visibility preprocessing in 2.5D
scenes. Visibility in terrains was studied by Stewart [24],
and Cohen-Or and Shaked [7].

2D visibility was studied intensively in computational
geometry as well as in computer graphics. The visibil-
ity graph [30] is a well-known structure for capturing vis-
ibility in 2D scenes. Vegter introduced the visibility dia-
gram [29], which contains more information than the visi-
bility graph. The visibility complex is a similar structure in-
troduced by Pochiolla and Vegter [21]. The visibility com-
plex for polygonal scenes was studied by Riviere [22]. Orti
et al. use the visibility complex for 2D radiosity [19], Cho
and Forsyth [4] applied it to 2D ray tracing. Hinkenjann and
Müller [14] describe hierarchical blocker trees—a discrete
structure similar to the visibility complex.

3. Overview

In this paper, we consider scenes of 2.5D nature, as for
example models of urban environments. Such scenes can
contain arbitrary geometry, but occluders are restricted to be
vertical trapezoids connected to the ground (typically build-

ing façades). The goal of the algorithm is to determine all
objects that are potentially visible from a convex polyhe-
dral view cell made up of several vertical faces. In order
to solve this task, it is sufficient to consider only the top
edges of all scene entities—the view cell faces, occluders
and object bounding boxes [31].

Our algorithm organizes the scene in a spatial hierarchy.
For each top edge of a given view cell, it processes occlud-
ers in an approximate front-to-back order and incrementally
builds a hierarchical structure in line space which represents
the currently visible parts of the scene with respect to the al-
ready processed occluders.

For each occluder, we perform the following steps:

� Construct a line space blocker polygon from its 2D
footprint on the ground plane.

� Calculate intersections with already processed blocker
polygons. As a result, the blocker polygon is split into
several fragments. Each fragment represents a set of
rays that can be blocked by the same sequence of oc-
cluders. This set of rays also induces a certain occluder
fragment.

� For each blocker polygon fragment, we test visibility
of the corresponding occluder fragment by mapping
the problem back to primary space.

� If an occluder fragment is found visible, the line space
structure is updated accordingly.

The remainder of the paper is organized as follows: In
Section 4 we discuss the correspondence between primary
space and line space. In Section 5 we describe the fun-
nel visibility test used to determine if an occluder fragment
is visible with respect to a given set of rays. In Section 6
we outline the complete hierarchical visibility algorithm. In
Sections 7 and 8 we evaluate and discuss our implementa-
tion of the proposed methods.

4. Visibility and line space

The proposed visibility algorithm operates mainly on a
2D projection of the scene. The “heights” of scene entities
are considered only when necessary.

In order to solve the underlying 2D visibility problem,
we use a mapping of oriented 2D lines to points in 2D ori-
ented projective space that we call line space [26, 27]. Con-
sequently, points in primary space map to oriented lines
in line space. To denote entities in line space, we use the
“starred notation”, e.g. line l maps to l�.

The mapping of the problem to line space allows us to
represent complex 2D ray bundles (which carry the crucial
part of visibility information) by simple polygons. For more
details on the mapping see [3].

4.1. Blocker polygon

In this section, we describe the correspondence of oc-
cluders in primary space and blocker polygons in line space.
A blocker polygon carries the 2D visibility information in-
duced by an occluder and an edge of the given view cell.
More specifically, it represents all 2D rays that emanate
from the view cell edge and intersect the occluder. This set
of rays is bounded by four critical lines, forming an hour-
glass shaped region that we call funnel (see Figure 2-(a)).
The four critical lines map to points in line space and these
points define the corresponding line space blocker polygon
(see Figure 2-(b)).

Conversely, starting from a blocker polygon a corre-
sponding funnel in primary space can be constructed by
inverse mapping of the vertices of the blocker polygon to
oriented lines in primary space.

d

c

b

S
O

a
ac*

c*
bc*

bd*
ad* d*

b*
a* Q*Q

(a) (b)

Figure 2. (a) A view cell edge S and an oc-
cluderO. (b) Blocker polygonQ� correspond-
ing to the primary space funnel Q.

If only 2D visibility were required, blocker polygons
could be used to solve the visibility problem in the follow-
ing way: process occluders in front-to-back order. To deter-
mine whether a newly added occluder is visible, it suffices
to test whether its associated blocker polygon is completely
covered by other blocker polygons in line space. In such
a case, the occluder is invisible: any 2D ray through which
the new occluder could be visible is occluded by the already
processed occluders.

4.2. Subdivision of line space

Mapping several occluders to line space induces a subdi-
vision of line space into polygonal cells. Each cell contains
a sequence of blocker polygons ordered by the distance of
the occluders to the given view cell edge. This means that a
2D ray defined by a point in such a cell intersects all occlud-
ers associated with the cell. Figure 3 depicts a line space
subdivision induced by three occluders.

O3

O2

O1O3

O2

O1

O3O2

O3
S

O1

E

E

E

A

B

C

E*A

E*

E*C

B

(a) (b)

Figure 3. (a) The projection of a view cell edge
and three occluders. EA, EB and EC denote
unoccluded funnels. (b) The line space sub-
division. For each cell, the corresponding
occluder-sequence is depicted. Note the cells
E�

A, E�

B and E�

C corresponding to unoccluded
funnels.

The line space subdivision holds important visibility in-
formation. Each cell corresponds to a funnel of 2D rays that
intersect the same sequence of occluders. Consequently the
occluders can be visible only through 3D rays that project
to the funnel. The edges of the subdivision correspond to
changes in visibility.

Essentially, edges of blocker polygons only encode
changes in 2D visibility. In Section 5, we will show how to
introduce additional edges into the subdivision correspond-
ing to changes in visibility due to the height structure of the
occluders.

We would like the subdivision to contain only blocker
polygons that correspond to occluders actually visible in
2.5D. Blocker polygons corresponding to invisible occlud-
ers need not be considered. We therefore construct the sub-
division of line space incrementally and determine whether
the currently processed occluderO is visible with respect to
the occluders already processed.

The overall algorithm for constructing the line space sub-
division proceeds as follows: for each occluderO, we iden-
tify the cells of the subdivision that are intersected by the
corresponding blocker polygon. For each such cell, visibil-
ity of O is tested in primary space using occluders associ-
ated with this cell (this test will be discussed in the next sec-
tion). If O is found visible, it is inserted into the sequence
of occluders for the cell, or the cell is further subdivided,
depending on the height structure of occluders. If O is oc-
cluded, no changes are necessary.

5. Funnel visibility test

This section describes the funnel visibility test used at the
core of our algorithm. The goal is to classify visibility of a
new occluderOn with respect to a cellQ� of the current line
space subdivision. The test is carried out inside the primary
space funnelQ which the cellQ� maps to. The solution we
propose is conservative—it approximates occlusion due to
EEE event surfaces.

The funnel visibility test can have three possible results:

� On is completely occluded by occluders associated
with Q�. In this case, On does not contribute to this
cell.

� The top edge of On is visible across the whole fun-
nel. In this case, it is simply added to the sequence of
relevant occluders forQ�.

� On is visible in only a part of the funnel. This means
that a change of visibility occurs insideQ, and the line
space subdivision needs to be updated.

The visible part of On is computed as follows: We select
all occluders stored in the cell Q� which lie in front of On

in primary space. For each such occluder O, we calculate
two shadow planes, against which we clip the top edge of
On . The first plane, �o, is defined by the top edge of O and
a vertex of the top edge of the view cell face S, such that S
and O lie on the same side of �o. The second plane, �s, is
defined by an edge of S and a vertex of the top edge of O,
such that S and the top edge of O lie on opposite sides of
�s (see Figure 4). The planes are defined so that any point
below them is occluded by O considering all rays from the
funnel.

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

πs

S

O

πs πo

O

S

πo

(a) (b)

Figure 4. (a) Projections of the two shadow
planes due to an occluder O and a view cell
face S. (b) Front view of the view cell face,
occluder and the two shadow planes.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

O

O

O

2

1

n

O

O

O

2

1

3

O

O

O

2

1

3

secondary funnel 1primary funnel secondary funnel 2original funnel

O

O

O

O

2

1

3

n

O3

S

front view

On

O1

QQ Q Qp s1 s2

x

S
s sa b

3O

O2

Figure 5. Adding a new occluder On into a funnel induced by three occluders can yield three new
funnels.

Note that clipping the top edge of On against �o and �s
results in at most one visible fragment due to the concavity
of the two shadow planes. So even after clipping the edge
by the shadow planes of all occluders in front of On , there
is either a single fragment of the top edge left, or On is
considered occluded.

If there is a visible fragment left, each of its endpoints
lying inside the funnel is mapped to an edge in line space.
The resulting line space edge(s) are used to subdivide the
original line space cell Q� into two or three new cells. In
exactly one of these cells, a fragment of On is visible and it
is added to the associated sequence of occluders.

To see what this means in primary space, consider the
two or three newly established funnels corresponding to the
new cells. The primary funnel includes the visible part of
On . The secondary funnels correspond to parts of the orig-
inal funnel where On is either invisible or which it does not
intersect at all.

Figure 5 depicts a funnel Q containing three occlud-
ers. The new occluder On is partially visible with re-
spect to the funnel. Funnel Q is split into three new fun-
nels. The primary funnelQp contains the occluder sequence
O1; O2; On ; O3. The first secondary funnelQs1 is induced
by the part of On hidden by the shadow plane of O2. It
contains the occluder sequence O1; O2; O3. The other sec-
ondary funnelQs2 corresponds to the set of 2D rays that do
not intersect On . Figure 6 depicts the three blocker poly-
gons corresponding to funnelsQp,Qs1 andQs2.

Q*

Q*

p

Q*s1

s2

as*
s*b

x*

O
O
O
O

1

2

3

n

Figure 6. Three blocker polygons correspond-
ing to funnelsQp, Qs1, Qs2 from Figure 5. x� is
the mapping of point x introduced by clipping
occluder On by a shadow plane.

6 Hierarchical visibility algorithm

To efficiently implement the algorithms described in this
paper, we make use of two hierarchical structures:

� The subdivision of line space is maintained by a Bi-
nary Space Partitioning (BSP) tree. The BSP tree
greatly facilitates the required operations on the line
space subdivision.

� The whole scene including the occluders is organized
in a kD-tree.

The kD-tree is used for two main purposes:

� First, it allows to determine an approximate front-to-
back order of occluders efficiently.

� Secondly, pruning of kD-tree nodes by hierarchical
visibility tests leads to the expected output-sensitive
behavior of the algorithm.

The hierarchical visibility algorithm traverses the kD-
tree in an approximate front-to-back order with respect to
the given view cell edge. The order is established using a
priority queue, where the priority of a node is inversely pro-
portional to the minimal distance of the node from the view
cell. Occluders stored within a leaf node are processed in
random order.

The line space BSP tree is constructed incrementally by
inserting blocker polygons corresponding to the currently
processed occluder.

HierarchicalVisibility(Viewcell edge S, kDTree KD) f
LSSD.Init(S) // initiate line space subdivision
pqueue.Put(KD.root) // initiate priority queue
while (pqueue is not empty) f

N pqueue.Get() // get next node from the queue
if (RN intersects S)
N.vis VISIBLE

else
N.vis LSSD.TestVisibility(RN)

if (N.vis != INVISIBLE) f
if (N is leaf)

LSSD.InsertOccluders(N.occluders)
else

pqueue.Put(children of N)
g
g // while
// classify visibility of scene objects
foreach visible KD node N
foreach object O of N
O.visibility = LSSD.TestVisibility(O)

g

Figure 7. Pseudo-code of the complete hier-
archical visibility algorithm.

BSP tree construction is interleaved with visibility tests
of the currently processed kD-tree node. The visibility test
classifies visibility of the node with respect to the already
processed occluders. If the node is invisible, the subtree
rooted at the node and all occluders it contains are culled.
If it is visible, the algorithm recursively continues testing
visibility of its descendants. In the special case of a node
intersecting the view cell edge, it is classified visible.

The visibility classification of all scene objects is car-
ried out after the complete line space subdivision has been
constructed by testing object bounding boxes inside visible
kD-tree nodes. The pseudo-code of the hierarchical visibil-
ity algorithm is outlined in Figure 7.

7. Results

We have evaluated the proposed method using a scene
representing a large part of the city of Vienna. We made
a comparison with the discrete hardware-accelerated ap-
proach by Wonka et al. [31]. In the comparison, we call
our method the line space subdivision method (LSS) and
Wonka et al.’s method the discrete cull map method (DCM).

For evaluation of the LSS we used a PC equipped with
a 950MHz Athlon CPU, and 256MB RAM. The DCM was
evaluated on a PC with 650MHz Pentium III, 512MB RAM,
and a GeForce DDR graphics card.

The tested scene represents 8 km2 of the city of Vienna
and consists of approximately 8 million triangles. The tri-
angles are grouped into 17854 objects that are used for vis-
ibility classification. We automatically synthesised 15243
larger polygons to be used as occluders. Most occluders
correspond to building façades.

We conducted three different tests. In the first test, we
randomly selected 105 out of 16447 view cells in the whole
scene. For each view cell edge we computed a PVS. Fig-
ure 8 shows two plots depicting the sizes of the PVS and
the running times of the two methods for each processed
view cell edge.

The second test was designed to test the scalability of
the two methods with respect to view cell size. We man-
ually placed 10 larger view cells (with perimeter between
600 and 800 meters) and applied the algorithms on the cor-
responding edges. Table 1 summarizes the results for both
the first and the second tests.

Avg. Avg.
Test Method PVS size time

[ms]
Test I DCM 105.2 202.1

LSS 84.7 44.6
Test II DCM 274.0 4304.8

LSS 236.8 211.9

Table 1. Average number of visible objects
and corresponding computation times for the
first and the second tests.

The last test was carried out only for LSS. The goal was
to test the scalability of the method with respect to the size
of the scene and verify its output-sensitive behavior. We

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

DCM
LSS

View cell edge id

PVS size

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350
View cell edge id

DCM
LSS

Time [ms]

Figure 8. (top) The number of potentially visible objects for 305 view cell edges. (bottom) The running
times of the two tested methods.

replicated the original scene on grids of size 2x2, 4x4 and
6x6. We selected a few view cells that provided the same
size of the resulting PVS for each of the tested scenes. Ta-
ble 2 depicts the size of the kD-tree and computation times
for the original scene and the three larger replicated scenes.

kD Avg.
Grid Area nodes time

[km2] [ms]
1x1 8 1609 90
2x2 32 6511 92
4x4 128 26191 101
6x6 288 57935 105

Table 2. Average PVS computation times for
different scene sizes.

8 Discussion

In this section, we give an interpretation of the results.
We discuss the suitability of our method for real-time ren-
dering, the importance of large view cells and the scalability
of the method to large scenes.

8.1 Real-time rendering

The first test shows the calculation times and the PVS
sizes for smaller view cells. We observe that both methods
produce comparable results. The view cell size for this test
was chosen so as to give reasonably-sized PVSs that would
allow for walkthroughs with high frame rates [31]. The LSS
analytical method often produces a tighter PVS, because it
does not rely on discretization and occluder shrinking.

8.2 Large view cells

The second test shows the scalability of the method for
larger view cells. Although smaller view cells are more in-
teresting for real-time rendering applications, larger view
cells can be very useful. If we consider a very simple model,
for example, where each façade is just one large flat poly-
gon, it can be sufficient to calculate a solution for a rather
large view cell. Another very important application is the
hierarchical precalculation of visibility information. Simi-
lar to previous methods [12], the visibility calculation could
start with a subdivision of the view space into larger view
cells. Smaller view cells are only calculated when neces-
sary (e.g., when the size of the PVS is too large or when
a heuristic determines large changes in visibility within the
view cell). For urban environments, this hierarchical ap-
proach can be efficiently combined with a priori knowledge
about the scene structure. If we use street sections as view
cells, we can observe that visibility within one street sec-
tion hardly changes (see Figure 9). In this context, we also
want to emphasize that our view cells are not restricted to
axis-aligned boxes.

8.3 Output sensitivity

The third test shows the scalability of the method to
larger scenes. It is a desired property of a visibility algo-
rithm that the computation time mainly depends on the size
of the PVS (=output) and not on the size of the scene (=in-
put). The results strongly indicate output sensitivity of the
algorithm in practice: the calculation times hardly change
when the size of the scene is increased. Such a behavior can
not be achieved easily by previous methods [31, 12, 23].

9. Conclusion and Future Work

We have introduced an algorithm that determines visi-
bility from a given view cell in a 2.5D scene, such as an
urban environment. It combines an exact solution to the 2D
visibility problem with a tight conservative solution for the
remaining “half” dimension. Coherence of visibility is ex-
ploited by using a hierarchical subdivision of line space as
well as a hierarchical organization of the scene. In practice,
our algorithm achieves output-sensitive behavior by com-
bining ordered processing of occluders and hierarchical vis-
ibility culling.

We have demonstrated that the method is suitable for
visibility preprocessing of large scenes by applying it to a
scene representing a large part of the city of Vienna. The
proposed method compares favorably with the previously
published algorithm by Wonka et al. [31]. To the best of
our knowledge, our method is the first algorithm that scales
to large scenes and efficiently handles large view cells.

Currently, we are designing an exact analytic solution
for regional visibility in 2.5D scenes. Such a solution is
crucial for evaluation of efficiency of all recently proposed
methods [23, 12, 31, 16].

Acknowledgements

Many thanks to Vlastimil Havran and Jan Přikryl for
their helpful comments. This research was supported by
the Czech Ministry of Education under Project LN00B096,
the Aktion Kontakt OE/CZ grant number 1999/17 and the
Austrian Science Foundation (FWF) contract no. p-13876-
INF.

References

[1] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards im-
age realism with interactive update rates in complex virtual
building environments. In 1990 Symposium on Interactive
3D Graphics, pages 41–50. ACM SIGGRAPH, Mar. 1990.

[2] J. Bittner, V. Havran, and P. Slavı́k. Hierarchical visibility
culling with occlusion trees. In Proceedings of Computer
Graphics International ’98 (CGI’98), pages 207–219. IEEE,
1998.

[3] J. Bittner and J. Přikryl. Exact regional visibility using
line space partitioning. Technical Report TR-186-2-01-
06, Institute of Computer Graphics and Algorithms, Vi-
enna University of Technology, Karlsplatz 13/186/2, A-
1040 Vienna, Austria, 2001. human contact: technical-
report@cg.tuwien.ac.at.

[4] F. S. Cho and D. Forsyth. Interactive ray tracing with the
visibility complex. Computers and Graphics, 23(5):703–
717, Oct. 1999.

[5] J. H. Clark. Hierarchical geometric models for visible sur-
face algorithms. Communications of the ACM, 19(10):547–
554, Oct. 1976.

[6] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Con-
servative visibility and strong occlusion for viewspace par-
titioning of densely occluded scenes. In EUROGRAPH-
ICS’98, 1998.

[7] D. Cohen-Or and A. Shaked. Visibility and dead-zones
in digital terrain maps. Computer Graphics Forum,
14(3):C/171–C/180, Sept. 1995.

[8] S. Coorg and S. Teller. Real-time occlusion culling for
models with large occluders. In Proceedings of the Sympo-
sium on Interactive 3D Graphics, pages 83–90, New York,
Apr.27–30 1997. ACM Press.

[9] G. Drettakis and E. Fiume. A Fast Shadow Algorithm for
Area Light Sources Using Backprojection. In Computer
Graphics (Proceedings of SIGGRAPH ’94), pages 223–230,
1994.

[10] F. Durand. 3D Visibility: Analytical Study and Applications.
PhD thesis, Universite Joseph Fourier, Grenoble, France,
July 1999.

[11] F. Durand, G. Drettakis, and C. Puech. The visibility skele-
ton: A powerful and efficient multi-purpose global visibility

Figure 9. (left) A small view cell and its PVS. (right) The PVS for a larger view cell can be very similar.

tool. In Computer Graphics (Proceedings of SIGGRAPH
’97), pages 89–100, 1997.

[12] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conser-
vative visibility preprocessing using extended projections.
In Computer Graphics (Proceedings of SIGGRAPH 2000),
pages 239–248, 2000.

[13] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer
visibility. In Computer Graphics (Proceedings of SIG-
GRAPH ’93), pages 231–238, 1993.

[14] A. Hinkenjann and H. Müller. Hierarchical blocker trees
for global visibility calculation. Research Report 621/1996,
University of Dortmund, Aug. 1996.

[15] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and
H. Zhang. Accelerated occlusion culling using shadow frus-
tra. In Proc. 13th Annu. ACM Sympos. Comput. Geom.,
pages 1–10, 1997.

[16] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Virtual oc-
cluders: An efficient intermediate pvs representation. In
Proceedings of the 11th EUROGRAPHICS Workshop on
Rendering, 2000.

[17] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Hardware-
accelerated from-region visibility using a dual ray space.
In Proceedings of the 12th EUROGRAPHICS Workshop on
Rendering, 2001.

[18] D. Luebke and C. Georges. Portals and mirrors: Simple,
fast evaluation of potentially visible sets. In P. Hanrahan
and J. Winget, editors, 1995 Symposium on Interactive 3D
Graphics, pages 105–106. ACM SIGGRAPH, Apr. 1995.

[19] R. Orti, S. Riviere, F. Durand, and C. Puech. Using the
Visibility Complex for Radiosity Computation. In Lecture
Notes in Computer Science (Applied Computational Geom-
etry: Towards Geometric Engineering), volume 1148, pages
177–190, Berlin, Germany, May 1996. Springer-Verlag.

[20] H. Plantinga and C. Dyer. Visibility, occlusion, and the
aspect graph. International Journal of Computer Vision,
5(2):137–160, 1990.

[21] M. Pocchiola and G. Vegter. The visibility complex. In
Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 328–
337, 1993.

[22] S. Rivière. Dynamic visibility in polygonal scenes with the
visibility complex. In Proceedings of the 13th International
Annual Symposium on Computational Geometry (SCG-97),
pages 421–423, New York, June 4–6 1997. ACM Press.

[23] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Con-
servative volumetric visibility with occluder fusion. In Com-
puter Graphics (Proceedings of SIGGRAPH 2000), pages
229–238, 2000.

[24] A. J. Stewart. Hierarchical visibility in terrains. In Pro-
ceedings of Eurographics Rendering Workshop ’97, pages
217–228, 1997.

[25] A. J. Stewart and S. Ghali. Fast computation of shadow
boundaries using spatial coherence and backprojections.
In Computer Graphics (Proceedings of SIGGRAPH ’94),
pages 231–238, 1994.

[26] J. Stolfi. Oriented Projective Geometry: A Framework for
Geometric Computations. Academic Press, 1991.

[27] S. J. Teller. Computing the antipenumbra of an area light
source. Computer Graphics, 26(2):139–148, July 1992.

[28] S. J. Teller and C. H. Séquin. Visibility preprocessing for
interactive walkthroughs. In Computer Graphics (Proceed-
ings of SIGGRAPH ’91), pages 61–69, 1991.

[29] G. Vegter. The visibility diagram: a data structure for visibil-
ity problems and motion planning. In SWAT 90, 2nd Scandi-
navian Workshop on Algorithm Theory, volume 447 of Lec-
ture Notes in Computer Science, pages 97–110. Springer,
1990.

[30] E. Welzl. Constructing the visibility graph for n-line seg-
ments in O(n2) time. Information Processing Letters,
20(4):167–171, May 1985.

[31] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility pre-
processing with occluder fusion for urban walkthroughs.
In Proceedings of the 11th EUROGRAPHICS Workshop on
Rendering, pages 71–82, 2000.

[32] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III. Vis-
ibility culling using hierarchical occlusion maps. In Com-
puter Graphics (Proceedings of SIGGRAPH ’97), Annual
Conference Series, pages 77–88, 1997.

